Internet Engineering Task Force (IETF) X. Liu
Request for Comments: 8294 Jabil
Category: Standards Track Y. Qu
ISSN: 2070-1721 Futurewei Technologies, Inc.
A. Lindem
Cisco Systems
C. Hopps
Deutsche Telekom
L. Berger
LabN Consulting, L.L.C.
December 2017
Common YANG Data Types for the Routing Area
Abstract
This document defines a collection of common data types using the
YANG data modeling language. These derived common types are designed
to be imported by other modules defined in the routing area.
Status of This Memo
This is an Internet Standards Track document.
This document is a product of the Internet Engineering Task Force
(IETF). It represents the consensus of the IETF community. It has
received public review and has been approved for publication by the
Internet Engineering Steering Group (IESG). Further information on
Internet Standards is available in Section 2 of RFC 7841.
Information about the current status of this document, any errata,
and how to provide feedback on it may be obtained at
https://www.rfc-editor.org/info/rfc8294.
Liu, et al. Standards Track [Page 1]
RFC 8294 Routing Area YANG Types December 2017
Copyright Notice
Copyright (c) 2017 IETF Trust and the persons identified as the
document authors. All rights reserved.
This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents
(https://trustee.ietf.org/license-info) in effect on the date of
publication of this document. Please review these documents
carefully, as they describe your rights and restrictions with respect
to this document. Code Components extracted from this document must
include Simplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided without warranty as
described in the Simplified BSD License.
Table of Contents
1. Introduction ....................................................3
1.1. Terminology ................................................3
2. Overview ........................................................3
3. IETF Routing Types YANG Module ..................................8
4. IANA Routing Types YANG Module .................................27
5. IANA Considerations ............................................37
5.1. IANA-Maintained iana-routing-types Module .................38
6. Security Considerations ........................................39
7. References .....................................................39
7.1. Normative References ......................................39
7.2. Informative References ....................................40
Acknowledgements ..................................................42
Authors' Addresses ................................................43
Liu, et al. Standards Track [Page 2]
RFC 8294 Routing Area YANG Types December 2017
1. Introduction
YANG [RFC6020] [RFC7950] is a data modeling language used to model
configuration data, state data, Remote Procedure Calls, and
notifications for network management protocols. The YANG language
supports a small set of built-in data types and provides mechanisms
to derive other types from the built-in types.
This document introduces a collection of common data types derived
from the built-in YANG data types. The derived types are designed to
be the common types applicable for modeling in the routing area.
1.1. Terminology
The terminology for describing YANG data models is found in
[RFC7950].
2. Overview
This document defines two YANG modules for common routing types:
ietf-routing-types and iana-routing-types. The only module imports
(ietf-yang-types and ietf-inet-types; see Section 3) are from
[RFC6991]. The ietf-routing-types module contains common routing
types other than those corresponding directly to IANA mappings.
These include the following:
router-id
Router Identifiers are commonly used to identify nodes in routing
and other control-plane protocols. An example usage of router-id
can be found in [OSPF-YANG].
route-target
Route Targets (RTs) are commonly used to control the distribution
of Virtual Routing and Forwarding (VRF) information (see
[RFC4364]) in support of BGP/MPLS IP Virtual Private Networks
(VPNs) and BGP/MPLS Ethernet VPNs [RFC7432]. An example usage can
be found in [L2VPN-YANG].
ipv6-route-target
IPv6 Route Targets are similar to standard Route Targets, except
that they are IPv6 Address Specific BGP Extended Communities as
described in [RFC5701]. An IPv6 Route Target is 20 octets and
includes an IPv6 address as the global administrator.
route-target-type
This type defines the import and export rules of Route Targets, as
described in Section 4.3.1 of [RFC4364].
Liu, et al. Standards Track [Page 3]
RFC 8294 Routing Area YANG Types December 2017
route-distinguisher
Route Distinguishers (RDs) are commonly used to identify separate
routes in support of VPNs. For example, as described in
[RFC4364], RDs are commonly used to identify independent VPNs and
VRFs, and, more generally, to identify multiple routes to the same
prefix.
route-origin
A Route Origin is commonly used to indicate the Site of Origin for
VRF information (see [RFC4364]) in support of BGP/MPLS IP VPNs and
BGP/MPLS Ethernet VPNs [RFC7432].
ipv6-route-origin
An IPv6 Route Origin would also be used to indicate the Site of
Origin for VRF information (see [RFC4364]) in support of VPNs.
IPv6 Route Origins are IPv6 Address Specific BGP Extended
Communities as described in [RFC5701]. An IPv6 Route Origin is
20 octets and includes an IPv6 address as the global
administrator.
ipv4-multicast-group-address
This type defines the representation of an IPv4 multicast group
address, which is in the range of 224.0.0.0 to 239.255.255.255.
An example usage can be found in [PIM-YANG].
ipv6-multicast-group-address
This type defines the representation of an IPv6 multicast group
address, which is in the range of ff00::/8. An example usage can
be found in [PIM-YANG].
ip-multicast-group-address
This type represents an IP multicast group address and is IP
version neutral. The format of the textual representation implies
the IP version. An example usage can be found in [PIM-YANG].
ipv4-multicast-source-address
This represents the IPv4 source address type for use in multicast
control protocols. This type also allows the indication of
wildcard sources, i.e., "*". An example of where this type
may/will be used is [PIM-YANG].
ipv6-multicast-source-address
This represents the IPv6 source address type for use in multicast
control protocols. This type also allows the indication of
wildcard sources, i.e., "*". An example of where this type
may/will be used is [PIM-YANG].
Liu, et al. Standards Track [Page 4]
RFC 8294 Routing Area YANG Types December 2017
bandwidth-ieee-float32
This represents the bandwidth in IEEE 754 floating-point 32-bit
binary format [IEEE754]. It is commonly used in Traffic
Engineering control-plane protocols. An example of where this
type may/will be used is [OSPF-YANG].
link-access-type
This type identifies the IGP link type.
timer-multiplier
This type is used in conjunction with a timer-value type. It is
generally used to indicate the number of timer-value intervals
that may expire before a specific event must occur. Examples of
this include the arrival of any Bidirectional Forwarding Detection
(BFD) packets (see [RFC5880] Section 6.8.4) or hello_interval
[RFC3209].
timer-value-seconds16
This type covers timers that can be set in seconds, not set, or
set to infinity. This type supports a range of values that can be
represented in a uint16 (2 octets).
timer-value-seconds32
This type covers timers that can be set in seconds, not set, or
set to infinity. This type supports a range of values that can be
represented in a uint32 (4 octets).
timer-value-milliseconds
This type covers timers that can be set in milliseconds, not set,
or set to infinity. This type supports a range of values that can
be represented in a uint32 (4 octets).
percentage
This type defines a percentage with a range of 0-100%. An example
usage can be found in [BGP-Model].
timeticks64
This type is based on the timeticks type defined in [RFC6991] but
with 64-bit precision. It represents the time in hundredths of a
second between two epochs. An example usage can be found in
[BGP-Model].
uint24
This type defines a 24-bit unsigned integer. An example usage can
be found in [OSPF-YANG].
Liu, et al. Standards Track [Page 5]
RFC 8294 Routing Area YANG Types December 2017
generalized-label
This type represents a Generalized Label for Generalized
Multiprotocol Label Switching (GMPLS) [RFC3471]. The Generalized
Label does not identify its type, which is known from context. An
example usage can be found in [TE-YANG].
mpls-label-special-purpose
This type represents the special-purpose MPLS label values
[RFC7274].
mpls-label-general-use
The 20-bit label value in an MPLS label stack is specified in
[RFC3032]. This label value does not include the encodings of
Traffic Class and TTL (Time to Live). The label range specified
by this type is for general use, with special-purpose MPLS label
values excluded.
mpls-label
The 20-bit label value in an MPLS label stack is specified in
[RFC3032]. This label value does not include the encodings of
Traffic Class and TTL. The label range specified by this type
covers the general-use values and the special-purpose label
values. An example usage can be found in [MPLS-Base-YANG].
This document defines the following YANG groupings:
mpls-label-stack
This grouping defines a reusable collection of schema nodes
representing an MPLS label stack [RFC3032].
vpn-route-targets
This grouping defines a reusable collection of schema nodes
representing Route Target import-export rules used in BGP-enabled
VPNs [RFC4364] [RFC4664]. An example usage can be found in
[L2VPN-YANG].
Liu, et al. Standards Track [Page 6]
RFC 8294 Routing Area YANG Types December 2017
The iana-routing-types module contains common routing types
corresponding directly to IANA mappings. These include the
following:
address-family
This type defines values for use in Address Family identifiers.
The values are based on the IANA "Address Family Numbers" registry
[IANA-ADDRESS-FAMILY-REGISTRY]. An example usage can be found in
[BGP-Model].
subsequent-address-family
This type defines values for use in Subsequent Address Family
Identifiers (SAFIs). The values are based on the IANA "Subsequent
Address Family Identifiers (SAFI) Parameters" registry
[IANA-SAFI-REGISTRY].
Liu, et al. Standards Track [Page 7]
RFC 8294 Routing Area YANG Types December 2017
3. IETF Routing Types YANG Module
<CODE BEGINS> file "ietf-routing-types@2017-12-04.yang"
module ietf-routing-types {
namespace "urn:ietf:params:xml:ns:yang:ietf-routing-types";
prefix rt-types;
import ietf-yang-types {
prefix yang;
}
import ietf-inet-types {
prefix inet;
}
organization
"IETF RTGWG - Routing Area Working Group";
contact
"WG Web: <https://datatracker.ietf.org/wg/rtgwg/>
WG List: <mailto:rtgwg@ietf.org>
Editors: Xufeng Liu
<mailto:Xufeng_Liu@jabail.com>
Yingzhen Qu
<mailto:yingzhen.qu@huawei.com>
Acee Lindem
<mailto:acee@cisco.com>
Christian Hopps
<mailto:chopps@chopps.org>
Lou Berger
<mailto:lberger@labn.com>";
description
"This module contains a collection of YANG data types
considered generally useful for routing protocols.
Copyright (c) 2017 IETF Trust and the persons
identified as authors of the code. All rights reserved.
Redistribution and use in source and binary forms, with or
without modification, is permitted pursuant to, and subject
to the license terms contained in, the Simplified BSD License
set forth in Section 4.c of the IETF Trust's Legal Provisions
Relating to IETF Documents
(https://trustee.ietf.org/license-info).
This version of this YANG module is part of RFC 8294; see
the RFC itself for full legal notices.";
Liu, et al. Standards Track [Page 8]
RFC 8294 Routing Area YANG Types December 2017
revision 2017-12-04 {
description "Initial revision.";
reference
"RFC 8294: Common YANG Data Types for the Routing Area.
Section 3.";
}
/*** Identities related to MPLS/GMPLS ***/
identity mpls-label-special-purpose-value {
description
"Base identity for deriving identities describing
special-purpose Multiprotocol Label Switching (MPLS) label
values.";
reference
"RFC 7274: Allocating and Retiring Special-Purpose MPLS
Labels.";
}
identity ipv4-explicit-null-label {
base mpls-label-special-purpose-value;
description
"This identity represents the IPv4 Explicit NULL Label.";
reference
"RFC 3032: MPLS Label Stack Encoding. Section 2.1.";
}
identity router-alert-label {
base mpls-label-special-purpose-value;
description
"This identity represents the Router Alert Label.";
reference
"RFC 3032: MPLS Label Stack Encoding. Section 2.1.";
}
identity ipv6-explicit-null-label {
base mpls-label-special-purpose-value;
description
"This identity represents the IPv6 Explicit NULL Label.";
reference
"RFC 3032: MPLS Label Stack Encoding. Section 2.1.";
}
Liu, et al. Standards Track [Page 9]
RFC 8294 Routing Area YANG Types December 2017
identity implicit-null-label {
base mpls-label-special-purpose-value;
description
"This identity represents the Implicit NULL Label.";
reference
"RFC 3032: MPLS Label Stack Encoding. Section 2.1.";
}
identity entropy-label-indicator {
base mpls-label-special-purpose-value;
description
"This identity represents the Entropy Label Indicator.";
reference
"RFC 6790: The Use of Entropy Labels in MPLS Forwarding.
Sections 3 and 10.1.";
}
identity gal-label {
base mpls-label-special-purpose-value;
description
"This identity represents the Generic Associated Channel
(G-ACh) Label (GAL).";
reference
"RFC 5586: MPLS Generic Associated Channel.
Sections 4 and 10.";
}
identity oam-alert-label {
base mpls-label-special-purpose-value;
description
"This identity represents the OAM Alert Label.";
reference
"RFC 3429: Assignment of the 'OAM Alert Label' for
Multiprotocol Label Switching Architecture (MPLS)
Operation and Maintenance (OAM) Functions.
Sections 3 and 6.";
}
identity extension-label {
base mpls-label-special-purpose-value;
description
"This identity represents the Extension Label.";
reference
"RFC 7274: Allocating and Retiring Special-Purpose MPLS
Labels. Sections 3.1 and 5.";
}
Liu, et al. Standards Track [Page 10]
RFC 8294 Routing Area YANG Types December 2017
/*** Collection of types related to routing ***/
typedef router-id {
type yang:dotted-quad;
description
"A 32-bit number in the dotted-quad format assigned to each
router. This number uniquely identifies the router within
an Autonomous System.";
}
/*** Collection of types related to VPNs ***/
typedef route-target {
type string {
pattern
'(0:(6553[0-5]|655[0-2][0-9]|65[0-4][0-9]{2}|'
+ '6[0-4][0-9]{3}|'
+ '[1-5][0-9]{4}|[1-9][0-9]{0,3}|0):(429496729[0-5]|'
+ '42949672[0-8][0-9]|'
+ '4294967[01][0-9]{2}|429496[0-6][0-9]{3}|'
+ '42949[0-5][0-9]{4}|'
+ '4294[0-8][0-9]{5}|429[0-3][0-9]{6}|'
+ '42[0-8][0-9]{7}|4[01][0-9]{8}|'
+ '[1-3][0-9]{9}|[1-9][0-9]{0,8}|0))|'
+ '(1:((([0-9]|[1-9][0-9]|1[0-9]{2}|2[0-4][0-9]|'
+ '25[0-5])\.){3}([0-9]|[1-9][0-9]|'
+ '1[0-9]{2}|2[0-4][0-9]|25[0-5])):(6553[0-5]|'
+ '655[0-2][0-9]|'
+ '65[0-4][0-9]{2}|6[0-4][0-9]{3}|'
+ '[1-5][0-9]{4}|[1-9][0-9]{0,3}|0))|'
+ '(2:(429496729[0-5]|42949672[0-8][0-9]|'
+ '4294967[01][0-9]{2}|'
+ '429496[0-6][0-9]{3}|42949[0-5][0-9]{4}|'
+ '4294[0-8][0-9]{5}|'
+ '429[0-3][0-9]{6}|42[0-8][0-9]{7}|4[01][0-9]{8}|'
+ '[1-3][0-9]{9}|[1-9][0-9]{0,8}|0):'
+ '(6553[0-5]|655[0-2][0-9]|65[0-4][0-9]{2}|'
+ '6[0-4][0-9]{3}|'
+ '[1-5][0-9]{4}|[1-9][0-9]{0,3}|0))|'
+ '(6(:[a-fA-F0-9]{2}){6})|'
+ '(([3-57-9a-fA-F]|[1-9a-fA-F][0-9a-fA-F]{1,3}):'
+ '[0-9a-fA-F]{1,12})';
}
Liu, et al. Standards Track [Page 11]
RFC 8294 Routing Area YANG Types December 2017
description
"A Route Target is an 8-octet BGP extended community
initially identifying a set of sites in a BGP VPN
(RFC 4364). However, it has since taken on a more general
role in BGP route filtering. A Route Target consists of two
or three fields: a 2-octet Type field, an administrator
field, and, optionally, an assigned number field.
According to the data formats for types 0, 1, 2, and 6 as
defined in RFC 4360, RFC 5668, and RFC 7432, the encoding
pattern is defined as:
0:2-octet-asn:4-octet-number
1:4-octet-ipv4addr:2-octet-number
2:4-octet-asn:2-octet-number
6:6-octet-mac-address
Additionally, a generic pattern is defined for future
Route Target types:
2-octet-other-hex-number:6-octet-hex-number
Some valid examples are 0:100:100, 1:1.1.1.1:100,
2:1234567890:203, and 6:26:00:08:92:78:00.";
reference
"RFC 4360: BGP Extended Communities Attribute.
RFC 4364: BGP/MPLS IP Virtual Private Networks (VPNs).
RFC 5668: 4-Octet AS Specific BGP Extended Community.
RFC 7432: BGP MPLS-Based Ethernet VPN.";
}
Liu, et al. Standards Track [Page 12]
RFC 8294 Routing Area YANG Types December 2017
typedef ipv6-route-target {
type string {
pattern
'((:|[0-9a-fA-F]{0,4}):)([0-9a-fA-F]{0,4}:){0,5}'
+ '((([0-9a-fA-F]{0,4}:)?(:|[0-9a-fA-F]{0,4}))|'
+ '(((25[0-5]|2[0-4][0-9]|1[0-9]{2}|[1-9]?[0-9])\.){3}'
+ '(25[0-5]|2[0-4][0-9]|1[0-9]{2}|[1-9]?[0-9])))'
+ ':'
+ '(6553[0-5]|655[0-2][0-9]|65[0-4][0-9]{2}|'
+ '6[0-4][0-9]{3}|'
+ '[1-5][0-9]{4}|[1-9][0-9]{0,3}|0)';
pattern '((([^:]+:){6}(([^:]+:[^:]+)|(.*\..*)))|'
+ '((([^:]+:)*[^:]+)?::(([^:]+:)*[^:]+)?))'
+ ':'
+ '(6553[0-5]|655[0-2][0-9]|65[0-4][0-9]{2}|'
+ '6[0-4][0-9]{3}|'
+ '[1-5][0-9]{4}|[1-9][0-9]{0,3}|0)';
}
description
"An IPv6 Route Target is a 20-octet BGP IPv6 Address
Specific Extended Community serving the same function
as a standard 8-octet Route Target, except that it only
allows an IPv6 address as the global administrator.
The format is <ipv6-address:2-octet-number>.
Two valid examples are 2001:db8::1:6544 and
2001:db8::5eb1:791:6b37:17958.";
reference
"RFC 5701: IPv6 Address Specific BGP Extended Community
Attribute.";
}
typedef route-target-type {
type enumeration {
enum import {
value 0;
description
"The Route Target applies to route import.";
}
enum export {
value 1;
description
"The Route Target applies to route export.";
}
Liu, et al. Standards Track [Page 13]
RFC 8294 Routing Area YANG Types December 2017
enum both {
value 2;
description
"The Route Target applies to both route import and
route export.";
}
}
description
"Indicates the role a Route Target takes in route filtering.";
reference
"RFC 4364: BGP/MPLS IP Virtual Private Networks (VPNs).";
}
typedef route-distinguisher {
type string {
pattern
'(0:(6553[0-5]|655[0-2][0-9]|65[0-4][0-9]{2}|'
+ '6[0-4][0-9]{3}|'
+ '[1-5][0-9]{4}|[1-9][0-9]{0,3}|0):(429496729[0-5]|'
+ '42949672[0-8][0-9]|'
+ '4294967[01][0-9]{2}|429496[0-6][0-9]{3}|'
+ '42949[0-5][0-9]{4}|'
+ '4294[0-8][0-9]{5}|429[0-3][0-9]{6}|'
+ '42[0-8][0-9]{7}|4[01][0-9]{8}|'
+ '[1-3][0-9]{9}|[1-9][0-9]{0,8}|0))|'
+ '(1:((([0-9]|[1-9][0-9]|1[0-9]{2}|2[0-4][0-9]|'
+ '25[0-5])\.){3}([0-9]|[1-9][0-9]|'
+ '1[0-9]{2}|2[0-4][0-9]|25[0-5])):(6553[0-5]|'
+ '655[0-2][0-9]|'
+ '65[0-4][0-9]{2}|6[0-4][0-9]{3}|'
+ '[1-5][0-9]{4}|[1-9][0-9]{0,3}|0))|'
+ '(2:(429496729[0-5]|42949672[0-8][0-9]|'
+ '4294967[01][0-9]{2}|'
+ '429496[0-6][0-9]{3}|42949[0-5][0-9]{4}|'
+ '4294[0-8][0-9]{5}|'
+ '429[0-3][0-9]{6}|42[0-8][0-9]{7}|4[01][0-9]{8}|'
+ '[1-3][0-9]{9}|[1-9][0-9]{0,8}|0):'
+ '(6553[0-5]|655[0-2][0-9]|65[0-4][0-9]{2}|'
+ '6[0-4][0-9]{3}|'
+ '[1-5][0-9]{4}|[1-9][0-9]{0,3}|0))|'
+ '(6(:[a-fA-F0-9]{2}){6})|'
+ '(([3-57-9a-fA-F]|[1-9a-fA-F][0-9a-fA-F]{1,3}):'
+ '[0-9a-fA-F]{1,12})';
}
Liu, et al. Standards Track [Page 14]
RFC 8294 Routing Area YANG Types December 2017
description
"A Route Distinguisher is an 8-octet value used to
distinguish routes from different BGP VPNs (RFC 4364).
A Route Distinguisher will have the same format as a
Route Target as per RFC 4360 and will consist of
two or three fields: a 2-octet Type field, an administrator
field, and, optionally, an assigned number field.
According to the data formats for types 0, 1, 2, and 6 as
defined in RFC 4360, RFC 5668, and RFC 7432, the encoding
pattern is defined as:
0:2-octet-asn:4-octet-number
1:4-octet-ipv4addr:2-octet-number
2:4-octet-asn:2-octet-number
6:6-octet-mac-address
Additionally, a generic pattern is defined for future
route discriminator types:
2-octet-other-hex-number:6-octet-hex-number
Some valid examples are 0:100:100, 1:1.1.1.1:100,
2:1234567890:203, and 6:26:00:08:92:78:00.";
reference
"RFC 4360: BGP Extended Communities Attribute.
RFC 4364: BGP/MPLS IP Virtual Private Networks (VPNs).
RFC 5668: 4-Octet AS Specific BGP Extended Community.
RFC 7432: BGP MPLS-Based Ethernet VPN.";
}
Liu, et al. Standards Track [Page 15]
RFC 8294 Routing Area YANG Types December 2017
typedef route-origin {
type string {
pattern
'(0:(6553[0-5]|655[0-2][0-9]|65[0-4][0-9]{2}|'
+ '6[0-4][0-9]{3}|'
+ '[1-5][0-9]{4}|[1-9][0-9]{0,3}|0):(429496729[0-5]|'
+ '42949672[0-8][0-9]|'
+ '4294967[01][0-9]{2}|429496[0-6][0-9]{3}|'
+ '42949[0-5][0-9]{4}|'
+ '4294[0-8][0-9]{5}|429[0-3][0-9]{6}|'
+ '42[0-8][0-9]{7}|4[01][0-9]{8}|'
+ '[1-3][0-9]{9}|[1-9][0-9]{0,8}|0))|'
+ '(1:((([0-9]|[1-9][0-9]|1[0-9]{2}|2[0-4][0-9]|'
+ '25[0-5])\.){3}([0-9]|[1-9][0-9]|'
+ '1[0-9]{2}|2[0-4][0-9]|25[0-5])):(6553[0-5]|'
+ '655[0-2][0-9]|'
+ '65[0-4][0-9]{2}|6[0-4][0-9]{3}|'
+ '[1-5][0-9]{4}|[1-9][0-9]{0,3}|0))|'
+ '(2:(429496729[0-5]|42949672[0-8][0-9]|'
+ '4294967[01][0-9]{2}|'
+ '429496[0-6][0-9]{3}|42949[0-5][0-9]{4}|'
+ '4294[0-8][0-9]{5}|'
+ '429[0-3][0-9]{6}|42[0-8][0-9]{7}|4[01][0-9]{8}|'
+ '[1-3][0-9]{9}|[1-9][0-9]{0,8}|0):'
+ '(6553[0-5]|655[0-2][0-9]|65[0-4][0-9]{2}|'
+ '6[0-4][0-9]{3}|'
+ '[1-5][0-9]{4}|[1-9][0-9]{0,3}|0))|'
+ '(6(:[a-fA-F0-9]{2}){6})|'
+ '(([3-57-9a-fA-F]|[1-9a-fA-F][0-9a-fA-F]{1,3}):'
+ '[0-9a-fA-F]{1,12})';
}
description
"A Route Origin is an 8-octet BGP extended community
identifying the set of sites where the BGP route
originated (RFC 4364). A Route Origin will have the same
format as a Route Target as per RFC 4360 and will consist
of two or three fields: a 2-octet Type field, an
administrator field, and, optionally, an assigned number
field.
According to the data formats for types 0, 1, 2, and 6 as
defined in RFC 4360, RFC 5668, and RFC 7432, the encoding
pattern is defined as:
0:2-octet-asn:4-octet-number
1:4-octet-ipv4addr:2-octet-number
2:4-octet-asn:2-octet-number
6:6-octet-mac-address
Liu, et al. Standards Track [Page 16]
RFC 8294 Routing Area YANG Types December 2017
Additionally, a generic pattern is defined for future
Route Origin types:
2-octet-other-hex-number:6-octet-hex-number
Some valid examples are 0:100:100, 1:1.1.1.1:100,
2:1234567890:203, and 6:26:00:08:92:78:00.";
reference
"RFC 4360: BGP Extended Communities Attribute.
RFC 4364: BGP/MPLS IP Virtual Private Networks (VPNs).
RFC 5668: 4-Octet AS Specific BGP Extended Community.
RFC 7432: BGP MPLS-Based Ethernet VPN.";
}
typedef ipv6-route-origin {
type string {
pattern
'((:|[0-9a-fA-F]{0,4}):)([0-9a-fA-F]{0,4}:){0,5}'
+ '((([0-9a-fA-F]{0,4}:)?(:|[0-9a-fA-F]{0,4}))|'
+ '(((25[0-5]|2[0-4][0-9]|1[0-9]{2}|[1-9]?[0-9])\.){3}'
+ '(25[0-5]|2[0-4][0-9]|1[0-9]{2}|[1-9]?[0-9])))'
+ ':'
+ '(6553[0-5]|655[0-2][0-9]|65[0-4][0-9]{2}|'
+ '6[0-4][0-9]{3}|'
+ '[1-5][0-9]{4}|[1-9][0-9]{0,3}|0)';
pattern '((([^:]+:){6}(([^:]+:[^:]+)|(.*\..*)))|'
+ '((([^:]+:)*[^:]+)?::(([^:]+:)*[^:]+)?))'
+ ':'
+ '(6553[0-5]|655[0-2][0-9]|65[0-4][0-9]{2}|'
+ '6[0-4][0-9]{3}|'
+ '[1-5][0-9]{4}|[1-9][0-9]{0,3}|0)';
}
description
"An IPv6 Route Origin is a 20-octet BGP IPv6 Address
Specific Extended Community serving the same function
as a standard 8-octet route, except that it only allows
an IPv6 address as the global administrator. The format
is <ipv6-address:2-octet-number>.
Two valid examples are 2001:db8::1:6544 and
2001:db8::5eb1:791:6b37:17958.";
reference
"RFC 5701: IPv6 Address Specific BGP Extended Community
Attribute.";
}
Liu, et al. Standards Track [Page 17]
RFC 8294 Routing Area YANG Types December 2017
/*** Collection of types common to multicast ***/
typedef ipv4-multicast-group-address {
type inet:ipv4-address {
pattern '(2((2[4-9])|(3[0-9]))\.).*';
}
description
"This type represents an IPv4 multicast group address,
which is in the range of 224.0.0.0 to 239.255.255.255.";
reference
"RFC 1112: Host Extensions for IP Multicasting.";
}
typedef ipv6-multicast-group-address {
type inet:ipv6-address {
pattern '(([fF]{2}[0-9a-fA-F]{2}):).*';
}
description
"This type represents an IPv6 multicast group address,
which is in the range of ff00::/8.";
reference
"RFC 4291: IP Version 6 Addressing Architecture. Section 2.7.
RFC 7346: IPv6 Multicast Address Scopes.";
}
typedef ip-multicast-group-address {
type union {
type ipv4-multicast-group-address;
type ipv6-multicast-group-address;
}
description
"This type represents a version-neutral IP multicast group
address. The format of the textual representation implies
the IP version.";
}
Liu, et al. Standards Track [Page 18]
RFC 8294 Routing Area YANG Types December 2017
typedef ipv4-multicast-source-address {
type union {
type enumeration {
enum * {
description
"Any source address.";
}
}
type inet:ipv4-address;
}
description
"Multicast source IPv4 address type.";
}
typedef ipv6-multicast-source-address {
type union {
type enumeration {
enum * {
description
"Any source address.";
}
}
type inet:ipv6-address;
}
description
"Multicast source IPv6 address type.";
}
/*** Collection of types common to protocols ***/
typedef bandwidth-ieee-float32 {
type string {
pattern
'0[xX](0((\.0?)?[pP](\+)?0?|(\.0?))|'
+ '1(\.([0-9a-fA-F]{0,5}[02468aAcCeE]?)?)?[pP](\+)?(12[0-7]|'
+ '1[01][0-9]|0?[0-9]?[0-9])?)';
}
description
"Bandwidth in IEEE 754 floating-point 32-bit binary format:
(-1)**(S) * 2**(Exponent-127) * (1 + Fraction),
where Exponent uses 8 bits and Fraction uses 23 bits.
The units are octets per second.
The encoding format is the external hexadecimal-significant
character sequences specified in IEEE 754 and ISO/IEC C99.
The format is restricted to be normalized, non-negative, and
non-fraction: 0x1.hhhhhhp{+}d, 0X1.HHHHHHP{+}D, or 0x0p0,
where 'h' and 'H' are hexadecimal digits and 'd' and 'D' are
integers in the range of [0..127].
Liu, et al. Standards Track [Page 19]
RFC 8294 Routing Area YANG Types December 2017
When six hexadecimal digits are used for 'hhhhhh' or
'HHHHHH', the least significant digit must be an even
number. 'x' and 'X' indicate hexadecimal; 'p' and 'P'
indicate a power of two. Some examples are 0x0p0, 0x1p10,
and 0x1.abcde2p+20.";
reference
"IEEE Std 754-2008: IEEE Standard for Floating-Point
Arithmetic.
ISO/IEC C99: Information technology - Programming
Languages - C.";
}
typedef link-access-type {
type enumeration {
enum broadcast {
description
"Specify broadcast multi-access network.";
}
enum non-broadcast-multiaccess {
description
"Specify Non-Broadcast Multi-Access (NBMA) network.";
}
enum point-to-multipoint {
description
"Specify point-to-multipoint network.";
}
enum point-to-point {
description
"Specify point-to-point network.";
}
}
description
"Link access type.";
}
typedef timer-multiplier {
type uint8;
description
"The number of timer value intervals that should be
interpreted as a failure.";
}
Liu, et al. Standards Track [Page 20]
RFC 8294 Routing Area YANG Types December 2017
typedef timer-value-seconds16 {
type union {
type uint16 {
range "1..65535";
}
type enumeration {
enum infinity {
description
"The timer is set to infinity.";
}
enum not-set {
description
"The timer is not set.";
}
}
}
units "seconds";
description
"Timer value type, in seconds (16-bit range).";
}
typedef timer-value-seconds32 {
type union {
type uint32 {
range "1..4294967295";
}
type enumeration {
enum infinity {
description
"The timer is set to infinity.";
}
enum not-set {
description
"The timer is not set.";
}
}
}
units "seconds";
description
"Timer value type, in seconds (32-bit range).";
}
Liu, et al. Standards Track [Page 21]
RFC 8294 Routing Area YANG Types December 2017
typedef timer-value-milliseconds {
type union {
type uint32 {
range "1..4294967295";
}
type enumeration {
enum infinity {
description
"The timer is set to infinity.";
}
enum not-set {
description
"The timer is not set.";
}
}
}
units "milliseconds";
description
"Timer value type, in milliseconds.";
}
typedef percentage {
type uint8 {
range "0..100";
}
description
"Integer indicating a percentage value.";
}
typedef timeticks64 {
type uint64;
description
"This type is based on the timeticks type defined in
RFC 6991, but with 64-bit width. It represents the time,
modulo 2^64, in hundredths of a second between two epochs.";
reference
"RFC 6991: Common YANG Data Types.";
}
typedef uint24 {
type uint32 {
range "0..16777215";
}
description
"24-bit unsigned integer.";
}
Liu, et al. Standards Track [Page 22]
RFC 8294 Routing Area YANG Types December 2017
/*** Collection of types related to MPLS/GMPLS ***/
typedef generalized-label {
type binary;
description
"Generalized Label. Nodes sending and receiving the
Generalized Label are aware of the link-specific
label context and type.";
reference
"RFC 3471: Generalized Multi-Protocol Label Switching (GMPLS)
Signaling Functional Description. Section 3.2.";
}
typedef mpls-label-special-purpose {
type identityref {
base mpls-label-special-purpose-value;
}
description
"This type represents the special-purpose MPLS label values.";
reference
"RFC 3032: MPLS Label Stack Encoding.
RFC 7274: Allocating and Retiring Special-Purpose MPLS
Labels.";
}
typedef mpls-label-general-use {
type uint32 {
range "16..1048575";
}
description
"The 20-bit label value in an MPLS label stack as specified
in RFC 3032. This label value does not include the
encodings of Traffic Class and TTL (Time to Live).
The label range specified by this type is for general use,
with special-purpose MPLS label values excluded.";
reference
"RFC 3032: MPLS Label Stack Encoding.";
}
Liu, et al. Standards Track [Page 23]
RFC 8294 Routing Area YANG Types December 2017
typedef mpls-label {
type union {
type mpls-label-special-purpose;
type mpls-label-general-use;
}
description
"The 20-bit label value in an MPLS label stack as specified
in RFC 3032. This label value does not include the
encodings of Traffic Class and TTL.";
reference
"RFC 3032: MPLS Label Stack Encoding.";
}
/*** Groupings **/
grouping mpls-label-stack {
description
"This grouping specifies an MPLS label stack. The label
stack is encoded as a list of label stack entries. The
list key is an identifier that indicates the relative
ordering of each entry, with the lowest-value identifier
corresponding to the top of the label stack.";
container mpls-label-stack {
description
"Container for a list of MPLS label stack entries.";
list entry {
key "id";
description
"List of MPLS label stack entries.";
leaf id {
type uint8;
description
"Identifies the entry in a sequence of MPLS label
stack entries. An entry with a smaller identifier
value precedes an entry with a larger identifier
value in the label stack. The value of this ID has
no semantic meaning other than relative ordering
and referencing the entry.";
}
leaf label {
type rt-types:mpls-label;
description
"Label value.";
}
Liu, et al. Standards Track [Page 24]
RFC 8294 Routing Area YANG Types December 2017
leaf ttl {
type uint8;
description
"Time to Live (TTL).";
reference
"RFC 3032: MPLS Label Stack Encoding.";
}
leaf traffic-class {
type uint8 {
range "0..7";
}
description
"Traffic Class (TC).";
reference
"RFC 5462: Multiprotocol Label Switching (MPLS) Label
Stack Entry: 'EXP' Field Renamed to 'Traffic Class'
Field.";
}
}
}
}
Liu, et al. Standards Track [Page 25]
RFC 8294 Routing Area YANG Types December 2017
grouping vpn-route-targets {
description
"A grouping that specifies Route Target import-export rules
used in BGP-enabled VPNs.";
reference
"RFC 4364: BGP/MPLS IP Virtual Private Networks (VPNs).
RFC 4664: Framework for Layer 2 Virtual Private Networks
(L2VPNs).";
list vpn-target {
key "route-target";
description
"List of Route Targets.";
leaf route-target {
type rt-types:route-target;
description
"Route Target value.";
}
leaf route-target-type {
type rt-types:route-target-type;
mandatory true;
description
"Import/export type of the Route Target.";
}
}
}
}
<CODE ENDS>
Liu, et al. Standards Track [Page 26]
RFC 8294 Routing Area YANG Types December 2017
4. IANA Routing Types YANG Module
<CODE BEGINS> file "iana-routing-types@2017-12-04.yang"
module iana-routing-types {
namespace "urn:ietf:params:xml:ns:yang:iana-routing-types";
prefix iana-rt-types;
organization
"IANA";
contact
"Internet Assigned Numbers Authority
Postal: ICANN
12025 Waterfront Drive, Suite 300
Los Angeles, CA 90094-2536
United States of America
Tel: +1 310 301 5800
<mailto:iana@iana.org>";
description
"This module contains a collection of YANG data types
considered defined by IANA and used for routing
protocols.
Copyright (c) 2017 IETF Trust and the persons
identified as authors of the code. All rights reserved.
Redistribution and use in source and binary forms, with or
without modification, is permitted pursuant to, and subject
to the license terms contained in, the Simplified BSD License
set forth in Section 4.c of the IETF Trust's Legal Provisions
Relating to IETF Documents
(https://trustee.ietf.org/license-info).
This version of this YANG module is part of RFC 8294; see
the RFC itself for full legal notices.";
revision 2017-12-04 {
description "Initial revision.";
reference
"RFC 8294: Common YANG Data Types for the Routing Area.
Section 4.";
}
Liu, et al. Standards Track [Page 27]
RFC 8294 Routing Area YANG Types December 2017
/*** Collection of IANA types related to routing ***/
/*** IANA Address Family enumeration ***/
typedef address-family {
type enumeration {
enum ipv4 {
value 1;
description
"IPv4 Address Family.";
}
enum ipv6 {
value 2;
description
"IPv6 Address Family.";
}
enum nsap {
value 3;
description
"OSI Network Service Access Point (NSAP) Address Family.";
}
enum hdlc {
value 4;
description
"High-Level Data Link Control (HDLC) Address Family.";
}
enum bbn1822 {
value 5;
description
"Bolt, Beranek, and Newman Report 1822 (BBN 1822)
Address Family.";
}
enum ieee802 {
value 6;
description
"IEEE 802 Committee Address Family
(aka Media Access Control (MAC) address).";
}
enum e163 {
value 7;
description
"ITU-T E.163 Address Family.";
}
Liu, et al. Standards Track [Page 28]
RFC 8294 Routing Area YANG Types December 2017
enum e164 {
value 8;
description
"ITU-T E.164 (Switched Multimegabit Data Service (SMDS),
Frame Relay, ATM) Address Family.";
}
enum f69 {
value 9;
description
"ITU-T F.69 (Telex) Address Family.";
}
enum x121 {
value 10;
description
"ITU-T X.121 (X.25, Frame Relay) Address Family.";
}
enum ipx {
value 11;
description
"Novell Internetwork Packet Exchange (IPX)
Address Family.";
}
enum appletalk {
value 12;
description
"Apple AppleTalk Address Family.";
}
enum decnet-iv {
value 13;
description
"Digital Equipment DECnet Phase IV Address Family.";
}
enum vines {
value 14;
description
"Banyan Vines Address Family.";
}
Liu, et al. Standards Track [Page 29]
RFC 8294 Routing Area YANG Types December 2017
enum e164-nsap {
value 15;
description
"ITU-T E.164 with NSAP sub-address Address Family.";
}
enum dns {
value 16;
description
"Domain Name System (DNS) Address Family.";
}
enum distinguished-name {
value 17;
description
"Distinguished Name Address Family.";
}
enum as-num {
value 18;
description
"Autonomous System (AS) Number Address Family.";
}
enum xtp-v4 {
value 19;
description
"Xpress Transport Protocol (XTP) over IPv4
Address Family.";
}
enum xtp-v6 {
value 20;
description
"XTP over IPv6 Address Family.";
}
enum xtp-native {
value 21;
description
"XTP native mode Address Family.";
}
enum fc-port {
value 22;
description
"Fibre Channel (FC) World-Wide Port Name Address Family.";
}
Liu, et al. Standards Track [Page 30]
RFC 8294 Routing Area YANG Types December 2017
enum fc-node {
value 23;
description
"FC World-Wide Node Name Address Family.";
}
enum gwid {
value 24;
description
"ATM Gateway Identifier (GWID) Number Address Family.";
}
enum l2vpn {
value 25;
description
"Layer 2 VPN (L2VPN) Address Family.";
}
enum mpls-tp-section-eid {
value 26;
description
"MPLS Transport Profile (MPLS-TP) Section Endpoint
Identifier Address Family.";
}
enum mpls-tp-lsp-eid {
value 27;
description
"MPLS-TP Label Switched Path (LSP) Endpoint Identifier
Address Family.";
}
enum mpls-tp-pwe-eid {
value 28;
description
"MPLS-TP Pseudowire Endpoint Identifier Address Family.";
}
enum mt-v4 {
value 29;
description
"Multi-Topology IPv4 Address Family.";
}
Liu, et al. Standards Track [Page 31]
RFC 8294 Routing Area YANG Types December 2017
enum mt-v6 {
value 30;
description
"Multi-Topology IPv6 Address Family.";
}
enum eigrp-common-sf {
value 16384;
description
"Enhanced Interior Gateway Routing Protocol (EIGRP)
Common Service Family Address Family.";
}
enum eigrp-v4-sf {
value 16385;
description
"EIGRP IPv4 Service Family Address Family.";
}
enum eigrp-v6-sf {
value 16386;
description
"EIGRP IPv6 Service Family Address Family.";
}
enum lcaf {
value 16387;
description
"Locator/ID Separation Protocol (LISP)
Canonical Address Format (LCAF) Address Family.";
}
enum bgp-ls {
value 16388;
description
"Border Gateway Protocol - Link State (BGP-LS)
Address Family.";
}
enum mac-48 {
value 16389;
description
"IEEE 48-bit MAC Address Family.";
}
Liu, et al. Standards Track [Page 32]
RFC 8294 Routing Area YANG Types December 2017
enum mac-64 {
value 16390;
description
"IEEE 64-bit MAC Address Family.";
}
enum trill-oui {
value 16391;
description
"Transparent Interconnection of Lots of Links (TRILL)
IEEE Organizationally Unique Identifier (OUI)
Address Family.";
}
enum trill-mac-24 {
value 16392;
description
"TRILL final 3 octets of 48-bit MAC Address Family.";
}
enum trill-mac-40 {
value 16393;
description
"TRILL final 5 octets of 64-bit MAC Address Family.";
}
enum ipv6-64 {
value 16394;
description
"First 8 octets (64 bits) of IPv6 address
Address Family.";
}
enum trill-rbridge-port-id {
value 16395;
description
"TRILL Routing Bridge (RBridge) Port ID Address Family.";
}
enum trill-nickname {
value 16396;
description
"TRILL Nickname Address Family.";
}
}
Liu, et al. Standards Track [Page 33]
RFC 8294 Routing Area YANG Types December 2017
description
"Enumeration containing all the IANA-defined
Address Families.";
}
/*** Subsequent Address Family Identifiers (SAFIs) ***/
/*** for multiprotocol BGP enumeration ***/
typedef bgp-safi {
type enumeration {
enum unicast-safi {
value 1;
description
"Unicast SAFI.";
}
enum multicast-safi {
value 2;
description
"Multicast SAFI.";
}
enum labeled-unicast-safi {
value 4;
description
"Labeled Unicast SAFI.";
}
enum multicast-vpn-safi {
value 5;
description
"Multicast VPN SAFI.";
}
enum pseudowire-safi {
value 6;
description
"Multi-segment Pseudowire VPN SAFI.";
}
enum tunnel-encap-safi {
value 7;
description
"Tunnel Encap SAFI.";
}
Liu, et al. Standards Track [Page 34]
RFC 8294 Routing Area YANG Types December 2017
enum mcast-vpls-safi {
value 8;
description
"Multicast Virtual Private LAN Service (VPLS) SAFI.";
}
enum tunnel-safi {
value 64;
description
"Tunnel SAFI.";
}
enum vpls-safi {
value 65;
description
"VPLS SAFI.";
}
enum mdt-safi {
value 66;
description
"Multicast Distribution Tree (MDT) SAFI.";
}
enum v4-over-v6-safi {
value 67;
description
"IPv4 over IPv6 SAFI.";
}
enum v6-over-v4-safi {
value 68;
description
"IPv6 over IPv4 SAFI.";
}
enum l1-vpn-auto-discovery-safi {
value 69;
description
"Layer 1 VPN Auto-Discovery SAFI.";
}
enum evpn-safi {
value 70;
description
"Ethernet VPN (EVPN) SAFI.";
}
Liu, et al. Standards Track [Page 35]
RFC 8294 Routing Area YANG Types December 2017
enum bgp-ls-safi {
value 71;
description
"BGP-LS SAFI.";
}
enum bgp-ls-vpn-safi {
value 72;
description
"BGP-LS VPN SAFI.";
}
enum sr-te-safi {
value 73;
description
"Segment Routing - Traffic Engineering (SR-TE) SAFI.";
}
enum labeled-vpn-safi {
value 128;
description
"MPLS Labeled VPN SAFI.";
}
enum multicast-mpls-vpn-safi {
value 129;
description
"Multicast for BGP/MPLS IP VPN SAFI.";
}
enum route-target-safi {
value 132;
description
"Route Target SAFI.";
}
enum ipv4-flow-spec-safi {
value 133;
description
"IPv4 Flow Specification SAFI.";
}
enum vpnv4-flow-spec-safi {
value 134;
description
"IPv4 VPN Flow Specification SAFI.";
}
Liu, et al. Standards Track [Page 36]
RFC 8294 Routing Area YANG Types December 2017
enum vpn-auto-discovery-safi {
value 140;
description
"VPN Auto-Discovery SAFI.";
}
}
description
"Enumeration for BGP SAFI.";
reference
"RFC 4760: Multiprotocol Extensions for BGP-4.";
}
}
<CODE ENDS>
5. IANA Considerations
This document registers the following namespace URIs in the "IETF XML
Registry" [RFC3688]:
URI: urn:ietf:params:xml:ns:yang:ietf-routing-types
Registrant Contact: The IESG.
XML: N/A; the requested URI is an XML namespace.
URI: urn:ietf:params:xml:ns:yang:iana-routing-types
Registrant Contact: IANA.
XML: N/A; the requested URI is an XML namespace.
This document registers the following YANG modules in the "YANG
Module Names" registry [RFC6020]:
Name: ietf-routing-types
Namespace: urn:ietf:params:xml:ns:yang:ietf-routing-types
Prefix: rt-types
Reference: RFC 8294
Name: iana-routing-types
Namespace: urn:ietf:params:xml:ns:yang:iana-routing-types
Prefix: iana-rt-types
Reference: RFC 8294
Liu, et al. Standards Track [Page 37]
RFC 8294 Routing Area YANG Types December 2017
5.1. IANA-Maintained iana-routing-types Module
This document defines the initial version of the IANA-maintained
iana-routing-types YANG module (Section 4).
The iana-routing-types YANG module is intended to reflect the
"Address Family Numbers" registry [IANA-ADDRESS-FAMILY-REGISTRY] and
the "Subsequent Address Family Identifiers (SAFI) Parameters"
registry [IANA-SAFI-REGISTRY].
IANA has added this note to the "iana-routing-types YANG Module"
registry:
Address Families and Subsequent Address Families must not be
directly added to the iana-routing-types YANG module. They must
instead be respectively added to the "Address Family Numbers" and
"Subsequent Address Family Identifiers (SAFI) Parameters"
registries.
When an Address Family or Subsequent Address Family is respectively
added to the "Address Family Numbers" registry or the "Subsequent
Address Family Identifiers (SAFI) Parameters" registry, a new "enum"
statement must be added to the iana-routing-types YANG module. The
name of the "enum" is the same as the corresponding Address Family or
SAFI, except that it will be a valid YANG identifier in all lowercase
and with hyphens separating individual words in compound identifiers.
The following "enum" statement, and substatements thereof, should be
defined:
"enum": Contains the YANG enum identifier for the "address-family"
(for Address Families) or "bgp-safi" (for Subsequent
Address Families). This may be the same as the
"address-family" or "bgp-safi", or it may be a shorter
version to facilitate YANG identifier usage.
"value": Contains the IANA-assigned value corresponding to the
"address-family" (for Address Families) or "bgp-safi"
(for Subsequent Address Families).
"status": Include only if a registration has been deprecated (use
the value "deprecated") or obsoleted (use the value
"obsolete").
Liu, et al. Standards Track [Page 38]
RFC 8294 Routing Area YANG Types December 2017
"description": Replicate the description from the registry,
if any. Insert line breaks as needed so that the
line does not exceed 72 characters.
"reference": Replicate the reference from the registry, if any,
and add the title of the document.
Unassigned or reserved values are not present in these modules.
When the iana-routing-types YANG module is updated, a new "revision"
statement must be added in front of the existing revision statements.
IANA has added this new note to the "Address Family Numbers" and
"Subsequent Address Family Identifiers (SAFI) Parameters" registries:
When this registry is modified, the YANG module iana-routing-types
must be updated as defined in RFC 8294.
6. Security Considerations
This document defines common routing type definitions (i.e., typedef
statements) using the YANG data modeling language. The definitions
themselves have no security or privacy impact on the Internet, but
the usage of these definitions in concrete YANG modules might have.
The security considerations spelled out in the YANG 1.1 specification
[RFC7950] apply for this document as well.
7. References
7.1. Normative References
[RFC3688] Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688,
DOI 10.17487/RFC3688, January 2004,
<https://www.rfc-editor.org/info/rfc3688>.
[RFC6020] Bjorklund, M., Ed., "YANG - A Data Modeling Language for
the Network Configuration Protocol (NETCONF)", RFC 6020,
DOI 10.17487/RFC6020, October 2010,
<https://www.rfc-editor.org/info/rfc6020>.
[RFC6991] Schoenwaelder, J., Ed., "Common YANG Data Types",
RFC 6991, DOI 10.17487/RFC6991, July 2013,
<https://www.rfc-editor.org/info/rfc6991>.
[RFC7950] Bjorklund, M., Ed., "The YANG 1.1 Data Modeling Language",
RFC 7950, DOI 10.17487/RFC7950, August 2016,
<https://www.rfc-editor.org/info/rfc7950>.
Liu, et al. Standards Track [Page 39]
RFC 8294 Routing Area YANG Types December 2017
[IANA-ADDRESS-FAMILY-REGISTRY]
"IANA Address Family Numbers Registry",
<https://www.iana.org/assignments/
address-family-numbers/>.
[IANA-SAFI-REGISTRY]
"IANA Subsequent Address Family Identifiers (SAFI)
Parameters Registry",
<https://www.iana.org/assignments/safi-namespace/>.
7.2. Informative References
[IEEE754] IEEE, "IEEE Standard for Floating-Point Arithmetic",
IEEE 754-2008, DOI 10.1109/IEEESTD.2008.4610935.
[BGP-Model]
Shaikh, A., Ed., Shakir, R., Ed., Patel, K., Ed., Hares,
S., Ed., D'Souza, K., Bansal, D., Clemm, A., Zhdankin, A.,
Jethanandani, M., and X. Liu, "BGP Model for Service
Provider Networks", Work in Progress,
draft-ietf-idr-bgp-model-02, July 2016.
[OSPF-YANG]
Yeung, D., Qu, Y., Zhang, J., Chen, I., and A. Lindem,
"Yang Data Model for OSPF Protocol", Work in Progress,
draft-ietf-ospf-yang-09, October 2017.
[PIM-YANG] Liu, X., McAllister, P., Peter, A., Sivakumar, M., Liu,
Y., and F. Hu, "A YANG data model for Protocol-Independent
Multicast (PIM)", Work in Progress,
draft-ietf-pim-yang-12, December 2017.
[TE-YANG] Saad, T., Ed., Gandhi, R., Liu, X., Beeram, V., Shah, H.,
and I. Bryskin, "A YANG Data Model for Traffic Engineering
Tunnels and Interfaces", Work in Progress,
draft-ietf-teas-yang-te-09, October 2017.
[L2VPN-YANG]
Shah, H., Ed., Brissette, P., Ed., Chen, I., Ed., Hussain,
I., Ed., Wen, B., Ed., and K. Tiruveedhula, Ed., "YANG
Data Model for MPLS-based L2VPN", Work in Progress,
draft-ietf-bess-l2vpn-yang-07, September 2017.
[MPLS-Base-YANG]
Saad, T., Raza, K., Gandhi, R., Liu, X., Beeram, V., Shah,
H., Bryskin, I., Chen, X., Jones, R., and B. Wen, "A YANG
Data Model for MPLS Base", Work in Progress,
draft-ietf-mpls-base-yang-05, July 2017.
Liu, et al. Standards Track [Page 40]
RFC 8294 Routing Area YANG Types December 2017
[RFC3032] Rosen, E., Tappan, D., Fedorkow, G., Rekhter, Y.,
Farinacci, D., Li, T., and A. Conta, "MPLS Label Stack
Encoding", RFC 3032, DOI 10.17487/RFC3032, January 2001,
<https://www.rfc-editor.org/info/rfc3032>.
[RFC3209] Awduche, D., Berger, L., Gan, D., Li, T., Srinivasan, V.,
and G. Swallow, "RSVP-TE: Extensions to RSVP for LSP
Tunnels", RFC 3209, DOI 10.17487/RFC3209, December 2001,
<https://www.rfc-editor.org/info/rfc3209>.
[RFC3471] Berger, L., Ed., "Generalized Multi-Protocol Label
Switching (GMPLS) Signaling Functional Description",
RFC 3471, DOI 10.17487/RFC3471, January 2003,
<https://www.rfc-editor.org/info/rfc3471>.
[RFC4364] Rosen, E. and Y. Rekhter, "BGP/MPLS IP Virtual Private
Networks (VPNs)", RFC 4364, DOI 10.17487/RFC4364,
February 2006, <https://www.rfc-editor.org/info/rfc4364>.
[RFC4664] Andersson, L., Ed., and E. Rosen, Ed., "Framework for
Layer 2 Virtual Private Networks (L2VPNs)", RFC 4664,
DOI 10.17487/RFC4664, September 2006,
<https://www.rfc-editor.org/info/rfc4664>.
[RFC5701] Rekhter, Y., "IPv6 Address Specific BGP Extended Community
Attribute", RFC 5701, DOI 10.17487/RFC5701, November 2009,
<https://www.rfc-editor.org/info/rfc5701>.
[RFC5880] Katz, D. and D. Ward, "Bidirectional Forwarding Detection
(BFD)", RFC 5880, DOI 10.17487/RFC5880, June 2010,
<https://www.rfc-editor.org/info/rfc5880>.
[RFC7274] Kompella, K., Andersson, L., and A. Farrel, "Allocating
and Retiring Special-Purpose MPLS Labels", RFC 7274,
DOI 10.17487/RFC7274, June 2014,
<https://www.rfc-editor.org/info/rfc7274>.
[RFC7432] Sajassi, A., Ed., Aggarwal, R., Bitar, N., Isaac, A.,
Uttaro, J., Drake, J., and W. Henderickx, "BGP MPLS-Based
Ethernet VPN", RFC 7432, DOI 10.17487/RFC7432,
February 2015, <https://www.rfc-editor.org/info/rfc7432>.
Liu, et al. Standards Track [Page 41]
RFC 8294 Routing Area YANG Types December 2017
Acknowledgements
The Routing Area YANG Architecture design team members included Acee
Lindem, Anees Shaikh, Christian Hopps, Dean Bogdanovic, Ebben Aries,
Lou Berger, Qin Wu, Rob Shakir, Xufeng Liu, and Yingzhen Qu.
Thanks to Martin Bjorklund, Tom Petch, Stewart Bryant, and Radek
Krejci for comments on the model and document text. Thanks to Jeff
Haas and Robert Raszuk for suggestions for additional common routing
types.
Liu, et al. Standards Track [Page 42]
RFC 8294 Routing Area YANG Types December 2017
Authors' Addresses
Xufeng Liu
Jabil
8281 Greensboro Drive, Suite 200
McLean, VA 22102
United States of America
Email: Xufeng_Liu@jabil.com
Yingzhen Qu
Futurewei Technologies, Inc.
2330 Central Expressway
Santa Clara, CA 95050
United States of America
Email: yingzhen.qu@huawei.com
Acee Lindem
Cisco Systems
301 Midenhall Way
Cary, NC 27513
United States of America
Email: acee@cisco.com
Christian Hopps
Deutsche Telekom
Email: chopps@chopps.org
Lou Berger
LabN Consulting, L.L.C.
Email: lberger@labn.net
Liu, et al. Standards Track [Page 43]