Definition of the Porting Layer for the X v11 Sample Server

Susan Angebranndt
Raymond Drewry
Philip Karlton
Todd Newman

Digital Equipment Corporation
minor revisions by

Bob Scheifler

Massachusetts Institute of Technology
Revised for Release 4 and Release 5 by

Keith Packard
MIT X Consortium

Revised for Release 6 by

David P. Wiggins

X Consortium

Porting Layer Definition -1- April 8, 1994

Copyright © 1994 X Consortium

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated
documentation files (the “Software’’), to deal in the Software without restriction, including without limita-
tion the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Soft-
ware, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions
of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FIT-
NESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE X
CONSORTIUM BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNEC-
TION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Porting Layer Definition -2- April 8, 1994

The following document explains the structure of the X Window System display server and the interfaces
among the larger pieces. It is intended as a reference for programmers who are implementing an X Display
Server on their workstation hardware. It is included with the X Window System source tape, along with the
document "Strategies for Porting the X v11 Sample Server." The order in which you should read these doc-
uments is:

1) Read the first section of the "Strategies for Porting" document (Overview of Porting Process).

2) Skim over this document (the Definition document).

3) Skim over the remainder of the Strategies document.

4) Start planning and working, referring to the Strategies and Definition documents.

You may also want to look at the following documents:

. "The X Window System" for an overview of X.

. "Xlib - C Language X Interface" for a view of what the client programmer sees.

. "X Window System Protocol" for a terse description of the byte stream protocol between the client
and server.

LK?201 and DEC are trademarks of Digital Equipment Corporation. Macintosh and Apple are trademarks
of Apple Computer, Inc. PostScript is a trademark of Adobe Systems, Inc. Ethernet is a trademark of
Xerox Corporation. X Window System is a trademark of X Consortium, Inc. Cray is a trademark of Cray
Research, Inc.

To understand this document and the accompanying source code, you should know the C language. You
should be familiar with 2D graphics and windowing concepts such as clipping, bitmaps, fonts, etc. You
should have a general knowledge of the X Window System. To implement the server code on your hard-
ware, you need to know a lot about your hardware, its graphic display device(s), and (possibly) its network-
ing and multitasking facilities.

This document depends a lot on the source code, so you should have a listing of the code handy.

Some source on the distribution tape is directly compilable on your machine. Some of it will require modi-
fication. Other parts may have to be completely written from scratch.

The tape also includes source for a sample implementation of a display server which runs on a variety of
color and monochrome displays which you will find useful for implementing any type of X server.

1. The X Window System

The X Window System, or simply "X," is a windowing system that provides high-performance, high-level,
device-independent graphics.

X is a windowing system designed for bitmapped graphic displays. The display can have a simple,
monochrome display or it can have a color display with up to 32 bits per pixel with a special graphics pro-
cessor doing the work. (In this document, monochrome means a black and white display with one bit per
pixel. Even though the usual meaning of monochrome is more general, this special case is so common that
we decided to reserve the word for this purpose.)

X is designed for a networking environment where users can run applications on machines other than their

own workstations. Sometimes, the connection is over an Ethernet network with a protocol such as TCP/IP;
but, any "reliable" byte stream is allowable. A high-bandwidth byte stream is preferable; RS-232 at 9600

Porting Layer Definition -3- April 8, 1994

baud would be slow without compression techniques.

X by itself allows great freedom of design. For instance, it does not include any user interface standard. Its
intent is to "provide mechanism, not policy." By making it general, it can be the foundation for a wide vari-
ety of interactive software.

For a more detailed overview, see the document "The X Window System." For details on the byte stream
protocol, see "X Window System protocol."

2. OVERVIEW OF THE SERVER

The display server manages windows and simple graphics requests for the user on behalf of different client
applications. The client applications can be running on any machine on the network. The server mainly
does three things:

. Responds to protocol requests from existing clients (mostly graphic and text drawing commands)
. Sends device input (keystrokes and mouse actions) and other events to existing clients
. Maintains client connections

The server code is organized into four major pieces:

. Device Independent (DIX) layer - code shared among all implementations

. Operating System (OS) layer - code that is different for each operating system but is shared among
all graphic devices for this operating system

. Device Dependent (DDX) layer - code that is (potentially) different for each combination of operat-
ing system and graphic device

. Extension Interface - a standard way to add features to the X server

The "porting layer" consists of the OS and DDX layers; these are actually parallel and neither one is on top
of the other. The DIX layer is intended to be portable without change to target systems and is not detailed
here, although several routines in DIX that are called by DDX are documented. Extensions incorporate
new functionality into the server; and require additional functionality over a simple DDX.

The following sections outline the functions of the layers. Section 3 briefly tells what you need to know
about the DIX layer. The OS layer is explained in Section 4. Section 5 gives the theory of operation and
procedural interface for the DDX layer. Section 6 describes the functions which exist for the extension
writer.

2.1. Notes On Resources and Large Structs

X resources are C structs inside the server. Client applications create and manipulate these objects accord-
ing to the rules of the X byte stream protocol. Client applications refer to resources with resource IDs,
which are 32-bit integers that are sent over the network. Within the server, of course, they are just C
structs, and we refer to them by pointers.

The DDX layer has several kinds of resources:

. Window
. Pixmap
. Screen

. Device

Porting Layer Definition -4- April 8, 1994

. Colormap

. Font

. Cursor

. Graphics Contexts

The type names of the more important server structs usually end in "Rec," such as "DeviceRec;" the pointer
types usually end in "Ptr," such as "DevicePtr."

The structs and important defined constants are declared in .h files that have names that suggest the name of
the object. For instance, there are two .h files for windows, window.h and windowstr.h. window.h defines
only what needs to be defined in order to use windows without peeking inside of them; windowstr.h defines
the structs with all of their components in great detail for those who need it.

Three kinds of fields are in these structs:
. Attribute fields - struct fields that contain values like normal structs
. Pointers to procedures, or structures of procedures, that operate on the object

. A private field (or two) used by your DDX code to keep private data (probably a pointer to another
data structure), or an array of private fields, which is sized as the server initializes.

DIX calls through the struct’s procedure pointers to do its tasks. These procedures are set either directly or
indirectly by DDX procedures. Most of the procedures described in the remainder of this document are
accessed through one of these structs. For example, the procedure to create a pixmap is attached to a
ScreenRec and might be called by using the expression

(* pScreen->CreatePixmap)(pScreen, width, height, depth).

All procedure pointers must be set to some routine unless noted otherwise; a null pointer will have unfortu-
nate consequences.

Procedure routines will be indicated in the documentation by this convention:
void pScreen->MyScreenRoutine(arg, arg, ...)
as opposed to a free routine, not in a data structure:

void MyFreeRoutine(arg, arg, ...)

The attribute fields are mostly set by DIX; DDX should not modify them unless noted otherwise.

3. DIX LAYER

The DIX layer is the machine and device independent part of X. The source should be common to all oper-
ating systems and devices. The port process should not include changes to this part, therefore internal inter-
faces to DIX modules are not discussed, except for public interfaces to the DDX and the OS layers.

In the process of getting your server to work, if you think that DIX must be modified for purposes other
than bug fixes, you may be doing something wrong. Keep looking for a more compatible solution. When
the next release of the X server code is available, you should be able to just drop in the new DIX code and
compile it. If you change DIX, you will have to remember what changes you made and will have to change
the new sources before you can update to the new version.

The heart of the DIX code is a loop called the dispatch loop. Each time the processor goes around the loop,
it sends off accumulated input events from the input devices to the clients, and it processes requests from

Porting Layer Definition -5- April 8, 1994

the clients. This loop is the most organized way for the server to process the asynchronous requests that it
needs to process. Most of these operations are performed by OS and DDX routines that you must supply.

4. OS LAYER

This part of the source consists of a few routines that you have to rewrite for each operating system. These
OS functions maintain the client connections and schedule work to be done for clients. They also provide
an interface to font files, font name to file name translation, and low level memory management.

void Oslnit()
Oslnit initializes your OS code, performing whatever tasks need to be done. Frequently there is not much
to be done. The sample server implementation is in Xserver/os/osinit.c.

4.1. Scheduling and Request Delivery

The main dispatch loop in DIX creates the illusion of multitasking between different windows, while the
server is itself but a single process. The dispatch loop breaks up the work for each client into small
digestible parts. Some parts are requests from a client, such as individual graphic commands. Some parts
are events delivered to the client, such as keystrokes from the user. The processing of events and requests
for different clients can be interleaved with one another so true multitasking is not needed in the server.

You must supply some of the pieces for proper scheduling between clients.

int WaitForSomething(pClientReady)
int *pClientReady;
WaitForSomething is the scheduler procedure you must write that will suspend your server process until

something needs to be done. This call should make the server suspend until one or more of the following
occurs:

. There is an input event from the user or hardware (see SetInputCheck())

. There are requests waiting from known clients, in which case you should return a count of clients
stored in pClientReady

. A new client tries to connect, in which case you should create the client and then continue waiting

Before WaitForSomething() computes the masks to pass to select, it needs to see if there is anything to do
on the work queue; if so, it must call a DIX routine called ProcessWorkQueue.
extern WorkQueuePtr workQueue;

if (workQueue)
ProcessWorkQueue ();

If WaitForSomething() decides it is about to do something that might block (in the sample server, before it
calls select()) it must call a DIX routine called BlockHandler().

void BlockHandler(pTimeout, pReadmask)
pointer pTimeout;
pointer pReadmask;
The types of the arguments are for agreement between the OS and DDX implementations, but the pTime-
out is a pointer to the information determining how long the block is allowed to last, and the pReadmask is
a pointer to the information describing the descriptors that will be waited on.

In the sample server, pTimeout is a struct timeval **, and pReadmask is the address of the select() mask
for reading.

The DIX BlockHandler() iterates through the Screens, for each one calling its BlockHandler. A Block-
Handler is declared thus:

Porting Layer Definition -6- April 8, 1994

void xxxBlockHandler(nscreen, pbdata, pptv, pReadmask)
int nscreen;
pointer pbdata;
struct timeval ** pptv;
pointer pReadmask;
The arguments are the index of the Screen, the blockData field of the Screen, and the arguments to the
DIX BlockHandler().

Immediately after WaitForSomething returns from the block, even if it didn’t actually block, it must call
the DIX routine WakeupHandler().

void WakeupHandler(result, pReadmask)
int result;
pointer pReadmask;

Once again, the types are not specified by DIX. The result is the success indicator for the thing that (may
have) blocked, and the pReadmask is a mask of the descriptors that came active. In the sample server,
result is the result from select(), and pReadmask is the address of the select() mask for reading.

The DIX WakeupHandler() calls each Screen’s WakeupHandler. A WakeupHandler is declared thus:

void xxxWakeupHandler(nscreen, pbdata, err, pPReadmask)
int nscreen;
pointer pbdata;
unsigned long result;
pointer pReadmask;
The arguments are the index of the Screen, the blockData field of the Screen, and the arguments to the
DIX WakeupHandler().

In addition to the per-screen BlockHandlers, any module may register block and wakeup handlers (only
together) using:

Bool RegisterBlock AndWakeupHandlers (blockHandler, wakeupHandler, blockData)
BlockHandlerProcPtr blockHandler;
WakeupHandlerProcPtr wakeupHandler;
pointer blockData;
A FALSE return code indicates that the registration failed for lack of memory. To remove a registered
Block handler at other than server reset time (when they are all removed automatically), use:

RemoveBlockAndWakeupHandlers (blockHandler, wakeupHandler, blockData)
BlockHandlerProcPtr blockHandler;
WakeupHandlerProcPtr wakeupHandler;
pointer blockData;
All three arguments must match the values passed to RegisterBlock AndWakeupHandlers.

These registered block handlers are called after the per-screen handlers:

void (*BlockHandler) (blockData, pptv, pReadmask)
pointer blockData;
OSTimePtr pptv;
pointer pReadmask;

Any wakeup handlers registered with RegisterBlock AndWakeupHandlers will be called before the Screen
handlers:

void (*WakeupHandler) (blockData, err, pPReadmask)
pointer blockData;
int err;
pointer pReadmask;

Porting Layer Definition -7- April 8, 1994

The WaitForSomething on the sample server also has a built in screen saver that darkens the screen if no
input happens for a period of time. The sample server implementation is in Xserver/os/WaitFor.c.

Note that WaitForSomething() may be called when you already have several outstanding things (events,
requests, or new clients) queued up. For instance, your server may have just done a large graphics request,
and it may have been a long time since WaitForSomething() was last called. If many clients have lots of
requests queued up, DIX will only service some of them for a given client before going on to the next client
(see isItTimeToYield, below). Therefore, WaitForSomething() will have to report that these same clients
still have requests queued up the next time around.

An implementation should return information on as many outstanding things as it can. For instance, if your
implementation always checks for client data first and does not report any input events until there is no
client data left, your mouse and keyboard might get locked out by an application that constantly barrages
the server with graphics drawing requests.

A list of indexes (client->index) for clients with data ready to be read or processed should be returned in
pClientReady, and the count of indexes returned as the result value of the call. These are not clients that
have full requests ready, but any clients who have any data ready to be read or processed. The DIX dis-
patcher will process requests from each client in turn by calling ReadRequestFromClient(), below.

WaitForSomething() must create new clients as they are requested (by whatever mechanism at the transport
level). A new client is created by calling the DIX routine:

ClientPtr NextAvailableClient(ospriv)
pointer ospriv;
This routine returns NULL if a new client cannot be allocated (e.g. maximum number of clients reached).
The ospriv argument will be stored into the OS private field (pClient->osPrivate), to store OS private infor-
mation about the client. In the sample server, the osPrivate field contains the number of the socket for this
client. See also "New Client Connections." NextAvailableClient() will call InsertFakeRequest(), so you
must be prepared for this.

If there are outstanding input events, you should make sure that the two SetInputCheck() locations are
unequal. The DIX dispatcher will call your implementation of ProcessInputEvents() until the Set-
InputCheck() locations are equal.

The sample server contains an implementation of WaitForSomething(). The following two routines indi-
cate to WaitForSomething() what devices should be waited for. fd is an OS dependent type; in the sample
server it is an open file descriptor.

int AddEnabledDevice(fd)
int fd;

int RemoveEnabledDevice(fd)
int fd;
These two routines are usually called by DDX from the initialize cases of the Input Procedures that are
stored in the DeviceRec (the routine passed to AddInputDevice()). The sample server implementation of
AddEnabledDevice and RemoveEnabledDevice are in Xserver/os/connection.c.

4.2. New Client Connections

The process whereby a new client-server connection starts up is very dependent upon what your byte
stream mechanism. This section describes byte stream initiation using examples from the TCP/IP imple-
mentation on the sample server.

The first thing that happens is a client initiates a connection with the server. How a client knows to do this
depends upon your network facilities and the Xlib implementation. In a typical scenario, a user named
Fred on his X workstation is logged onto a Cray supercomputer running a command shell in an X window.
Fred can type shell commands and have the Cray respond as though the X server were a dumb terminal.
Fred types in a command to run an X client application that was linked with Xlib. Xlib looks at the shell
environment variable DISPLAY, which has the value "fredsbittube:0.0." The host name of Fred’s

Porting Layer Definition -8- April 8, 1994

workstation is "fredsbittube,"” and the Os are for multiple screens and multiple X server processes. (Pre-
cisely what happens on your system depends upon how X and Xlib are implemented.)

The client application calls a TCP routine on the Cray to open a TCP connection for X to communicate
with the network node "fredsbittube." The TCP software on the Cray does this by looking up the TCP
address of "fredsbittube" and sending an open request to TCP port 6000 on fredsbittube.

All X servers on TCP listen for new clients on port 6000 by default; this is known as a "well-known port" in
IP terminology.

The server receives this request from its port 6000 and checks where it came from to see if it is on the
server’s list of "trustworthy" hosts to talk to. Then, it opens another port for communications with the
client. This is the byte stream that all X communications will go over.

Actually, it is a bit more complicated than that. Each X server process running on the host machine is
called a "display." Each display can have more than one screen that it manages. "corporatehydra:3.2" rep-
resents screen 2 on display 3 on the multi-screened network node corporatehydra. The open request would
be sent on well-known port number 6003.

Once the byte stream is set up, what goes on does not depend very much upon whether or not it is TCP.
The client sends an xConnClientPrefix struct (see Xproto.h) that has the version numbers for the version of
Xlib it is running, some byte-ordering information, and two character strings used for authorization. If the
server does not like the authorization strings or the version numbers do not match within the rules, or if
anything else is wrong, it sends a failure response with a reason string.

If the information never comes, or comes much too slowly, the connection should be broken off. You must
implement the connection timeout. The sample server implements this by keeping a timestamp for each
still-connecting client and, each time just before it attempts to accept new connections, it closes any con-
nection that are too old. The connection timeout can be set from the command line.

You must implement whatever authorization schemes you want to support. The sample server on the distri-
bution tape supports a simple authorization scheme. The only interface seen by DIX is:

char *

ClientAuthorized(client, proto_n, auth_proto, string_n, auth_string)
ClientPtr client;
unsigned int proto_n;
char *auth_proto;
unsigned int string_n;
char *auth_string;

DIX will only call this once per client, once it has read the full initial connection data from the client. If the

connection should be accepted ClientAuthorized() should return NULL, and otherwise should return an
error message string.

Accepting new connections happens internally to WaitForSomething(). WaitForSomething() must call the
DIX routine NextAvailableClient() to create a client object. Processing of the initial connection data will
be handled by DIX. Your OS layer must be able to map from a client to whatever information your OS
code needs to communicate on the given byte stream to the client. DIX uses this ClientPtr to refer to the
client from now on. The sample server uses the osPrivate field in the ClientPtr to store the file descriptor
for the socket, the input and output buffers, and authorization information.

To initialize the methods you choose to allow clients to connect to your server, main() calls the routine

void CreateWellKnownSockets()

This routine is called only once, and not called when the server is reset. To recreate any sockets during
server resets, the following routine is called from the main loop:

void ResetWellKnownSockets()
Sample implementations of both of these routines are found in Xserver/os/connection.c.

Porting Layer Definition -9- April 8, 1994

For more details, see the section called "Connection Setup" in the X protocol specification.

4.3. Reading Data from Clients

Requests from the client are read in as a byte stream by the OS layer. They may be in the form of several
blocks of bytes delivered in sequence; requests may be broken up over block boundaries or there may be
many requests per block. Each request carries with it length information. It is the responsibility of the fol-
lowing routine to break it up into request blocks.

int ReadRequestFromClient(who)
ClientPtr who;

You must write the routine ReadRequestFromClient() to get one request from the byte stream belonging to
client "who." You must swap the third and fourth bytes (the second 16-bit word) according to the byte-
swap rules of the protocol to determine the length of the request. This length is measured in 32-bit words,
not in bytes. Therefore, the theoretical maximum request is 256K. (However, the maximum length allowed
is dependent upon the server’s input buffer. This size is sent to the client upon connection. The maximum
size is the constant MAX_REQUEST_SIZE in Xserver/include/os.h) The rest of the request you return is
assumed NOT to be correctly swapped for internal use, because that is the responsibility of DIX.

The *who’ argument is the ClientPtr returned from WaitForSomething. The return value indicating status
should be set to the (positive) byte count if the read is successful, O if the read was blocked, or a negative
error code if an error happened.

You must then store a pointer to the bytes of the request in the client request buffer field; who->request-
Buffer. This can simply be a pointer into your buffer; DIX may modify it in place but will not otherwise
cause damage. Of course, the request must be contiguous; you must shuffle it around in your buffers if not.

The sample server implementation is in Xserver/os/io.c.

DIX can insert data into the client stream, and can cause a "replay" of the current request.

Bool InsertFakeRequest(client, data, count)
ClientPtr client;
char *data;
int count;

int ResetCurrentRequest(client)
ClientPtr client;

InsertFakeRequest() must insert the specified number of bytes of data into the head of the input buffer for
the client. This may be a complete request, or it might be a partial request. For example, NextAvailable-
Cient() will insert a partial request in order to read the initial connection data sent by the client. The routine
returns FALSE if memory could not be allocated. ResetCurrentRequest() should "back up" the input buffer
so that the currently executing request will be reexecuted. DIX may have altered some values (e.g. the
overall request length), so you must recheck to see if you still have a complete request. ResetCurrentRe-
quest() should always cause a yield (isItTimeToYield).

4.4. Sending Events, Errors And Replies To Clients

int WriteToClient(who, n, buf)
ClientPtr who;
int n;
char *buf;
WriteToClient should write n bytes starting at buf to the ClientPtr "who". It returns the number of bytes

Porting Layer Definition -10 - April 8, 1994

written, but for simplicity, the number returned must be either the same value as the number requested, or
-1, signaling an error. The sample server implementation is in Xserver/os/io.c.

void SendErrorToClient(client, majorCode, minorCode, resld, errorCode)

ClientPtr client;

unsigned int majorCode;

unsigned int minorCode;

XID resld;

int errorCode;
SendErrorToClient can be used to send errors back to clients, although in most cases your request function
should simply return the error code, having set client->errorValue to the appropriate error value to return to
the client, and DIX will call this function with the correct opcodes for you.

void FlushAllOutput()
void FlushIfCriticalOutputPending()

void SetCriticalOutputPending()
These three routines may be implemented to support buffered or delayed writes to clients, but at the very
least, the stubs must exist. FlushAllOutput() unconditionally flushes all output to clients; FlushIfCrit-
icalOutputPending() flushes output only if SetCriticalOutputPending() has be called since the last time out-
put was flushed. The sample server implementation is in Xserver/os/io.c and actually ignores requests to
flush output on a per-client basis if it knows that there are requests in that client’s input queue.

4.5. Font Support

In the sample server, fonts are encoded in disk files or fetched from the font server. For disk fonts, there is
one file per font, with a file name like "fixed.pcf". Font server fonts are read over the network using the X
Font Server Protocol. The disk directories containing disk fonts and the names of the font servers are listed
together in the current "font path."

In principle, you can put all your fonts in ROM or in RAM in your server. You can put them all in one
library file on disk. You could generate them on the fly from stroke descriptions. By placing the appropri-
ate code in the Font Library, you will automatically export fonts in that format both through the X server
and the Font server.

With the incorporation of font-server based fonts and the Speedo donation from Bitstream, the font inter-
faces have been moved into a separate library, now called the Font Library (../fonts/lib). These routines are
shared between the X server and the Font server, so instead of this document specifying what you must
implement, simply refer to the font library interface specification for the details. All of the interface code to
the Font library is contained in dix/dixfonts.c

4.6. Memory Management

Memory management is based on functions in the C runtime library. Xalloc(), Xrealloc(), and Xfree()
work just like malloc(), realloc(), and free(), except that you can pass a null pointer to Xrealloc() to have it
allocate anew or pass a null pointer to Xfree() and nothing will happen. The versions in the sample server
also do some checking that is useful for debugging. Consult a C runtime library reference manual for more
details.

The macros ALLOCATE_LOCAL and DEALLOCATE_LOCAL are provided in Xserver/include/os.h.
These are useful if your compiler supports alloca() (or some method of allocating memory from the stack);

and are defined appropriately on systems which support it.

Treat memory allocation carefully in your implementation. Memory leaks can be very hard to find and are
frustrating to a user. An X server could be running for days or weeks without being reset, just like a regular

Porting Layer Definition -11- April 8, 1994

terminal. If you leak a few dozen k per day, that will add up and will cause problems for users that leave
their workstations on.

4.7. Client Scheduling

The X server has the ability to schedule clients much like an operating system would, suspending and
restarting them without regard for the state of their input buffers. This functionality allows the X server to
suspend one client and continue processing requests from other clients while waiting for a long-term net-
work activity (like loading a font) before continuing with the first client.

Bool isItTimeToYield;

isItTimeToYield is a global variable you can set if you want to tell DIX to end the client’s "time slice" and
start paying attention to the next client. After the current request is finished, DIX will move to the next
client.

In the sample server, ReadRequestFromClient() sets isItTimeToYield after 10 requests packets in a row are
read from the same client.

This scheduling algorithm can have a serious effect upon performance when two clients are drawing into
their windows simultaneously. If it allows one client to run until its request queue is empty by ignoring
isItTimeToYield, the client’s queue may in fact never empty and other clients will be blocked out. On the
other hand, if it switchs between different clients too quickly, performance may suffer due to too much
switching between contexts. For example, if a graphics processor needs to be set up with drawing modes
before drawing, and two different clients are drawing with different modes into two different windows, you
may switch your graphics processor modes so often that performance is impacted.

See the Strategies document for heuristics on setting isItTimeToYield.

The following functions provide the ability to suspend request processing on a particular client, resuming it
at some later time:

int IgnoreClient (who)
ClientPtr who;

int AttendClient (who)
ClientPtr who;
Ignore client is responsible for pretending that the given client doesn’t exist. WaitForSomething should not
return this client as ready for reading and should not return if only this client is ready. AttendClient undoes
whatever IgnoreClient did, setting it up for input again.

Three functions support "process control" for X clients:

Bool ClientSleep (client, function, closure)
ClientPtr client;
Bool (*function)();
pointer closure;

This suspends the current client (the calling routine is responsible for making its way back to Dispatch()).
No more X requests will be processed for this client until ClientWakeup is called.

Bool ClientSignal (client)
ClientPtr client;

This function causes a call to the (*function) parameter passed to ClientSleep to be queued on the work
queue. This does not automatically "wakeup" the client, but the function called is free to do so by calling:

ClientWakeup (client)
ClientPtr client;

Porting Layer Definition -12- April 8, 1994

This re-enables X request processing for the specified client.

4.8. Other OS Functions
void
ErrorF(char *f, ...)

void
FatalError(char *f, ...)

void
Error(str)
char *str;

You should write these three routines to provide for diagnostic output from the dix and ddx layers, although
implementing them to produce no output will not affect the correctness of your server. ErrorF() and
FatalError() take a printf() type of format specification in the first argument and an implementation-depen-
dent number of arguments following that. Normally, the formats passed to ErrorF() and FatalError() should
be terminated with a newline. Error() provides an os interface for printing out the string passed as an argu-
ment followed by a meaningful explanation of the last system error. Normally the string does not contain a
newline, and it is only called by the ddx layer. In the sample implementation, Error() uses the perror()
function.

After printing the message arguments, FatalError() must be implemented such that the server will call
AbortDDX() to give the ddx layer a chance to reset the hardware, and then terminate the server; it must not
return.

The sample server implementation for these routines is in Xserver/os/util.c.

4.9. Idiom Support

The DBE specification introduces the notion of idioms, which are groups of X requests which can be
executed more efficiently when taken as a whole compared to being performed individually and sequen-
tially. This following server internal support to allows DBE implementations, as well as other parts of the
server, to do idiom processing.

xReqPtr PeekNextRequest(xReqPtr req, ClientPtr client, Bool readmore)

If req is NULL, the return value will be a pointer to the start of the complete request that follows the one
currently being executed for the client. If req is not NULL, the function assumes that req is a pointer to a
request in the client’s request buffer, and the return value will be a pointer to the the start of the complete
request that follows req. If the complete request is not available, the function returns NULL; pointers to
partial requests will never be returned. If (and only if) readmore is TRUE, PeekNextRequest should try to
read an additional request from the client if one is not already available in the client’s request buffer. If
PeekNextRequest reads more data into the request buffer, it should not move or change the existing data.

void SkipRequests(xReqPtr req, ClientPtr client, int numskipped)

The requests for the client up to and including the one specified by req will be skipped. numskipped must
be the number of requests being skipped. Normal request processing will resume with the request that fol-
lows req. The caller must not have modified the contents of the request buffer in any way (e.g., by doing
byte swapping in place).

Additionally, two macros in o0s.h operate on the xReq pointer returned by PeekNextRequest:

int ReqLen(xReqPtr req, ClientPtr client)
The value of ReqLen is the request length in bytes of the given xReq.

otherReqTypePtr CastxReq(xReq *req, otherReqTypePtr)

Porting Layer Definition -13 - April 8, 1994

The value of CastxReq is the conversion of the given request pointer to an otherReqTypePtr (which should
be a pointer to a protocol structure type). Only those fields which come after the length field of otherReq-
Type may be accessed via the returned pointer.

Thus the first two fields of a request, reqType and data, can be accessed directly using the xReq * returned
by PeekNextRequest. The next field, the length, can be accessed with ReqLen. Fields beyond that can be
accessed with CastxReq. This complexity was necessary because of the reencoding of core protocol that
can happen due to the BigRequests extension.

5. DDX LAYER

This section describes the interface between DIX and DDX. While there may be an OS-dependent driver
interface between DDX and the physical device, that interface is left to the DDX implementor and is not
specified here.

The DDX layer does most of its work through procedures that are pointed to by different structs. As previ-
ously described, the behavior of these resources is largely determined by these procedure pointers. Most of
these routines are for graphic display on the screen or support functions thereof. The rest are for user input
from input devices.

5.1. INPUT

In this document "input" refers to input from the user, such as mouse, keyboard, and bar code readers. X
input devices are of several types: keyboard, pointing device, and many others. The core server has support
for extension devices as described by the X Input Extension document; the interfaces used by that extension
are described elsewhere. The core devices are actually implemented as two collections of devices, the
mouse is a ButtonDevice, a ValuatorDevice and a PtrFeedbackDevice while the keyboard is a KeyDevice, a
FocusDevice and a KbdFeedbackDevice. Each part implements a portion of the functionality of the device.
This abstraction is hidden from view for core devices by DIX.

You, the DDX programmer, are responsible for some of the routines in this section. Others are DIX rou-
tines that you should call to do the things you need to do in these DDX routines. Pay attention to which is
which.

5.1.1. Input Device Data Structures

DIX keeps a global directory of devices in a central data structure called Inputlnfo. For each device there is
a device structure called a DeviceRec. DIX can locate any DeviceRec through Inputlnfo. In addition, it
has a special pointer to identify the main pointing device and a special pointer to identify the main
keyboard.

The DeviceRec (Xserver/include/input.h) is a device-independent structure that contains the state of an
input device. A DevicePtr is simply a pointer to a DeviceRec.

An xEvent describes an event the server reports to a client. Defined in Xproto.h, it is a huge struct of union
of structs that have fields for all kinds of events. All of the variants overlap, so that the struct is actually
very small in memory.

5.1.2. Processing Events

The main DDX input interface is the following routine:

void ProcessInputEvents()
You must write this routine to deliver input events from the user. DIX calls it when input is pending (see
next section), and possibly even when it is not. You should write it to get events from each device and
deliver the events to DIX. To deliver the events to DIX, DDX should call the following routine:

Porting Layer Definition -14 - April 8, 1994

void DevicePtr->processInputProc(pEvent, device, count)

xEventPtr events;

DevicelntPtr device;

int count;
This is the "input proc" for the device, a DIX procedure. DIX will fill in this procedure pointer to one of its
own routines by the time ProcessInputEvents() is called the first time. Call this input proc routine as many
times as needed to deliver as many events as should be delivered. DIX will buffer them up and send them
out as needed. Count is set to the number of event records which make up one atomic device event and is
always 1 for the core devices (see the X Input Extension for descriptions of devices which may use count >

1).
For example, your ProcessInputEvents() routine might check the mouse and the keyboard. If the keyboard
had several keystrokes queued up, it could just call the keyboard’s processInputProc as many times as

needed to flush its internal queue.

event is an xEvent struct you pass to the input proc. When the input proc returns, it is finished with the
event rec, and you can fill in new values and call the input proc again with it.

You should deliver the events in the same order that they were generated.

For keyboard and pointing devices the xEvent variant should be keyButtonPointer. Fill in the following
fields in the xEvent record:

type is one of the following: KeyPress, KeyRelease, ButtonPress,
ButtonRelease, or MotionNotify
detail for KeyPress or KeyRelease fields, this should be the
key number (not the ASCII code); otherwise unused
time is the time that the event happened (32-bits, in milliseconds, arbitrary origin)
rootX is the x coordinate of cursor
rootY is the y coordinate of cursor

The rest of the fields are filled in by DIX.

The time stamp is maintained by your code in the DDX layer, and it is your responsibility to stamp all
events correctly.

The x and y coordinates of the pointing device and the time must be filled in for all event types including
keyboard events.

The pointing device must report all button press and release events. In addition, it should report a Motion-
Notify event every time it gets called if the pointing device has moved since the last notify. Intermediate
pointing device moves are stored in a special GetMotionEvents buffer, because most client programs are
not interested in them.

There are quite a collection of sample implementations of this routine, one for each supported device.

5.1.3. Telling DIX When Input is Pending

In the server’s dispatch loop, DIX checks to see if there is any device input pending whenever WaitFor-
Something() returns. If the check says that input is pending, DIX calls the DDX routine ProcessIn-
putEvents().

This check for pending input must be very quick; a procedure call is too slow. The code that does the check
is a hardwired IF statement in DIX code that simply compares the values pointed to by two pointers. If the
values are different, then it assumes that input is pending and ProcessInputEvents() is called by DIX.

You must pass pointers to DIX to tell it what values to compare. The following procedure is used to set
these pointers:

Porting Layer Definition -15- April 8, 1994

void SetInputCheck(p1, p2)
long *pl, *p2;
You should call it sometime during initialization to indicate to DIX the correct locations to check. You
should pay special attention to the size of what they actually point to, because the locations are assumed to
be longs.

These two pointers are initialized by DIX to point to arbitrary values that are different. In other words, if
you forget to call this routine during initialization, the worst thing that will happen is that ProcessIn-
putEvents will be called when there are no events to process.

pl and p2 might point at the head and tail of some shared memory queue. Another use would be to have
one point at a constant 0, with the other pointing at some mask containing 1s for each input device that has
something pending.

The DDX layer of the sample server calls SetInputCheck() once when the server’s private internal queue is
initialized. It passes pointers to the queue’s head and tail. See Xserver/mi/mieq.c.

int TimeSinceLastInputEvent()
DDX must time stamp all hardware input events. But DIX sometimes needs to know the time and the OS
layer needs to know the time since the last hardware input event in order for the screen saver to work.
TimeSinceLastInputEvent() returns the this time in milliseconds.

5.1.4. Controlling Input Devices

You must write four routines to do various device-specific things with the keyboard and pointing device.
They can have any name you wish because you pass the procedure pointers to DIX routines.

int pInternalDevice->valuator->GetMotionProc(pdevice, coords, start, stop, pScreen)

DevicelntPtr pdevice;

xTimecoord * coords;

unsigned long start;

unsigned long stop;

ScreenPtr pScreen;
You write this DDX routine to fill in coords with all the motion events that have times (32-bit count of mil-
liseconds) between time start and time stop. It should return the number of motion events returned. If there
is no motion events support, this routine should do nothing and return zero. The maximum number of
coords to return is set in InitPointerDeviceStruct(), below.

When the user drags the pointing device, the cursor position theoretically sweeps through an infinite num-
ber of points. Normally, a client that is concerned with points other than the starting and ending points will
receive a pointer-move event only as often as the server generates them. (Move events do not queue up;
each new one replaces the last in the queue.) A server, if desired, can implement a scheme to save these
intermediate events in a motion buffer. A client application, like a paint program, may then request that
these events be delivered to it through the GetMotionProc routine.

void pInternalDevice->bell->BellProc(percent, pDevice, ctrl, unknown)
int percent;
DevicelntPtr pDevice;
pointer ctrl;
int class;
You need to write this routine to ring the bell on the keyboard. loud is a number from 0 to 100, with 100
being the loudest. Class is either BellFeedbackClass or KbdFeedbackClass (from XI.h).

Porting Layer Definition -16 - April 8, 1994

void pInternalDevice->somedevice->CtrlProc(device, ctrl)
DevicePtr device;
SomethingCtrl *ctrl;

You write two versions of this procedure, one for the keyboard and one for the pointing device. DIX calls it
to inform DDX when a client has requested changes in the current settings for the particular device. For a
keyboard, this might be the repeat threshold and rate. For a pointing device, this might be a scaling factor
(coarse or fine) for position reporting. See input.h for the ctrl structures.

5.1.5. Input Initialization

Input initialization is a bit complicated. It all starts with InitInput(), a routine that you write to call AddIn-
putDevice() twice (once for pointing device and once for keyboard.) You also want to call Regis-
terKeyboardDevice() and RegisterPointerDevice() on them.

When you Add the devices, a routine you supply for each device gets called to initialize them. Your indi-
vidual initialize routines must call InitKeyboardDeviceStruct() or InitPointerDeviceStruct(), depending
upon which it is. In other words, you indicate twice that the keyboard is the keyboard and the pointer is the
pointer.

void InitInput(argc, argv)
int argc;
char **argv;
InitInput is a DDX routine you must write to initialize the input subsystem in DDX. It must call AddInput-
Device() for each device that might generate events. In addition, you must register the main keyboard and
pointing devices by calling RegisterPointerDevice() and RegisterKeyboardDevice().

DevicePtr AddInputDevice(deviceProc, autoStart)
DeviceProc deviceProc;
Bool autoStart;

AddInputDevice is a DIX routine you call to create a device object. deviceProc is a DDX routine that is
called by DIX to do various operations. AutoStart should be TRUE for devices that need to be turned on at
initialization time with a special call, as opposed to waiting for some client application to turn them on.
This routine returns NULL if sufficient memory cannot be allocated to install the device.

Note also that except for the main keyboard and pointing device, an extension is needed to provide for a
client interface to a device.

void RegisterPointerDevice(device)
DevicePtr device;

RegisterPointerDevice is a DIX routine that your DDX code calls that makes that device the main pointing
device. This routine is called once upon initialization and cannot be called again.

void RegisterKeyboardDevice(device)
DevicePtr device;

RegisterKeyboardDevice makes the given device the main keyboard. This routine is called once upon ini-
tialization and cannot be called again.

The following DIX procedures return the specified DevicePtr. They may or may not be useful to DDX
implementors.

DevicePtr LookupKeyboardDevice()

Porting Layer Definition -17 - April 8, 1994

LookupKeyboardDevice returns pointer for current main keyboard device.

DevicePtr LookupPointerDevice()

LookupPointerDevice returns pointer for current main pointing device.

A DeviceProc (the kind passed to AddInputDevice()) in the following form:

Bool pInternalDevice->DeviceProc(device, action);
DevicelntPtr device;
int action;

You must write a DeviceProc for each device. device points to the device record. action tells what action
to take; it will be one of these defined constants (defined in input.h):

. DEVICE_INIT - At DEVICE_INIT time, the device should initialize itself by calling InitPointerDe-
viceStruct(), InitKeyboardDeviceStruct(), or a similar routine (see below) and "opening" the device if
necessary. If you return a non-zero (i.e., != Success) value from the DEVICE_INIT call, that device
will be considered unavailable. If either the main keyboard or main pointing device cannot be initial-
ized, the DIX code will refuse to continue booting up.

. DEVICE_ON - If the DeviceProc is called with DEVICE_ON, then it is allowed to start putting
events into the client stream by calling through the ProcessInputProc in the device.

. DEVICE_OFF - If the DeviceProc is called with DEVICE_OFF, no further events from that device
should be given to the DIX layer. The device will appear to be dead to the user.

. DEVICE_CLOSE - At DEVICE_CLOSE (terminate or reset) time, the device should be totally
closed down.

void InitPointerDeviceStruct(device, map, mapLength,
GetMotionEvents, ControlProc, numMotionEvents)

DevicePtr device;

CARDS *map;

int mapLength;

ValuatorMotionProcPtr ControlProc;

PtrCtrlProcPtr GetMotionEvents;

int numMotionEvents;
InitPointerDeviceStruct is a DIX routine you call at DEVICE_INIT time to declare some operating
routines and data structures for a pointing device. map and mapLength are as described in the X
Window System protocol specification. ControlProc and GetMotionEvents are DDX routines, see
above.

numMotionEvents is for the motion-buffer-size for the GetMotionEvents request. A typical length
for a motion buffer would be 100 events. A server that does not implement this capability should set
numMotionEvents to zero.

void InitKeyboardDeviceStruct(device, pKeySyms, pModifiers, Bell, ControlProc)
DevicePtr device;
KeySymsPtr pKeySyms;
CARDS *pMaodifiers;
BellProcPtr Bell;
KbdCtrlProcPtr ControlProc;

You call this DIX routine when a keyboard device is initialized and its device procedure is called
with DEVICE_INIT. The formats of the keysyms and modifier maps are defined in
Xserver/include/input.h. They describe the layout of keys on the keyboards, and the glyphs associ-
ated with them. (See the next section for information on setting up the modifier map and the keysym

Porting Layer Definition - 18- April 8, 1994

map.) ControlProc and Bell are DDX routines, see above.

5.1.6. Keyboard Mapping and Keycodes

When you send a keyboard event, you send a report that a given key has either been pressed or has been
released. There must be a keycode for each key that identifies the key; the keycode-to-key mapping can be
any mapping you desire, because you specify the mapping in a table you set up for DIX. However, you are
restricted by the protocol specification to keycode values in the range 8 to 255 inclusive.

The keycode mapping information that you set up consists of the following:
. A minimum and maximum keycode number

. An array of sets of keysyms for each key, that is of length maxkeycode - minkeycode + 1. Each ele-
ment of this array is a list of codes for symbols that are on that key. There is no limit to the number
of symbols that can be on a key.

Once the map is set up, DIX keeps and maintains the client’s changes to it.

The X protocol defines standard names to indicate the symbol(s) printed on each keycap. (See
X11/keysym.h)

Legal modifier keys must generate both up and down transitions. When a client tries to change a modifier
key (for instance, to make "A" the "Control" key), DIX calls the following routine, which should retuurn
TRUE if the key can be used as a modifier on the given device:

Bool LegalModifier(key, pDev)
unsigned int key;
DevicePtr pDev;

5.2. Screens

Different computer graphics displays have different capabilities. Some are simple monochrome frame
buffers that are just lying there in memory, waiting to be written into. Others are color displays with many
bits per pixel using some color lookup table. Still others have high-speed graphic processors that prefer to
do all of the work themselves, including maintaining their own high-level, graphic data structures.

5.2.1. Screen Hardware Requirements

The only requirement on screens is that you be able to both read and write locations in the frame buffer.
All screens must have a depth of 32 or less (unless you use an X extension to allow a greater depth). All
screens must fit into one of the classes listed in the section in this document on Visuals and Depths.

X uses the pixel as its fundamental unit of distance on the screen. Therefore, most programs will measure
everything in pixels.

The sample server assumes square pixels. Serious WYSIWYG (what you see is what you get) applications
for publishing and drawing programs will adjust for different screen resolutions automatically. Consider-
able work is involved in compensating for non-square pixels (a bit in the DDX code for the sample server
but quite a bit in the client applications).

5.2.2. Data Structures

X supports multiple screens that are connected to the same server. Therefore, all the per-screen information
is bundled into one data structure of attributes and procedures, which is the ScreenRec (see
Xserver/include/scrnintstr.h). The procedure entry points in a ScreenRec operate on regions, colormaps,
cursors, and fonts, because these resources can differ in format from one screen to another.

Porting Layer Definition -19- April 8, 1994

Windows are areas on the screen that can be drawn into by graphic routines. "Pixmaps" are off-screen
graphic areas that can be drawn into. They are both considered drawables and are described in the section
on Drawables. All graphic operations work on drawables, and operations are available to copy patches
from one drawable to another.

The pixel image data in all drawables is in a format that is private to DDX. In fact, each instance of a draw-
able is associated with a given screen. Presumably, the pixel image data for pixmaps is chosen to be con-
veniently understood by the hardware. All screens in a single server must be able to handle all pixmaps
depths declared in the connection setup information.

Pixmap images are transferred to the server in one of two ways: XYPixmap or ZPimap. XYPixmaps are a
series of bitmaps, one for each bit plane of the image, using the bitmap padding rules from the connection
setup. ZPixmaps are a series of bits, nibbles, bytes or words, one for each pixel, using the format rules
(padding and so on) for the appropriate depth.

All screens in a given server must agree on a set of pixmap image formats (PixmapFormat) to support
(depth, number of bits per pixel, etc.).

There is no color interpretation of bits in the pixmap. Pixmaps do not contain pixel values. The interpreta-
tion is made only when the bits are transferred onto the screen.

The screenlnfo structure (in scrnintstr.h) is a global data structure that has a pointer to an array of Screen-
Recs, one for each screen on the server. (These constitute the one and only description of each screen in the
server.) Each screen has an identifying index (0, 1, 2, ...). In addition, the screenInfo struct contains global
server-wide details, such as the bit- and byte- order in all bit images, and the list of pixmap image formats
that are supported. The X protocol insists that these must be the same for all screens on the server.

5.2.3. Output Initialization

InitOutput(pScreenlnfo, argc, argv)

Screenlnfo *pScreenlnfo;

int argc;

char **argv;
Upon initialization, your DDX routine InitOutput() is called by DIX. It is passed a pointer to screenlnfo to
initialize. It is also passed the argc and argv from main() for your server for the command-line arguments.
These arguments may indicate what or how many screen device(s) to use or in what way to use them. For
instance, your server command line may allow a "-D" flag followed by the name of the screen device to use.

Your InitOutput() routine should initialize each screen you wish to use by calling AddScreen(), and then it
should initialize the pixmap formats that you support by storing values directly into the screenInfo data
structure. You should also set certain implementation-dependent numbers and procedures in your screen-
Info, which determines the pixmap and scanline padding rules for all screens in the server.

int AddScreen(scrInitProc, argc, argv)

Bool (*scrInitProc)();

int argc;

char **argv;
You should call AddScreen(), a DIX procedure, in InitOutput() once for each screen to add it to the screen-
Info database. The first argument is an initialization procedure for the screen that you supply. The second
and third are the argc and argv from main(). It returns the screen number of the screen installed, or -1 if
there is either insufficient memory to add the screen, or (*scrlnitProc) returned FALSE.

The scrlnitProc should be of the following form:

Bool scrInitProc(iScreen, pScreen, argc, argv)
int iScreen,;

Porting Layer Definition -20 - April 8, 1994

ScreenPtr pScreen;

int argc;

char **argv;
iScreen is the index for this screen; O for the first one initialized, 1 for the second, etc. pScreen is the
pointer to the screen’s new ScreenRec. argc and argv are as before. Your screen initialize procedure should
return TRUE upon success or FALSE if the screen cannot be initialized (for instance, if the screen hardware
does not exist on this machine).

This procedure must determine what actual device it is supposed to initialize. If you have a different proce-
dure for each screen, then it is no problem. If you have the same procedure for multiple screens, it may
have trouble figuring out which screen to initialize each time around, especially if InitOutput() does not ini-
tialize all of the screens. It is probably easiest to have one procedure for each screen.

The initialization procedure should fill in all the screen procedures for that screen (windowing functions,
region functions, etc.) and certain screen attributes for that screen.

5.2.4. Region Routines in the ScreenRec

A region is a dynamically allocated data structure that describes an irregularly shaped piece of real estate in
XY pixel space. You can think of it as a set of pixels on the screen to be operated upon with set operations
such as AND and OR.

A region is frequently implemented as a list of rectangles or bitmaps that enclose the selected pixels.
Region operators control the "clipping policy," or the operations that work on regions. (The sample server
uses YX-banded rectangles. Unless you have something already implemented for your graphics system,
you should keep that implementation.) The procedure pointers to the region operators are located in the
ScreenRec data structure. The definition of a region can be found in the file Xserver/include/regionstr.h.
The region code is found in Xserver/mi/miregion.c. DDX implementations using other region formats will
need to supply different versions of the region operators.

Since the list of rectangles is unbounded in size, part of the region data structure is usually a large, dynami-
cally allocated chunk of memory. As your region operators calculate logical combinations of regions, these
blocks may need to be reallocated by your region software. For instance, in the sample server, a RegionRec
has some header information and a pointer to a dynamically allocated rectangle list. Periodically, the rect-
angle list needs to be expanded with Xrealloc(), whereupon the new pointer is remembered in the Region-
Rec.

Most of the region operations come in two forms: a function pointer in the Screen structure, and a macro.
The server can be compiled so that the macros make direct calls to the appropriate functions (instead of
indirecting through a screen function pointer), or it can be compiled so that the macros are identical to the
function pointer forms. Making direct calls is faster on many architectures.

RegionPtr pScreen->RegionCreate(rect, size)
BoxPtr rect;
int size;

macro: RegionPtr REGION_CREATE(pScreen, rect, size)

RegionCreate creates a region that describes ONE rectangle. The caller can avoid unnecessary reallocation
and copying by declaring the probable maximum number of rectangles that this region will need to describe
itself. Your region routines, though, cannot fail just because the region grows beyond this size. The caller
of this routine can pass almost anything as the size; the value is merely a good guess as to the maximum
size until it is proven wrong by subsequent use. Your region procedures are then on their own in estimating
how big the region will get. Your implementation might ignore size, if applicable.

Porting Layer Definition -21- April 8, 1994

void pScreen->Regionlnit (pRegion, rect, size)
RegionPtr pRegion;
BoxPtr rect;
int size;

macro: REGION_INIT(pScreen, pRegion, rect, size)
Given an existing raw region structure (such as an local variable), this routine fills in the appropriate fields
to make this region as usable as one returned from RegionCreate. This avoids the additional dynamic mem-

ory allocation overhead for the region structure itself.

Bool pScreen->RegionCopy(dstrgn, srcrgn)
RegionPtr dstrgn, srcrgn;

macro: Bool REGION_COPY (pScreen, dstrgn, srcrgn)

RegionCopy copies the description of one region, srcrgn, to another already-created region, dstrgn; return-
ing TRUE if the copy succeeded, and FALSE otherwise.

void pScreen->RegionDestroy(pRegion)
RegionPtr pRegion;

macro: REGION_DESTROY (pScreen, pRegion)
RegionDestroy destroys a region and frees all allocated memory.

void pScreen->RegionUninit (pRegion)
RegionPtr pRegion;

macro: REGION_UNINIT(pScreen, pRegion)
Frees everything except the region structure itself, useful when the region was originally passed to Region-
Init instead of received from RegionCreate. When this call returns, pRegion must not be reused until it has

been Regionlnit’ed again.

Bool pScreen->Intersect(newReg, regl, reg2)
RegionPtr newReg, regl, reg2;

macro: Bool REGION_INTERSECT(pScreen, newReg, regl, reg2)

Bool pScreen->Union(newReg, regl, reg2)
RegionPtr newReg, regl, reg2;

macro: Bool REGION_UNION(pScreen, newReg, regl, reg2)

Bool pScreen->Subtract(newReg, regMinuend, regSubtrahend)
RegionPtr newReg, regMinuend, regSubtrahend;

macro: Bool REGION_UNION(pScreen, newReg, regMinuend, regSubtrahend)
Bool pScreen->Inverse(newReg, pReg, pBox)

RegionPtr newReg, pReg;
BoxPtr pBox;

Porting Layer Definition -22- April 8, 1994

macro: Bool REGION_INVERSE(pScreen, newReg, pReg, pBox)

The above four calls all do basic logical operations on regions. They set the new region (which already
exists) to describe the logical intersection, union, set difference, or inverse of the region(s) that were passed
in. Your routines must be able to handle a situation where the newReg is the same region as one of the
other region arguments.

The subtract function removes the Subtrahend from the Minuend and puts the result in newReg.

The inverse function returns a region that is the pBox minus the region passed in. (A true "inverse" would
make a region that extends to infinity in all directions but has holes in the middle.) It is undefined for situa-
tions where the region extends beyond the box.

Each routine must return the value TRUE for success.

void pScreen->RegionReset(pRegion, pBox)
RegionPtr pRegion;
BoxPtr pBox;

macro: REGION_RESET(pScreen, pRegion, pBox)

RegionReset sets the region to describe one rectangle and reallocates it to a size of one rectangle, if applica-
ble.

void pScreen->TranslateRegion(pRegion, X, y)
RegionPtr pRegion;
int X, y;

macro: REGION_TRANSLATE(pScreen, pRegion, X, y)
TranslateRegion simply moves a region +x in the x direction and +y in the y direction.

int pScreen->RectIn(pRegion, pBox)
RegionPtr pRegion;
BoxPtr pBox;

macro: int RECT_IN_REGION(pScreen, pRegion, pBox)

Rectln returns one of the defined constants rgnIN, rgnOUT, or rgnPART, depending upon whether the box
is entirely inside the region, entirely outside of the region, or partly in and partly out of the region. These
constants are defined in Xserver/include/region.h.

Bool pScreen->PointInRegion(pRegion, x, y, pBox)
RegionPtr pRegion;
int X, y;
BoxPtr pBox;
macro: Bool POINT_IN_REGION(pScreen, pRegion, x, y, pBox)
PointInRegion returns true if the point X, y is in the region. In addition, it fills the rectangle pBox with
coordinates of a rectangle that is entirely inside of pRegion and encloses the point. In the mi implementa-

tion, it is the largest such rectangle. (Due to the sample server implementation, this comes cheaply.)

This routine used by DIX when tracking the