GLenum dfactor )
eqn not supported
Additionally, if the GL_ARB_imaging extension is supported, the following constants are accepted: GL_CONSTANT_COLOR, GL_ONE_MINUS_CONSTANT_COLOR, GL_CONSTANT_ALPHA, GL_ONE_MINUS_CONSTANT_ALPHA.
Additionally, if the GL_ARB_imaging extension is supported, the following constants are accepted: GL_CONSTANT_COLOR, GL_ONE_MINUS_CONSTANT_COLOR, GL_CONSTANT_ALPHA, GL_ONE_MINUS_CONSTANT_ALPHA.
glBlendFunc defines the operation of blending when it is enabled. sfactor specifies which of nine methods is used to scale the source color components. dfactor specifies which of eight methods is used to scale the destination color components. The eleven possible methods are described in the following table. Each method defines four scale factors, one each for red, green, blue, and alpha.
In the table and in subsequent equations, source and destination color components are referred to as $(R sub s , G sub s , B sub s , A sub s )$ and $(R sub d , G sub d , B sub d , A sub d )$. The color specified by glBlendColor is referred to as $(R sub c , G sub c , B sub c , A sub c )$. They are understood to have integer values between 0 and $(k sub R , k sub G , k sub B , k sub A )$, where
and $(m sub R , m sub G , m sub B , m sub A )$ is the number of red, green, blue, and alpha bitplanes.
Source and destination scale factors are referred to as $(s sub R , s sub G , s sub B , s sub A )$ and $(d sub R , d sub G , d sub B , d sub A )$. The scale factors described in the table, denoted $(f sub R , f sub G , f sub B , f sub A )$, represent either source or destination factors. All scale factors have range [0, 1].
Parameter $(f sub R , ~~ f sub G , ~~ f sub B , ~~ f sub A )$ |
GL_ZERO $(0, ~0, ~0, ~0 )$ |
GL_ONE $(1, ~1, ~1, ~1 )$ |
GL_SRC_COLOR $(R sub s / k sub R , ~G sub s / k sub G , ~B sub s / k sub B , ~A sub s / k sub A )$ |
GL_ONE_MINUS_SRC_COLOR $(1, ~1, ~1, ~1 ) ~-~ (R sub s / k sub R , ~G sub s / k sub G , ~B sub s / k sub B , ~A sub s / k sub A )$ |
GL_DST_COLOR $(R sub d / k sub R , ~G sub d / k sub G , ~B sub d / k sub B , ~A sub d / k sub A )$ |
GL_ONE_MINUS_DST_COLOR $(1, ~1, ~1, ~1 ) ~-~ (R sub d / k sub R , ~G sub d / k sub G , ~B sub d / k sub B , ~A sub d / k sub A )$ |
GL_SRC_ALPHA $(A sub s / k sub A , ~A sub s / k sub A , ~A sub s / k sub A , ~A sub s / k sub A )$ |
GL_ONE_MINUS_SRC_ALPHA $(1, ~1, ~1, ~1 ) ~-~ (A sub s / k sub A , ~A sub s / k sub A , ~A sub s / k sub A , ~A sub s / k sub A )$ |
GL_DST_ALPHA $(A sub d / k sub A , ~A sub d / k sub A , ~A sub d / k sub A , ~A sub d / k sub A )$ |
GL_ONE_MINUS_DST_ALPHA $(1, ~1, ~1, ~1 ) ~-~ (A sub d / k sub A , ~A sub d / k sub A , ~A sub d / k sub A , ~A sub d / k sub A )$ |
GL_SRC_ALPHA_SATURATE $(i, ~i, ~i, ~1 )$ |
GL_CONSTANT_COLOR $(R sub c, G sub c, B sub c, A sub c)$ |
GL_ONE_MINUS_CONSTANT_COLOR $(1, ~1, ~1, ~1 ) ~-~ (R sub c, G sub c, B sub c, A sub c)$ |
GL_CONSTANT_ALPHA $(A sub c, A sub c, A sub c, A sub c)$ |
GL_ONE_MINUS_CONSTANT_ALPHA $(1, ~1, ~1, ~1 ) ~-~ (A sub c, A sub c, A sub c, A sub c)$ |
In the table,
$i ~=~ min (A sub s , ~k sub A ~-~ A sub d ) ~/~ k sub A$
To determine the blended RGBA values of a pixel when drawing in RGBA mode, the system uses the following equations:
$R sub d ~=~ mark min ( k sub R, ~R sub s~s sub R~+~R sub d~d sub R )$ $G sub d ~=~ lineup min ( k sub G, ~G sub s~s sub G~+~G sub d~d sub G )$ $B sub d ~=~ lineup min ( k sub B, ~B sub s~s sub B~+~B sub d~d sub B )$ $A sub d ~=~ lineup min ( k sub A, ~A sub s~s sub A~+~A sub d~d sub A )$
Despite the apparent precision of the above equations, blending arithmetic is not exactly specified, because blending operates with imprecise integer color values. However, a blend factor that should be equal to 1 is guaranteed not to modify its multiplicand, and a blend factor equal to 0 reduces its multiplicand to 0. For example, when sfactor is GL_SRC_ALPHA, dfactor is GL_ONE_MINUS_SRC_ALPHA, and $A sub s$ is equal to $k sub A$, the equations reduce to simple replacement:
$R sub d ~=~ mark R sub s$ $G sub d ~=~ lineup G sub s$ $B sub d ~=~ lineup B sub s$ $A sub d ~=~ lineup A sub s$
Transparency is best implemented using blend function (GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA) with primitives sorted from farthest to nearest. Note that this transparency calculation does not require the presence of alpha bitplanes in the frame buffer.
Blend function (GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA) is also useful for rendering antialiased points and lines in arbitrary order.
Polygon antialiasing is optimized using blend function
(GL_SRC_ALPHA_SATURATE, GL_ONE) with polygons sorted from nearest to farthest.
(See the glEnable, glDisable reference page and the GL_POLYGON_SMOOTH
argument for information on polygon antialiasing.) Destination alpha bitplanes,
which must be present for this blend function to operate correctly, store
the accumulated coverage.
When more than one color buffer is enabled for drawing, the GL performs blending separately for each enabled buffer, using the contents of that buffer for destination color. (See glDrawBuffer.)
Blending affects only RGBA rendering. It is ignored by color index renderers.
GL_CONSTANT_COLOR, GL_ONE_MINUS_CONSTANT_COLOR, GL_CONSTANT_ALPHA, GL_ONE_MINUS_CONSTANT_ALPHA are only available if the GL_ARB_imaging is supported by your implementation.
GL_INVALID_OPERATION is generated if glBlendFunc is executed between the execution of glBegin and the corresponding execution of glEnd.