
XFree86 server 4.x Design (DRAFT)
The XFree86 Project, Inc

19 December 2003

NOTE: This is a DRAFT document, and the interfaces described here are subject to change with-
out notice.

1. Preface
The broad design principles are:

• keep it reasonable

• We cannot rewrite the complete server

• We don’t want to re-invent the wheel

• keep it modular

• As many things as possible should go into modules

• The basic loader binary should be minimal

• A clean design with well defined layering is important

• DDX specific global variables are a nono

• The structure should be flexible enough to allow future extensions

• The structure should minimize duplication of common code

• keep important features in mind

• multiple screens, including multiple instances of drivers

• mixing different color depths and visuals on different and ideally even on the same
screen

• better control of the PCI device used

• better config file parser

• get rid of all VGA compatibility assumptions

Unless we find major deficiencies in the DIX layer, we should avoid making changes there.

2. The XF86Config File
The XF86Config file format is similar to the old format, with the following changes:

XFree86 server 4.x Design (DRAFT) 1

XFree86 server 4.x Design (DRAFT) 2

2.1 Device section

The Device sections are similar to what they used to be, and describe hardware-specific informa-
tion for a single video card. Device Some new keywords are added:

Driver "drivername"
Specifies the name of the driver to be used for the card. This is mandatory.

BusID "busslot"
Specifies uniquely the location of the card on the bus. The purpose is to identify
particular cards in a multi-headed configuration. The format of the argument is
intentionally vague, and may be architecture dependent. For a PCI bus, it is some-
thing like "bus:slot:func".

A Device section is considered ‘‘active’’ if there is a reference to it in an active Screen section.

2.2 Screen section

The Screen sections are similar to what they used to be. They no longer have a Driver keyword,
but an Identifier keyword is added. (The Driver keyword may be accepted in place of the Iden-
tifier keyword for compatibility purposes.) The identifier can be used to identify which screen is
to be active when multiple Screen sections are present. It is possible to specify the active screen
from the command line. A default is chosen in the absence of one being specified. A Screen sec-
tion is considered ‘‘active’’ if there is a reference to it either from the command line, or from an
active ServerLayout section.

2.3 InputDevice section

The InputDevice section is a new section that describes configuration information for input
devices. It replaces the old Keyboard, Pointer and XInput sections. Like the Device section, it
has two mandatory keywords: Identifier and Driver. For compatibility purposes the old Key-
board and Pointer sections are converted by the parser into InputDevice sections as follows:

Keyboard
Identifier "Implicit Core Keyboard"

Driver "keyboard"

Pointer
Identifier "Implicit Core Pointer"

Driver "mouse"

An InputDevice section is considered active if there is a reference to it in an active ServerLayout
section. An InputDevice section may also be referenced implicitly if there is no ServerLayout
section, if the -screen command line options is used, or if the ServerLayout section doesn’t ref-
erence any InputDevice sections. In this case, the first sections with drivers "keyboard" and
"mouse" are used as the core keyboard and pointer respectively.

2.4 ServerLayout section

The ServerLayout section is a new section that is used to identify which Screen sections are to be
used in a multi-headed configuration, and the relative layout of those screens. It also identifies
which InputDevice sections are to be used. Each ServerLayout section has an identifier, a list of
Screen section identifiers, and a list of InputDevice section identifiers. ServerFlags options may
also be included in a ServerLayout section, making it possible to override the global values in the
ServerFlags section.

A ServerLayout section can be made active by being referenced on the command line. In the
absence of this, a default will be chosen (the first one found). The screen names may optionally

XFree86 server 4.x Design (DRAFT) 3

be followed by a number specifying the preferred screen number, and optionally by information
specifying the physical positioning of the screen, either in absolute terms or relative to another
screen (or screens). When no screen number is specified, they are numbered according to the
order in which they are listed. The old (now obsolete) method of providing the positioning infor-
mation is to give the names of the four adjacent screens. The order of these is top, bottom, left,
right. Here is an example of a ServerLayout section for two screens using the old method, with
the second located to the right of the first:

Section "ServerLayout"

Identifier "Main Layout"

Screen 0 "Screen 1" "" "" "" "Screen 2"

Screen 1 "Screen 2"

Screen "Screen 3"

EndSection

The preferred way of specifying the layout is to explicitly specify the screen’s location in absolute
terms or relative to another screen.

In the absolute case, the upper left corner’s coordinates are given after the Absolute keyword. If
the coordinates are omitted, a value of (0,0) is assumed. An example of absolute positioning
follows:

Section "ServerLayout"

Identifier "Main Layout"

Screen 0 "Screen 1" Absolute 0 0

Screen 1 "Screen 2" Absolute 1024 0

Screen "Screen 3" Absolute 2048 0

EndSection

In the relative case, the position is specified by either using one of the following keywords fol-
lowed by the name of the reference screen:

RightOf

LeftOf

Above

Below

Relative

When the Relative keyword is used, the reference screen name is followed by the coordinates of
the new screen’s origin relative to reference screen. The following example shows how to use
some of the relative positioning options.

Section "ServerLayout"

Identifier "Main Layout"

Screen 0 "Screen 1"

Screen 1 "Screen 2" RightOf "Screen 1"

Screen "Screen 3" Relative "Screen 1" 2048 0

EndSection

2.5 Options

Options are used more extensively. They may appear in most sections now. Options related to
drivers can be present in the Screen, Device and Monitor sections and the Display subsections.
The order of precedence is Display, Screen, Monitor, Device. Options have been extended to
allow an optional value to be specified in addition to the option name. For more details about
options, see the Options (section 10., page 33) section for details.

XFree86 server 4.x Design (DRAFT) 4

3. Driver Interface
The driver interface consists of a minimal set of entry points that are required based on the exter-
nal events that the driver must react to. No non-essential structure is imposed on the way they
are used beyond that. This is a significant difference compared with the old design.

The entry points for drawing operations are already taken care of by the framebuffer code
(including, XAA). Extensions and enhancements to framebuffer code are outside the scope of this
document.

This approach to the driver interface provides good flexibility, but does increase the complexity of
drivers. To help address this, the XFree86 common layer provides a set of ‘‘helper’’ functions to
take care of things that most drivers need. These helpers help minimise the amount of code
duplication between drivers. The use of helper functions by drivers is however optional, though
encouraged. The basic philosophy behind the helper functions is that they should be useful to
many drivers, that they should balance this against the complexity of their interface. It is
inevitable that some drivers may find some helpers unsuitable and need to provide their own
code.

Events that a driver needs to react to are:

ScreenInit
An initialisation function is called from the DIX layer for each screen at the start of
each server generation.

Enter VT
The server takes control of the console.

Leave VT
The server releases control of the console.

Mode Switch
Change video mode.

ViewPort change
Change the origin of the physical view port.

ScreenSaver state change
Screen saver activation/deactivation.

CloseScreen
A close screen function is called from the DIX layer for each screen at the end of
each server generation.

In addition to these events, the following functions are required by the XFree86 common layer:

Identify
Print a driver identifying message.

Probe
This is how a driver identifies if there is any hardware present that it knows how to
drive.

PreInit
Process information from the XF86Config file, determine the full characteristics of
the hardware, and determine if a valid configuration is present.

The VidMode extension also requires:

ValidMode
Identify if a new mode is usable with the current configuration. The PreInit func-
tion (and/or helpers it calls) may also make use of the ValidMode function or

XFree86 server 4.x Design (DRAFT) 5

something similar.

Other extensions may require other entry points. The drivers will inform the common layer of
these in such cases.

4. Resource Access Control Introduction
Graphics devices are accessed through ranges in I/O or memory space. While most modern
graphics devices allow relocation of such ranges many of them still require the use of well estab-
lished interfaces such as VGA memory and IO ranges or 8514/A IO ranges. With modern buses
(like PCI) it is possible for multiple video devices to share access to these resources. The RAC
(Resource Access Control) subsystem provides a mechanism for this.

4.1 Terms and Definitions

4.1.1 Bus

‘‘Bus’’ is ambiguous as it is used for different things: it may refer to physical incompatible exten-
sion connectors in a computer system. The RAC system knows two such systems: The ISA bus
and the PCI bus. (On the software level EISA, MCA and VL buses are currently treated like ISA
buses). ‘‘Bus’’ may also refer to logically different entities on a single bus system which are con-
nected via bridges. A PCI system may have several distinct PCI buses connecting each other by
PCI-PCI bridges or to the host CPU by HOST-PCI bridges.

Systems that host more than one bus system link these together using bridges. Bridges are a con-
cern to RAC as they might block or pass specific resources. PCI-PCI bridges may be set up to
pass VGA resources to the secondary bus. PCI-ISA buses pass any resources not decoded on the
primary PCI bus to the ISA bus. This way VGA resources (although exclusive on the ISA bus)
can be shared by ISA and PCI cards. Currently HOST-PCI bridges are not yet handled by RAC as
they require specific drivers.

4.1.2 Entity

The smallest independently addressable unit on a system bus is referred to as an entity. So far we
know ISA and PCI entities. PCI entities can be located on the PCI bus by an unique ID consisting
of the bus, card and function number.

4.1.3 Resource

‘‘Resource’’ refers to a range of memory or I/O addresses an entity can decode.

If a device is capable of disabling this decoding the resource is called sharable. For PCI devices a
generic method is provided to control resource decoding. Other devices will have to provide a
device specific function to control decoding.

If the entity is capable of decoding this range at a different location this resource is considered
relocatable.

Resources which start at a specific address and occupy a single continuous range are called block
resources.

Alternatively resource addresses can be decoded in a way that they satisfy the conditions:

address & mask == base

and

XFree86 server 4.x Design (DRAFT) 6

base & mask == base

Resources addressed in such a way are called sparse resources.

4.1.4 Server States

The resource access control system knows two server states: the SETUP and the OPERATING
state. The SETUP state is entered whenever a mode change takes place or the server exits or does
VT switching. During this state all entity resources are under resource access control. During
OPERATING state only those entities are controlled which actually have shared resources that
conflict with others.

5. Control Flow in the Server and Mandatory Driver
Functions
At the start of each server generation, main() (dix/main.c) calls the DDX function InitOut-

put(). This is the first place that the DDX gets control. InitOutput() is expected to fill in the
global screenInfo struct, and one screenInfo.screen[] entry for each screen present.
Here is what InitOutput() does:

5.1 Parse the XF86Config file

This is done at the start of the first server generation only.

The XF86Config file is read in full, and the resulting information stored in data structures. None
of the parsed information is processed at this point. The parser data structures are opaque to the
video drivers and to most of the common layer code.

The entire file is parsed first to remove any section ordering requirements.

5.2 Initial processing of parsed information and command line
options

This is done at the start of the first server generation only.

The initial processing is to determine paths like the ModulePath, etc, and to determine which
ServerLayout, Screen and Device sections are active.

5.3 Enable port I/O access

Port I/O access is controlled from the XFree86 common layer, and is ‘‘all or nothing’’. It is
enabled prior to calling driver probes, at the start of subsequent server generations, and when VT
switching back to the Xserver. It is disabled at the end of server generations, and when VT
switching away from the Xserver.

The implementation details of this may vary on different platforms.

5.4 General bus probe

This is done at the start of the first server generation only.

In the case of ix86 machines, this will be a general PCI probe. The full information obtained here
will be available to the drivers. This information persists for the life of the Xserver. In the PCI
case, the PCI information for all video cards found is available by calling xf86GetP-

ciVideoInfo().

XFree86 server 4.x Design (DRAFT) 7

pciVideoPtr *xf86GetPciVideoInfo(void)

returns a pointer to a list of pointers to pciVideoRec entries, of which
there is one for each detected PCI video card. The list is terminated with a
NULL pointer. If no PCI video cards were detected, the return value is
NULL.

After the bus probe, the resource broker is initialised.

5.5 Load initial set of modules

This is done at the start of the first server generation only.

The core server contains a list of mandatory modules. These are loaded first. Currently the only
module on this list is the bitmap font module.

The next set of modules loaded are those specified explicitly in the Module section of the config
file.

The final set of initial modules are the driver modules referenced by the active Device and Input-
Device sections in the config file. Each of these modules is loaded exactly once.

5.6 Register Video and Input Drivers

This is done at the start of the first server generation only.

When a driver module is loaded, the loader calls its Setup function. For video drivers, this func-
tion calls xf86AddDriver() to register the driver’s DriverRec, which contains a small set of
essential details and driver entry points required during the early phase of InitOutput().
xf86AddDriver() adds it to the global xf86DriverList[] array.

The DriverRec contains the driver canonical name, the Identify(), Probe() and Avail-

ableOptions() function entry points as well as a pointer to the driver’s module (as returned
from the loader when the driver was loaded) and a reference count which keeps track of how
many screens are using the driver. The entry driver entry points are those required prior to the
driver allocating and filling in its ScrnInfoRec.

For a static server, the xf86DriverList[] array is initialised at build time, and the loading of
modules is not done.

A similar procedure is used for input drivers. The input driver’s Setup function calls
xf86AddInputDriver() to register the driver’s InputDriverRec, which contains a small set
of essential details and driver entry points required during the early phase of InitInput().
xf86AddInputDriver() adds it to the global xf86InputDriverList[] array. For a static
server, the xf86InputDriverList[] array is initialised at build time.

Both the xf86DriverList[] and xf86InputDriverList[] arrays have been initialised by
the end of this stage.

Once all the drivers are registered, their ChipIdentify() functions are called.

void ChipIdentify(int flags)

This is expected to print a message indicating the driver name, a short
summary of what it supports, and a list of the chipset names that it sup-
ports. It may use the xf86PrintChipsets() helper to do this.

XFree86 server 4.x Design (DRAFT) 8

void xf86PrintChipsets(const char *drvname, const char *drvmsg,

SymTabPtr chips)

This function provides an easy way for a driver’s ChipIdentify function to
format the identification message.

5.7 Initialise Access Control

This is done at the start of the first server generation only.

The Resource Access Control (RAC) subsystem is initialised before calling any driver functions
that may access hardware. All generic bus information is probed and saved (for restoration
later). All (shared resource) video devices are disabled at the generic bus level, and a probe is
done to find the ‘‘primary’’ video device. These devices remain disabled for the next step.

5.8 Video Driver Probe

This is done at the start of the first server generation only. The ChipProbe() function of each
registered video driver is called.

Bool ChipProbe(DriverPtr drv, int flags)

The purpose of this is to identify all instances of hardware supported by
the driver. The flags value is currently either 0, PROBE_DEFAULT or
PROBE_DETECT. PROBE_DETECT is used if "-configure" or "-probe" com-
mand line arguments are given and indicates to the Probe() function that
it should not configure the bus entities and that no XF86Config informa-
tion is available.

The probe must find the active device sections that match the driver by
calling xf86MatchDevice(). The number of matches found limits the
maximum number of instances for this driver. If no matches are found,
the function should return FALSE immediately.

Devices that cannot be identified by using device-independent methods
should be probed at this stage (keeping in mind that access to all resources
that can be disabled in a device-independent way are disabled during this
phase). The probe must be a minimal probe. It should just determine if
there is a card present that the driver can drive. It should use the least
intrusive probe methods possible. It must not do anything that is not
essential, like probing for other details such as the amount of memory
installed, etc. It is recommended that the xf86MatchPciInstances()

helper function be used for identifying matching PCI devices, and simi-
larly the xf86MatchIsaInstances() for ISA (non-PCI) devices (see the
RAC (section 9., page 22) section). These helpers also checks and claims
the appropriate entity. When not using the helper, that should be done
with xf86CheckPciSlot() and xf86ClaimPciSlot() for PCI devices
and xf86ClaimIsaSlot() for ISA devices (see the RAC (section 9., page
22) section).

The probe must register all non-relocatable resources at this stage. If a
resource conflict is found between exclusive resources the driver will fail
immediately. This is usually best done with the xf86ConfigPciEn-

tity() helper function for PCI and xf86ConfigIsaEntity() for ISA
(see the RAC (section 9., page 22) section). It is possible to register some
entity specific functions with those helpers. When not using the helpers,
the xf86AddEntityToScreen() xf86ClaimFixedResources() and

XFree86 server 4.x Design (DRAFT) 9

xf86SetEntityFuncs() should be used instead (see the RAC (section
9., page 22) section).

If a chipset is specified in an active device section which the driver consid-
ers relevant (ie it has no driver specified, or the driver specified matches
the driver doing the probe), the Probe must return FALSE if the chipset
doesn’t match one supported by the driver.

If there are no active device sections that the driver considers relevant, it
must return FALSE.

Allocate a ScrnInfoRec for each active instance of the hardware found,
and fill in the basic information, including the other driver entry points.
This is best done with the xf86ConfigIsaEntity() helper function for
ISA instances or xf86ConfigPciEntity() for PCI instances. These
functions allocate a ScrnInfoRec for active entities. Optionally
xf86AllocateScreen() function may also be used to allocate the
ScrnInfoRec. Any of these functions take care of initialising fields to
defined ‘‘unused’’ values.

Claim the entities for each instance of the hardware found. This prevents
other drivers from claiming the same hardware.

Must leave hardware in the same state it found it in, and must not do any
hardware initialisation.

All detection can be overridden via the config file, and that parsed infor-
mation is available to the driver at this stage.

Returns TRUE if one or more instances are found, and FALSE otherwise.

int xf86MatchDevice(const char *drivername,

GDevPtr **driversectlist)

This function takes the name of the driver and returns via driver-

sectlist a list of device sections that match the driver name. The func-
tion return value is the number of matches found. If a fatal error is
encountered the return value is -1.

The caller should use xfree() to free *driversectlist when it is no
longer needed.

ScrnInfoPtr xf86AllocateScreen(DriverPtr drv, int flags)

This function allocates a new ScrnInfoRec in the xf86Screens[]

array. This function is normally called by the video driver ChipProbe()
functions. The return value is a pointer to the newly allocated ScrnIn-

foRec. The scrnIndex, origIndex, module and drv fields are ini-
tialised. The reference count in drv is incremented. The storage for any
currently allocated ‘‘privates’’ pointers is also allocated and the privates
field initialised (the privates data is of course not allocated or initialised).
This function never returns on failure. If the allocation fails, the server
exits with a fatal error. The flags value is not currently used, and should
be set to zero.

At the completion of this, a list of ScrnInfoRecs have been allocated in the xf86Screens[]

array, and the associated entities and fixed resources have been claimed. The following ScrnIn-

foRec fields must be initialised at this point:

XFree86 server 4.x Design (DRAFT) 10

driverVersion

driverName

scrnIndex(*)

origIndex(*)

drv(*)

module(*)

name

Probe

PreInit

ScreenInit

EnterVT

LeaveVT

numEntities

entityList

access

(*) These are initialised when the ScrnInfoRec is allocated, and not explicitly by the driver.

The following ScrnInfoRec fields must be initialised if the driver is going to use them:

SwitchMode

AdjustFrame

FreeScreen

ValidMode

5.9 Matching Screens

This is done at the start of the first server generation only.

After the Probe phase is finished, there will be some number of ScrnInfoRecs. These are then
matched with the active Screen sections in the XF86Config, and those not having an active
Screen section are deleted. If the number of remaining screens is 0, InitOutput() sets
screenInfo.numScreens to 0 and returns.

At this point the following fields of the ScrnInfoRecs must be initialised:

confScreen

5.10 Allocate non-conflicting resources

This is done at the start of the first server generation only.

Before calling the drivers again, the resource information collected from the Probe phase is pro-
cessed. This includes checking the extent of PCI resources for the probed devices, and resolving
any conflicts in the relocatable PCI resources. It also reports conflicts, checks bus routing issues,
and anything else that is needed to enable the entities for the next phase.

If any drivers registered an EntityInit() function during the Probe phase, then they are called
here.

5.11 Sort the Screens and pre-check Monitor Information

This is done at the start of the first server generation only.

The list of screens is sorted to match the ordering requested in the config file.

The list of modes for each active monitor is checked against the monitor’s parameters. Invalid
modes are pruned.

XFree86 server 4.x Design (DRAFT) 11

5.12 PreInit

This is done at the start of the first server generation only.

For each ScrnInfoRec, enable access to the screens entities and call the ChipPreInit() func-
tion.

Bool ChipPreInit(ScrnInfoRec screen, int flags)

The purpose of this function is to find out all the information required to
determine if the configuration is usable, and to initialise those parts of the
ScrnInfoRec that can be set once at the beginning of the first server gen-
eration.

The number of entities registered for the screen should be checked against
the expected number (most drivers expect only one). The entity informa-
tion for each of them should be retrieved (with xf86GetEntityInfo())
and checked for the correct bus type and that none of the sharable
resources registered during the Probe phase was rejected.

Access to resources for the entities that can be controlled in a device-inde-
pendent way are enabled before this function is called. If the driver needs
to access any resources that it has disabled in an EntityInit() function
that it registered, then it may enable them here providing that it disables
them before this function returns.

This includes probing for video memory, clocks, ramdac, and all other HW
info that is needed. It includes determining the depth/bpp/visual and
related info. It includes validating and determining the set of video modes
that will be used (and anything that is required to determine that).

This information should be determined in the least intrusive way possible.
The state of the HW must remain unchanged by this function. Although
video memory (including MMIO) may be mapped within this function, it
must be unmapped before returning. Driver specific information should
be stored in a structure hooked into the ScrnInfoRec’s driverPrivate
field. Any other modules which require persistent data (ie data that per-
sists across server generations) should be initialised in this function, and
they should allocate a ‘‘privates’’ index to hook their data into by calling
xf86AllocateScrnInfoPrivateIndex(). The ‘‘privates’’ data is
persistent.

Helper functions for some of these things are provided at the XFree86 com-
mon level, and the driver can choose to make use of them.

All additional resources that the screen needs must be registered here.
This should be done with xf86RegisterResources(). If some of the
fixed resources registered in the Probe phase are not needed or not
decoded by the hardware when in the OPERATING server state, their sta-
tus should be updated with xf86SetOperatingState().

Modules may be loaded at any point in this function, and all modules that
the driver will need must be loaded before the end of this function. Either
the xf86LoadSubModule() or the xf86LoadDrvSubModule() func-
tion should be used to load modules depending on whether a ScrnIn-

foRec has been set up. A driver may unload a module within this func-
tion if it was only needed temporarily, and the xf86UnloadSubMod-

ule() function should be used to do that. Otherwise there is no need to
explicitly unload modules because the loader takes care of module depen-

XFree86 server 4.x Design (DRAFT) 12

dencies and will unload submodules automatically if/when the driver
module is unloaded.

The bulk of the ScrnInfoRec fields should be filled out in this function.

ChipPreInit() returns FALSE when the configuration is unusable in
some way (unsupported depth, no valid modes, not enough video mem-
ory, etc), and TRUE if it is usable.

It is expected that if the ChipPreInit() function returns TRUE, then the
only reasons that subsequent stages in the driver might fail are lack or
resources (like xalloc failures). All other possible reasons for failure should
be determined by the ChipPreInit() function.

The ScrnInfoRecs for screens where the ChipPreInit() fails are removed. If none remain,
InitOutput() sets screenInfo.numScreens to 0 and returns.

At this point, further fields of the ScrnInfoRecs would normally be filled in. Most are not
strictly mandatory, but many are required by other layers and/or helper functions that the driver
may choose to use. The documentation for those layers and helper functions indicates which
they require.

The following fields of the ScrnInfoRecs should be filled in if the driver is going to use them:

monitor

display

depth

pixmapBPP

bitsPerPixel

weight (>8bpp only)

mask (>8bpp only)

offset (>8bpp only)

rgbBits (8bpp only)

gamma

defaultVisual

maxHValue

maxVValue

virtualX

virtualY

displayWidth

frameX0

frameY0

frameX1

frameY1

zoomLocked

modePool

modes

currentMode

progClock (TRUE if clock is programmable)

chipset

ramdac

clockchip

numClocks (if not programmable)

clock[] (if not programmable)

videoRam

biosBase

memBase

memClk

driverPrivate

chipID

chipRev

XFree86 server 4.x Design (DRAFT) 13

pointer xf86LoadSubModule(ScrnInfoPtr pScrn, const char *name):
and pointer xf86LoadDrvSubModule(DriverPtr drv, const char

*name):

Load a module that a driver depends on. This function loads the module
name as a sub module of the driver. The return value is a handle identify-
ing the new module. If the load fails, the return value will be NULL. If a
driver needs to explicitly unload a module it has loaded in this way, the
return value must be saved and passed to xf86UnloadSubModule()

when unloading.

void xf86UnloadSubModule(pointer module)

Unloads the module referenced by module. module should be a pointer
returned previously by xf86LoadSubModule() or xf86LoadDrvSub-

Module() .

5.13 Cleaning up Unused Drivers

At this point it is known which screens will be in use, and which drivers are being used. Unrefer-
enced drivers (and modules they may have loaded) are unloaded here.

5.14 Consistency Checks

The parameters that must be global to the server, like pixmap formats, bitmap bit order, bitmap
scanline unit and image byte order are compared for each of the screens. If a mismatch is found,
the server exits with an appropriate message.

5.15 Check if Resource Control is Needed

Determine if resource access control is needed. This is the case if more than one screen is used. If
necessary the RAC wrapper module is loaded.

5.16 AddScreen (ScreenInit)

At this point, the valid screens are known. AddScreen() is called for each of them, passing
ChipScreenInit() as the argument. AddScreen() is a DIX function that allocates a new
screenInfo.screen[] entry (aka pScreen), and does some basic initialisation of it. It then
calls the ChipScreenInit() function, with pScreen as one of its arguments. If Chip-

ScreenInit() returns FALSE, AddScreen() returns -1. Otherwise it returns the index of the
screen. AddScreen() should only fail because of programming errors or failure to allocate
resources (like memory). All configuration problems should be detected BEFORE this point.

XFree86 server 4.x Design (DRAFT) 14

Bool ChipScreenInit(int index, ScreenPtr pScreen,

int argc, char **argv)

This is called at the start of each server generation.

Fill in all of pScreen, possibly doing some of this by calling ScreenInit
functions from other layers like mi, framebuffers (cfb, etc), and extensions.

Decide which operations need to be placed under resource access control.
The classes of operations are the frame buffer operations (RAC_FB), the
pointer operations (RAC_CURSOR), the viewport change operations
(RAC_VIEWPORT) and the colormap operations (RAC_COLORMAP). Any
operation that requires resources which might be disabled during OPER-
ATING state should be set to use RAC. This can be specified separately for
memory and IO resources (the racMemFlags and racIoFlags fields of
the ScrnInfoRec respectively).

Map any video memory or other memory regions.

Save the video card state. Enough state must be saved so that the original
state can later be restored.

Initialise the initial video mode. The ScrnInfoRec’s vtSema field should
be set to TRUE just prior to changing the video hardware’s state.

The ChipScreenInit() function (or functions from other layers that it calls) should allocate
entries in the ScreenRec’s devPrivates area by calling AllocateScreenPrivateIndex()

if it needs per-generation storage. Since the ScreenRec’s devPrivates information is cleared
for each server generation, this is the correct place to initialise it.

After AddScreen() has successfully returned, the following ScrnInfoRec fields are initialised:

pScreen

racMemFlags

racIoFlags

The ChipScreenInit() function should initialise the CloseScreen and SaveScreen fields
of pScreen. The old value of pScreen->CloseScreen should be saved as part of the driver’s
per-screen private data, allowing it to be called from ChipCloseScreen(). This means that the
existing CloseScreen() function is wrapped.

5.17 Finalising RAC Initialisation

After all the ChipScreenInit() functions have been called, each screen has registered its RAC
requirements. This information is used to determine which shared resources are requested by
more than one driver and set the access functions accordingly. This is done following these rules:

1. The sharable resources registered by each entity are compared. If a resource is registered
by more than one entity the entity will be marked to indicate that it needs to share this
resources type (IO or MEM).

2. A resource marked ‘‘disabled’’ during OPERATING state will be ignored entirely.

3. A resource marked ‘‘unused’’ will only conflict with an overlapping resource of an other
entity if the second is actually in use during OPERATING state.

4. If an ‘‘unused’’ resource was found to conflict but the entity does not use any other
resource of this type the entire resource type will be disabled for that entity.

XFree86 server 4.x Design (DRAFT) 15

5.18 Finishing InitOutput()

At this point InitOutput() is finished, and all the screens have been setup in their initial video
mode.

5.19 Mode Switching

When a SwitchMode event is received, ChipSwitchMode() is called (when it exists):

Bool ChipSwitchMode(int index, DisplayModePtr mode, int flags)

Initialises the new mode for the screen identified by index;. The view-
port may need to be adjusted also.

5.20 Changing Viewpor t

When a Change Viewport event is received, ChipAdjustFrame() is called (when it exists):

void ChipAdjustFrame(int index, int x, int y, int flags)

Changes the viewport for the screen identified by index;.

It should be noted that many chipsets impose restrictions on where the
viewport may be placed in the virtual resolution, either for alignment rea-
sons, or to prevent the start of the viewport from being positioned within a
pixel (as can happen in a 24bpp mode). After calculating the value the
chipset’s panning registers need to be set to for non-DGA modes, this func-
tion should recalculate the ScrnInfoRec’s frameX0, frameY0, frameX1
and frameY1 fields to correspond to that value. If this is not done, switch-
ing to another mode might cause the position of a hardware cursor to
change.

5.21 VT Switching

When a VT switch event is received, xf86VTSwitch() is called. xf86VTSwitch() does the
following:

On ENTER:

• enable port I/O access

• save and initialise the bus/resource state

• enter the SETUP server state

• calls ChipEnterVT() for each screen

• enter the OPERATING server state

• validate GCs

• Restore fb from saved pixmap for each screen

• Enable all input devices

On LEAVE:

• Save fb to pixmap for each screen

• validate GCs

XFree86 server 4.x Design (DRAFT) 16

• enter the SETUP server state

• calls ChipLeaveVT() for each screen

• disable all input devices

• restore bus/resource state

• disables port I/O access

Bool ChipEnterVT(int index, int flags)

This function should initialise the current video mode and initialise the
viewport, turn on the HW cursor if appropriate, etc.

Should it re-save the video state before initialising the video mode?

void ChipLeaveVT(int index, int flags)

This function should restore the saved video state. If appropriate it should
also turn off the HW cursor, and invalidate any pixmap/font caches.

Optionally, ChipLeaveVT() may also unmap memory regions. If so, ChipEn-
terVT() will need to remap them. Additionally, if an aperture used to access video
memory is unmapped and remapped in this fashion, ChipEnterVT() will also need
to notify the framebuffer layers of the aperture’s new location in virtual memory.
This is done with a call to the screen’s ModifyPixmapHeader() function, as follows

(*pScreen->ModifyPixmapHeader)(pScrn->ppix,

-1, -1, -1, -1, -1, NewApertureAddress);

where the ‘‘ppix’’ field in a ScrnInfoRec points to the
pixmap used by the screen’s SaveRestoreImage() function
to hold the screen’s contents while switched out.

Currently, aperture remapping, as described here, should not be attempted if the
driver uses the xf8_16bpp or xf8_32bpp framebuffer layers. A pending restructur-
ing of VT switching will address this restriction in the near future.

Other layers may wrap the ChipEnterVT() and ChipLeaveVT() functions if they need to take
some action when these events are received.

5.22 End of server generation

At the end of each server generation, the DIX layer calls ChipCloseScreen() for each screen:

XFree86 server 4.x Design (DRAFT) 17

Bool ChipCloseScreen(int index, ScreenPtr pScreen)

This function should restore the saved video state and unmap the memory
regions.

It should also free per-screen data structures allocated by the driver. Note
that the persistent data held in the ScrnInfoRec’s driverPrivate field
should not be freed here because it is needed by subsequent server genera-
tions.
The ScrnInfoRec’s vtSema field should be set to FALSE once the video
HW state has been restored.

Before freeing the per-screen driver data the saved CloseScreen value
should be restored to pScreen->CloseScreen, and that function should
be called after freeing the data.

6. Optional Driver Functions
The functions outlined here can be called from the XFree86 common layer, but their presence is
optional.

6.1 Mode Validation

When a mode validation helper supplied by the XFree86-common layer is being used, it can be
useful to provide a function to check for hw specific mode constraints:

ModeStatus ChipValidMode(int index, DisplayModePtr mode,

Bool verbose, int flags)

Check the passed mode for hw-specific constraints, and return the appro-
priate status value.

This function may also modify the effective timings and clock of the passed mode. These have
been stored in the mode’s Crtc* and SynthClock elements, and have already been adjusted for
interlacing, doublescanning, multiscanning and clock multipliers and dividers. The function
should not modify any other mode field, unless it wants to modify the mode timings reported to
the user by xf86PrintModes().

The function is called once for every mode in the XF86Config Monitor section assigned to the
screen, with flags set to MODECHECK_INITIAL. It is subsequently called for every mode in the
XF86Config Display subsection assigned to the screen, with flags set to MODECHECK_FINAL. In
the second case, the mode will have successfully passed all other tests. In addition, the ScrnIn-
foRec’s virtualX, virtualY and displayWidth fields will have been set as if the mode to be
validated were to be the last mode accepted.

In effect, calls with MODECHECK_INITIAL are intended for checks that do not depend on any
mode other than the one being validated, while calls with MODECHECK_FINAL are intended
for checks that may involve more than one mode.

6.2 Free screen data

When a screen is deleted prior to the completion of the ScreenInit phase the ChipFreeScreen()
function is called when defined.

XFree86 server 4.x Design (DRAFT) 18

void ChipFreeScreen(int scrnindex, int flags)

Free any driver-allocated data that may have been allocated up to and
including an unsuccessful ChipScreenInit() call. This would predom-
inantly be data allocated by ChipPreInit() that persists across server
generations. It would include the driverPrivate, and any ‘‘privates’’
entries that modules may have allocated.

7. Recommended driver functions
The functions outlined here are for internal use by the driver only. They are entirely optional,
and are never accessed directly from higher layers. The sample function declarations shown here
are just examples. The interface (if any) used is up to the driver.

7.1 Save

Save the video state. This could be called from ChipScreenInit() and (possibly) ChipEn-
terVT().

void ChipSave(ScrnInfoPtr pScrn)

Saves the current state. This will only be saving pre-server states or states
before returning to the server. There is only one current saved state per
screen and it is stored in private storage in the screen.

7.2 Restore

Restore the original video state. This could be called from the ChipLeaveVT() and ChipClos-

eScreen() functions.

void ChipRestore(ScrnInfoPtr pScrn)

Restores the saved state from the private storage. Usually only used for
restoring text modes.

7.3 Initialise Mode

Initialise a video mode. This could be called from the ChipScreenInit(), ChipSwitch-
Mode() and ChipEnterVT() functions.

Bool ChipModeInit(ScrnInfoPtr pScrn, DisplayModePtr mode)

Programs the hardware for the given video mode.

8. Data and Data Structures

8.1 Command line data

Command line options are typically global, and are stored in global variables. These variables
are read-only and are available to drivers via a function call interface. Most of these command
line values are processed via helper functions to ensure that they are treated consistently by all
drivers. The other means of access is provided for cases where the supplied helper functions
might not be appropriate.

Some of them are:

XFree86 server 4.x Design (DRAFT) 19

xf86Verbose verbosity level

xf86Bpp -bpp from the command line

xf86Depth -depth from the command line

xf86Weight -weight from the command line

xf86Gamma -{r,g,b,}gamma from the command line

xf86FlipPixels -flippixels from the command line

xf86ProbeOnly -probeonly from the command line

defaultColorVisualClass -cc from the command line

If we ever do allow for screen-specific command line options, we may need to rethink this.

These can be accessed in a read-only manner by drivers with the following functions:

int xf86GetVerbosity()

Returns the value of xf86Verbose.

int xf86GetDepth()

Returns the -depth command line setting. If not set on the command
line, -1 is returned.

rgb xf86GetWeight()

Returns the -weight command line setting. If not set on the command
line, {0, 0, 0} is returned.

Gamma xf86GetGamma()

Returns the -gamma or -rgamma, -ggamma, -bgamma command line set-
tings. If not set on the command line, {0.0, 0.0, 0.0} is returned.

Bool xf86GetFlipPixels()

Returns TRUE if -flippixels is present on the command line, and
FALSE otherwise.

const char *xf86GetServerName()

Returns the name of the X server from the command line.

8.2 Data handling

Config file data contains parts that are global, and parts that are Screen specific. All of it is parsed
into data structures that neither the drivers or most other parts of the server need to know about.

The global data is typically not required by drivers, and as such, most of it is stored in the private
xf86InfoRec.

The screen-specific data collected from the config file is stored in screen, device, display, monitor-
specific data structures that are separate from the ScrnInfoRecs, with the appropriate ele-
ments/fields hooked into the ScrnInfoRecs as required. The screen config data is held in con-

fScreenRec, device data in the GDevRec, monitor data in the MonRec, and display data in the
DispRec.

The XFree86 common layer’s screen specific data (the actual data in use for each screen) is held in
the ScrnInfoRecs. As has been outlined above, the ScrnInfoRecs are allocated at probe
time, and it is the responsibility of the Drivers’ Probe() and PreInit() functions to finish fill-
ing them in based on both data provided on the command line and data provided from the Con-
fig file. The precedence for this is:

XFree86 server 4.x Design (DRAFT) 20

command line -> config file -> probed/default data

For most things in this category there are helper functions that the drivers can use to ensure that
the above precedence is consistently used.

As well as containing screen-specific data that the XFree86 common layer (including essential
parts of the server infrastructure as well as helper functions) needs to access, it also contains some
data that drivers use internally. When considering whether to add a new field to the ScrnIn-

foRec, consider the balance between the convenience of things that lots of drivers need and the
size/obscurity of the ScrnInfoRec.

Per-screen driver specific data that cannot be accommodated with the static ScrnInfoRec fields
is held in a driver-defined data structure, a pointer to which is assigned to the ScrnInfoRec’s
driverPrivate field. This is per-screen data that persists across server generations (as does the
bulk of the static ScrnInfoRec data). It would typically also include the video card’s saved
state.

Per-screen data for other modules that the driver uses (for example, the XAA module) that is
reset for each server generation is hooked into the ScrnInfoRec through it’s privates field.

Once it has stabilised, the data structures and variables accessible to video drivers will be docu-
mented here. In the meantime, those things defined in the xf86.h and xf86str.h files are visi-
ble to video drivers. Things defined in xf86Priv.h and xf86Privstr.h are NOT intended to
be visible to video drivers, and it is an error for a driver to include those files.

8.3 Accessing global data

Some other global state information that the drivers may access via functions is as follows:

Bool xf86ServerIsExiting()

Returns TRUE if the server is at the end of a generation and is in the pro-
cess of exiting, and FALSE otherwise.

Bool xf86ServerIsResetting()

Returns TRUE if the server is at the end of a generation and is in the pro-
cess of resetting, and FALSE otherwise.

Bool xf86ServerIsInitialising()

Returns TRUE if the server is at the beginning of a generation and is in the
process of initialising, and FALSE otherwise.

Bool xf86ServerIsOnlyProbing()

Returns TRUE if the -probeonly command line flag was specified, and
FALSE otherwise.

Bool xf86CaughtSignal()

Returns TRUE if the server has caught a signal, and FALSE otherwise.

8.4 Allocating private data

A driver and any module it uses may allocate per-screen private storage in either the ScreenRec
(DIX level) or ScrnInfoRec (XFree86 common layer level). ScreenRec storage persists only
for a single server generation, and ScrnInfoRec storage persists across generations for the life-
time of the server.

XFree86 server 4.x Design (DRAFT) 21

The ScreenRec devPrivates data must be reallocated/initialised at the start of each new gen-
eration. This is normally done from the ChipScreenInit() function, and Init functions for
other modules that it calls. Data allocated in this way should be freed by the driver’s ChipClos-
eScreen() functions, and Close functions for other modules that it calls. A new devPrivates

entry is allocated by calling the AllocateScreenPrivateIndex() function.

int AllocateScreenPrivateIndex()

This function allocates a new element in the devPrivates field of all cur-
rently existing ScreenRecs. The return value is the index of this new ele-
ment in the devPrivates array. The devPrivates field is of type
DevUnion:

typedef union _DevUnion {

pointer ptr;

long val;

unsigned long uval;

pointer (*fptr)(void);

} DevUnion;

which allows the element to be used for any of the above types. It is com-
monly used as a pointer to data that the caller allocates after the new index
has been allocated.

This function will return -1 when there is an error allocating the new
index.

The ScrnInfoRec privates data persists for the life of the server, so only needs to be allocated
once. This should be done from the ChipPreInit() function, and Init functions for other mod-
ules that it calls. Data allocated in this way should be freed by the driver’s ChipFreeScreen()
functions, and Free functions for other modules that it calls. A new privates entry is allocated
by calling the xf86AllocateScrnInfoPrivateIndex() function.

int xf86AllocateScrnInfoPrivateIndex()

This function allocates a new element in the privates field of all cur-
rently existing ScrnInfoRecs. The return value is the index of this new
element in the privates array. The privates field is of type DevU-

nion:

typedef union _DevUnion {

pointer ptr;

long val;

unsigned long uval;

pointer (*fptr)(void);

} DevUnion;

which allows the element to be used for any of the above types. It is com-
monly used as a pointer to data that the caller allocates after the new index
has been allocated.

This function will not return when there is an error allocating the new
index. When there is an error it will cause the server to exit with a fatal
error. The similar function for allocation privates in the ScreenRec

(AllocateScreenPrivateIndex()) differs in this respect by returning
-1 when the allocation fails.

XFree86 server 4.x Design (DRAFT) 22

9. Keeping Track of Bus Resources

9.1 Theory of Operation

The XFree86 common layer has knowledge of generic access control mechanisms for devices on
certain bus systems (currently the PCI bus) as well as of methods to enable or disable access to
the buses itself. Furthermore it can access information on resources decoded by these devices
and if necessary modify it.

When first starting the Xserver collects all this information, saves it for restoration, checks it for
consistency, and if necessary, corrects it. Finally it disables all resources on a generic level prior to
calling any driver function.

When the Probe() function of each driver is called the device sections are matched against the
devices found in the system. The driver may probe devices at this stage that cannot be identified
by using device independent methods. Access to all resources that can be controlled in a device
independent way is disabled. The Probe() function should register all non-relocatable
resources at this stage. If a resource conflict is found between exclusive resources the driver will
fail immediately. Optionally the driver might specify an EntityInit(), EntityLeave() and
EntityEnter() function.

EntityInit() can be used to disable any shared resources that are not controlled by the generic
access control functions. It is called prior to the PreInit phase regardless if an entity is active or
not. When calling the EntityInit(), EntityEnter() and EntityLeave() functions the
common level will disable access to all other entities on a generic level. Since the common level
has no knowledge of device specific methods to disable access to resources it cannot be guaran-
teed that certain resources are not decoded by any other entity until the EntityInit() or
EntityEnter() phase is finished. Device drivers should therefore register all those resources
which they are going to disable. If these resources are never to be used by any driver function
they may be flagged ResInit so that they can be removed from the resource list after processing
all EntityInit() functions. EntityEnter() should disable decoding of all resources which
are not registered as exclusive and which are not handled by the generic access control in the
common level. The difference to EntityInit() is that the latter one is only called once during
lifetime of the server. It can therefore be used to set up variables prior to disabling resources.
EntityLeave() should restore the original state when exiting the server or switching to a dif-
ferent VT. It also needs to disable device specific access functions if they need to be disabled on
server exit or VT switch. The default state is to enable them before giving up the VT.

In PreInit() phase each driver should check if any sharable resources it has registered during
Probe() has been denied and take appropriate action which could simply be to fail. If it needs
to access resources it has disabled during EntitySetup() it can do so provided it has registered
these and will disable them before returning from PreInit(). This also applies to all other
driver functions. Several functions are provided to request resource ranges, register these, correct
PCI config space and add replacements for the generic access functions. Resources may be
marked ‘‘disabled’’ or ‘‘unused’’ during OPERATING stage. Although these steps could also be
performed in ScreenInit(), this is not desirable.

Following PreInit() phase the common level determines if resource access control is needed.
This is the case if more than one screen is used. If necessary the RAC wrapper module is loaded.
In ScreenInit() the drivers can decide which operations need to be placed under RAC. Avail-
able are the frame buffer operations, the pointer operations and the colormap operations. Any
operation that requires resources which might be disabled during OPERATING state should be
set to use RAC. This can be specified separately for memory and IO resources.

When ScreenInit() phase is done the common level will determine which shared resources
are requested by more than one driver and set the access functions accordingly. This is done fol-
lowing these rules:

XFree86 server 4.x Design (DRAFT) 23

1. The sharable resources registered by each entity are compared. If a resource is registered
by more than one entity the entity will be marked to need to share this resources type (IO
or MEM).

2. A resource marked ‘‘disabled’’ during OPERATING state will be ignored entirely.

3. A resource marked ‘‘unused’’ will only conflicts with an overlapping resource of an other
entity if the second is actually in use during OPERATING state.

4. If an ‘‘unused’’ resource was found to conflict however the entity does not use any other
resource of this type the entire resource type will be disabled for that entity.

The driver has the choice among different ways to control access to certain resources:

1. It can rely on the generic access functions. This is probably the most common case. Here
the driver only needs to register any resource it is going to use.

2. It can replace the generic access functions by driver specific ones. This will mostly be used
in cases where no generic access functions are available. In this case the driver has to
make sure these resources are disabled when entering the PreInit() stage. Since the
replacement functions are registered in PreInit() the driver will have to enable these
resources itself if it needs to access them during this state. The driver can specify if the
replacement functions can control memory and/or I/O resources separately.

3. The driver can enable resources itself when it needs them. Each driver function enabling
them needs to disable them before it will return. This should be used if a resource which
can be controlled in a device dependent way is only required during SETUP state. This
way it can be marked ‘‘unused’’ during OPERATING state.

A resource which is decoded during OPERATING state however never accessed by the driver
should be marked unused.

Since access switching latencies are an issue during Xserver operation, the common level
attempts to minimize the number of entities that need to be placed under RAC control. When a
wrapped operation is called, the EnableAccess() function is called before control is passed on.
EnableAccess() checks if a screen is under access control. If not it just establishes bus routing
and returns. If the screen needs to be under access control, EnableAccess() determines which
resource types (MEM, IO) are required. Then it tests if this access is already established. If so it
simply returns. If not it disables the currently established access, fixes bus routing and enables
access to all entities registered for this screen.

Whenever a mode switch or a VT-switch is performed the common level will return to SETUP
state.

9.2 Resource Types

Resource have certain properties. When registering resources each range is accompanied by a
flag consisting of the ORed flags of the different properties the resource has. Each resource range
may be classified according to

• its physical properties i.e., if it addresses memory (ResMem) or I/O space (ResIo),

• if it addresses a block (ResBlock) or sparse (ResSparse) range,

• its access properties.

There are two known access properties:

• ResExclusive for resources which may not be shared with any other device and

• ResShared for resources which can be disabled and therefore can be shared.

If it is necessary to test a resource against any type a generic access type ResAny is provided. If
this is set the resource will conflict with any resource of a different entity intersecting its range.

XFree86 server 4.x Design (DRAFT) 24

Further it can be specified that a resource is decoded however never used during any stage
(ResUnused) or during OPERATING state (ResUnusedOpr). A resource only visible during the
init functions (ie. EntityInit(), EntityEnter() and EntityLeave() should be registered
with the flag ResInit. A resource that might conflict with background resource ranges may be
flagged with ResBios. This might be useful when registering resources ranges that were
assigned by the system Bios.

Several predefined resource lists are available for VGA and 8514/A resources in com-

mon/xf86Resources.h.

9.3 Available Functions

The functions provided for resource management are listed in their order of use in the driver.

9.3.1 Probe Phase

In this phase each driver detects those resources it is able to drive, creates an entity record for
each of them, registers non-relocatable resources and allocates screens and adds the resources to
screens.

Two helper functions are provided for matching device sections in the XF86Config file to the
devices:

int xf86MatchPciInstances(const char *driverName, int vendorID,

SymTabPtr chipsets, PciChipsets *PCIchipsets,

GDevPtr *devList, int numDevs, DriverPtr drvp,

int **foundEntities)

This function finds matches between PCI cards that a driver supports and
config file device sections. It is intended for use in the ChipProbe()

function of drivers for PCI cards. Only probed PCI devices with a vendor
ID matching vendorID are considered. devList and numDevs are typi-
cally those found from calling xf86MatchDevice(), and represent the
active config file device sections relevant to the driver. PCIchipsets is a
table that provides a mapping between the PCI device IDs, the driver’s
internal chipset tokens and a list of fixed resources.

When a device section doesn’t have a BusID entry it can only match the
primary video device. Secondary devices are only matched with device
sections that have a matching BusID entry.

Once the preliminary matches have been found, a final match is confirmed
by checking if the chipset override, ChipID override or probed PCI chipset
type match one of those given in the chipsets and PCIchipsets lists.
The PCIchipsets list includes a list of the PCI device IDs supported by
the driver. The list should be terminated with an entry with PCI ID -1".
The chipsets list is a table mapping the driver’s internal chipset tokens
to names, and should be terminated with a NULL entry. Only those entries
with a corresponding entry in the PCIchipsets list are considered. The
order of precedence is: config file chipset, config file ChipID, probed PCI
device ID.

In cases where a driver handles PCI chipsets with more than one vendor
ID, it may set vendorID to 0, and OR each devID in the list with (the ven-
dor ID << 16).

XFree86 server 4.x Design (DRAFT) 25

Entity index numbers for confirmed matches are returned as an array via
foundEntities. The PCI information, chipset token and device section
for each match are found in the EntityInfoRec referenced by the
indices.

The function return value is the number of confirmed matches. A return
value of -1 indicates an internal error. The returned foundEntities

array should be freed by the driver with xfree() when it is no longer
needed in cases where the return value is greater than zero.

int xf86MatchIsaInstances(const char *driverName,

SymTabPtr chipsets, IsaChipsets *ISAchipsets,

DriverPtr drvp, FindIsaDevProc FindIsaDevice,

GDevPtr *devList, int numDevs, int **foundEntities)

This function finds matches between ISA cards that a driver supports and
config file device sections. It is intended for use in the ChipProbe()

function of drivers for ISA cards. devList and numDevs are typically
those found from calling xf86MatchDevice(), and represent the active
config file device sections relevant to the driver. ISAchipsets is a table
that provides a mapping between the driver’s internal chipset tokens and
the resource classes. FindIsaDevice is a driver-provided function that
probes the hardware and returns the chipset token corresponding to what
was detected, and -1 if nothing was detected.

If the config file device section contains a chipset entry, then it is checked
against the chipsets list. When no chipset entry is present, the FindIs-
aDevice function is called instead.

Entity index numbers for confirmed matches are returned as an array via
foundEntities. The chipset token and device section for each match are
found in the EntityInfoRec referenced by the indices.

The function return value is the number of confirmed matches. A return
value of -1 indicates an internal error. The returned foundEntities

array should be freed by the driver with xfree() when it is no longer
needed in cases where the return value is greater than zero.

These two helper functions make use of several core functions that are available at the driver
level:

XFree86 server 4.x Design (DRAFT) 26

Bool xf86ParsePciBusString(const char *busID, int *bus,

int *device, int *func)

Takes a BusID string, and if it is in the correct format, returns the PCI bus,
device, func values that it indicates. The format of the string is expected
to be "PCI:bus:device:func" where each of ‘bus’, ‘device’ and ‘func’ are dec-
imal integers. The ":func" part may be omitted, and the func value
assumed to be zero, but this isn’t encouraged. The "PCI" prefix may also
be omitted. The prefix "AGP" is currently equivalent to the "PCI" prefix. If
the string isn’t a valid PCI BusID, the return value is FALSE.

Bool xf86ComparePciBusString(const char *busID, int bus,

int device, int func)

Compares a BusID string with PCI bus, device, func values. If they
match TRUE is returned, and FALSE if they don’t.

Bool xf86ParseIsaBusString(const char *busID)

Compares a BusID string with the ISA bus ID string ("ISA" or "ISA:"). If
they match TRUE is returned, and FALSE if they don’t.

Bool xf86CheckPciSlot(int bus, int device, int func)

Checks if the PCI slot bus:device:func has been claimed. If so, it
returns FALSE, and otherwise TRUE.

int xf86ClaimPciSlot(int bus, int device, int func, DriverPtr

drvp,

int chipset, GDevPtr dev, Bool active)

This function is used to claim a PCI slot, allocate the associated entity
record and initialise their data structures. The return value is the index of
the newly allocated entity record, or -1 if the claim fails. This function
should always succeed if xf86CheckPciSlot() returned TRUE for the
same PCI slot.

Bool xf86IsPrimaryPci(void)

This function returns TRUE if the primary card is a PCI device, and FALSE

otherwise.

int xf86ClaimIsaSlot(DriverPtr drvp, int chipset,

GDevPtr dev, Bool active)

This allocates an entity record entity and initialise the data structures. The
return value is the index of the newly allocated entity record.

Bool xf86IsPrimaryIsa(void)

This function returns TRUE if the primary card is an ISA (non-PCI) device,
and FALSE otherwise.

Two helper functions are provided to aid configuring entities:

XFree86 server 4.x Design (DRAFT) 27

ScrnInfoPtr xf86ConfigPciEntity(ScrnInfoPtr pScrn,

int scrnFlag, int entityIndex,

PciChipsets *p_chip,

resList res, EntityProc init,

EntityProc enter, EntityProc leave,

pointer private)

ScrnInfoPtr xf86ConfigIsaEntity(ScrnInfoPtr pScrn,

int scrnFlag, int entityIndex,

IsaChipsets *i_chip,

resList res, EntityProc init,

EntityProc enter, EntityProc leave,

pointer private)

These functions are used to register the non-relocatable resources for an
entity, and the optional entity-specific Init, Enter and Leave functions.
Usually the list of fixed resources is obtained from the Isa/PciChipsets
lists. However an additional list of resources may be passed. Generally
this is not required. For active entities a ScrnInfoRec is allocated if the
pScrn argument is NULL. The return value is TRUE when successful. The
init, enter, leave functions are defined as follows:

typedef void (*EntityProc)(int entityIndex,

pointer private)

They are passed the entity index and a pointer to a private scratch area.
This can be set up during Probe() and its address can be passed to
xf86ConfigIsaEntity() and xf86ConfigPciEntity() as the last
argument.

These two helper functions make use of several core functions that are available at the driver
level:

XFree86 server 4.x Design (DRAFT) 28

void xf86ClaimFixedResources(resList list, int entityIndex)

This function registers the non-relocatable resources which cannot be dis-
abled and which therefore would cause the server to fail immediately if
they were found to conflict. It also records non-relocatable but sharable
resources for processing after the Probe() phase.

Bool xf86SetEntityFuncs(int entityIndex, EntityProc init,

EntityProc enter, EntityProc leave, pointer)

This function registers with an entity the init, enter, leave functions
along with the pointer to their private area.

void xf86AddEntityToScreen(ScrnInfoPtr pScrn, int entityIndex)

This function associates the entity referenced by entityIndex with the
screen.

9.3.2 PreInit Phase

During this phase the remaining resources should be registered. PreInit() should call
xf86GetEntityInfo() to obtain a pointer to an EntityInfoRec for each entity it is able to
drive and check if any resource are listed in its resources field. If resources registered in the
Probe phase have been rejected in the post-Probe phase (resources is non-NULL), then the
driver should decide if it can continue without using these or if it should fail.

EntityInfoPtr xf86GetEntityInfo(int entityIndex)

This function returns a pointer to the EntityInfoRec referenced by
entityIndex. The returned EntityInfoRec should be freed with
xfree() when no longer needed.

Several functions are provided to simplify resource registration:

Bool xf86IsEntityPrimary(int entityIndex)

This function returns TRUE if the entity referenced by entityIndex is the
primary display device (i.e., the one initialised at boot time and used in
text mode).

Bool xf86IsScreenPrimary(int scrnIndex)

This function returns TRUE if the primary entity is registered with the
screen referenced by scrnIndex.

pciVideoPtr xf86GetPciInfoForEntity(int entityIndex)

This function returns a pointer to the pciVideoRec for the specified
entity. If the entity is not a PCI device, NULL is returned.

The primary function for registration of resources is:

XFree86 server 4.x Design (DRAFT) 29

resPtr xf86RegisterResources(int entityIndex, resList list,

int access)

This function tries to register the resources in list. If list is NULL it tries
to determine the resources automatically. This only works for entities that
provide a generic way to read out the resource ranges they decode. So far
this is only the case for PCI devices. By default the PCI resources are regis-
tered as shared (ResShared) if the driver wants to set a different access
type it can do so by specifying the access flags in the third argument. A
value of 0 means to use the default settings. If for any reason the resource
broker is not able to register some of the requested resources the function
will return a pointer to a list of the failed ones. In this case the driver may
be able to move the resource to different locations. In case of PCI bus enti-
ties this is done by passing the list of failed resources to xf86Reallo-

catePciResources(). When the registration succeeds, the return value
is NULL.

resPtr xf86ReallocatePciResources(int entityIndex, resPtr pRes)

This function takes a list of PCI resources that need to be reallocated and
returns NULL when all relocations are successful. xf86RegisterRe-

sources() should be called again to register the relocated resources with
the broker. If the reallocation fails, a list of the resources that could not be
relocated is returned.

Two functions are provided to obtain a resource range of a given type:

resRange xf86GetBlock(long type, memType size,

memType window_start, memType window_end,

memType align_mask, resPtr avoid)

This function tries to find a block range of size size and type type in a
window bound by window_start and window_end with the alignment
specified in align_mask. Optionally a list of resource ranges which
should be avoided within the window can be supplied. On failure a zero-
length range of type ResEnd will be returned.

resRange xf86GetSparse(long type, memType fixed_bits,

memType decode_mask, memType address_mask,

resPtr avoid)

This function is like the previous one, but attempts to find a sparse range
instead of a block range. Here three values have to be specified: the
address_mask which marks all bits of the mask part of the address, the
decode_mask which masks out the bits which are hardcoded and are
therefore not available for relocation and the values of the fixed bits. The
function tries to find a base that satisfies the given condition. If the func-
tion fails it will return a zero range of type ResEnd. Optionally it might be
passed a list of resource ranges to avoid.

XFree86 server 4.x Design (DRAFT) 30

Some PCI devices are broken in the sense that they return invalid size information for a certain
resource. In this case the driver can supply the correct size and make sure that the resource range
allocated for the card is large enough to hold the address range decoded by the card. The func-
tion xf86FixPciResource() can be used to do this:

Bool xf86FixPciResource(int entityIndex, unsigned int prt,

CARD32 alignment, long type)

This function fixes a PCI resource allocation. The prt parameter contains
the number of the PCI base register that needs to be fixed (0-5, and 6 for
the BIOS base register). The size is specified by the alignment. Since PCI
resources need to span an integral range of size 2^n, the alignment also
specifies the number of addresses that will be decoded. If the driver speci-
fies a type mask it can override the default type for PCI resources which is
ResShared. The resource broker needs to know that to find a matching
resource range. This function should be called before calling xf86Regis-

terResources(). The return value is TRUE when the function succeeds.

Bool xf86CheckPciMemBase(pciVideoPtr pPci, memType base)

This function checks that the memory base address specified matches one
of the PCI base address register values for the given PCI device. This is
mostly used to check that an externally provided base address (e.g., from a
config file) matches an actual value allocated to a device.

The driver may replace the generic access control functions for an entity. This is done with the
xf86SetAccessFuncs():

XFree86 server 4.x Design (DRAFT) 31

void xf86SetAccessFuncs(EntityInfoPtr pEnt,

xf86SetAccessFuncPtr funcs,

xf86SetAccessFuncPtr oldFuncs)

with:

typedef struct {

xf86AccessPtr mem;

xf86AccessPtr io;

xf86AccessPtr io_mem;

} xf86SetAccessFuncRec, *xf86SetAccessFuncPtr;

The driver can pass three functions: one for I/O access, one for memory
access and one for combined memory and I/O access. If the memory
access and combined access functions are identical the common level
assumes that the memory access cannot be controlled independently of
I/O access, if the I/O access function and the combined access functions
are the same it is assumed that I/O can not be controlled independently. If
memory and I/O have to be controlled together all three values should be
the same. If a non NULL value is passed as third argument it is interpreted
as an address where to store the old access record. If the third argument is
NULL it will be assumed that the generic access should be enabled before
replacing the access functions. Otherwise it will be disabled. The driver
may enable them itself using the returned values. It should do this from
its replacement access functions as the generic access may be disabled by
the common level on certain occasions. If replacement functions are speci-
fied they must control all resources of the specific type registered for the
entity.

To find out if a specific resource range conflicts with another resource the xf86ChkConflict()
function may be used:

memType xf86ChkConflict(resRange *rgp, int entityIndex)

This function checks if the resource range rgp of for the specified entity
conflicts with with another resource. If a conflict is found, the address of
the start of the conflict is returned. The return value is zero when there is
no conflict.

The OPERATING state properties of previously registered fixed resources can be set with the
xf86SetOperatingState() function:

XFree86 server 4.x Design (DRAFT) 32

resPtr xf86SetOperatingState(resList list, int entityIndex,

int mask)

This function is used to set the status of a resource during OPERATING
state. list holds a list to which mask is to be applied. The parameter
mask may have the value ResUnusedOpr and ResDisableOpr. The first
one should be used if a resource isn’t used by the driver during OPERAT-
ING state although it is decoded by the device, while the latter one indi-
cates that the resource is not decoded during OPERATING state. Note that
the resource ranges have to match those specified during registration. If a
range has been specified starting at A and ending at B and suppose C us a
value satisfying A < C < B one may not specify the resource range
(A,B) by splitting it into two ranges (A,C) and (C,B).

The following two functions are provided for special cases:

void xf86RemoveEntityFromScreen(ScrnInfoPtr pScrn, int enti-

tyIndex)

This function may be used to remove an entity from a screen. This only
makes sense if a screen has more than one entity assigned or the screen is
to be deleted. No test is made if the screen has any entities left.

void xf86DeallocateResourcesForEntity(int entityIndex, long

type)

This function deallocates all resources of a given type registered for a cer-
tain entity from the resource broker list.

9.3.3 ScreenInit Phase

All that is required in this phase is to setup the RAC flags. Note that it is also permissible to set
these flags up in the PreInit phase. The RAC flags are held in the racIoFlags and racMem-

Flags fields of the ScrnInfoRec for each screen. They specify which graphics operations
might require the use of shared resources. This can be specified separately for memory and I/O
resources. The available flags are defined in rac/xf86RAC.h. They are:

RAC_FB

for framebuffer operations (including hw acceleration)

RAC_CURSOR

for Cursor operations (??? I’m not sure if we need this for SW cursor it depends on
which level the sw cursor is drawn)

RAC_COLORMAP

for colormap operations

RAC_VIEWPORT

for the call to ChipAdjustFrame()

The flags are ORed together.

XFree86 server 4.x Design (DRAFT) 33

10. Config file ‘‘Option’’ entries
Option entries are permitted in most sections and subsections of the config file. There are two
forms of option entries:

Option "option-name"
A boolean option.

Option "option-name" "option-value"
An option with an arbitrary value.

The option entries are handled by the parser, and a list of the parsed options is included with
each of the appropriate data structures that the drivers have access to. The data structures used
to hold the option information are opaque to the driver, and a driver must not access the option
data directly. Instead, the common layer provides a set of functions that may be used to access,
check and manipulate the option data.

First, the low level option handling functions. In most cases drivers would not need to use these
directly.

pointer xf86FindOption(pointer options, const char *name)

Takes a list of options and an option name, and returns a handle for the
first option entry in the list matching the name. Returns NULL if no match
is found.

char *xf86FindOptionValue(pointer options, const char *name)

Takes a list of options and an option name, and returns the value associ-
ated with the first option entry in the list matching the name. If the match-
ing option has no value, an empty string ("") is returned. Returns NULL if
no match is found.

void xf86MarkOptionUsed(pointer option)

Takes a handle for an option, and marks that option as used.

void xf86MarkOptionUsedByName(pointer options, const char

*name)

Takes a list of options and an option name and marks the first option entry
in the list matching the name as used.

Next, the higher level functions that most drivers would use.

XFree86 server 4.x Design (DRAFT) 34

void xf86CollectOptions(ScrnInfoPtr pScrn, pointer extraOpts)

Collect the options from each of the config file sections used by the screen
(pScrn) and return the merged list as pScrn->options. This function
requires that pScrn->confScreen, pScrn->display, pScrn->moni-
tor, pScrn->numEntities, and pScrn->entityList are initialised.
extraOpts may optionally be set to an additional list of options to be
combined with the others. The order of precedence for options is
extraOpts, display, confScreen, monitor, device.

void xf86ProcessOptions(int scrnIndex, pointer options,

OptionInfoPtr optinfo)

Processes a list of options according to the information in the array of
OptionInfoRecs (optinfo). The resulting information is stored in the
value fields of the appropriate optinfo entries. The found fields are set
to TRUE when an option with a value of the correct type if found, and
FALSE otherwise. The type field is used to determine the expected value
type for each option. Each option in the list of options for which there is a
name match (but not necessarily a value type match) is marked as used.
Warning messages are printed when option values don’t match the types
specified in the optinfo data.

NOTE: If this function is called before a driver’s screen number is known
(e.g., from the ChipProbe() function) a scrnIndex value of -1 should
be used.

NOTE 2: Given that this function stores into the OptionInfoRecs

pointed to by optinfo, the caller should ensure the OptionInfoRecs

are (re-)initialised before the call, especially if the caller expects to use the
predefined option values as defaults.

The OptionInfoRec is defined as follows:

typedef struct {

double freq;

int units;

} OptFrequency;

typedef union {

unsigned long num;

char * str;

double realnum;

Bool bool;

OptFrequency freq;

} ValueUnion;

typedef enum {

OPTV_NONE = 0,

OPTV_INTEGER,

OPTV_STRING, /* a non-empty string */

OPTV_ANYSTR, /* Any string, including an empty one */

OPTV_REAL,

OPTV_BOOLEAN,

OPTV_FREQ

} OptionValueType;

typedef enum {

OPTUNITS_HZ = 1,

OPTUNITS_KHZ,

XFree86 server 4.x Design (DRAFT) 35

OPTUNITS_MHZ

} OptFreqUnits;

typedef struct {

int token;

const char* name;

OptionValueType type;

ValueUnion value;

Bool found;

} OptionInfoRec, *OptionInfoPtr;

OPTV_FREQ can be used for options values that are frequencies. These val-
ues are a floating point number with an optional unit name appended.
The unit name can be one of "Hz", "kHz", "k", "MHz", "M". The multiplier
associated with the unit is stored in freq.units, and the scaled fre-
quency is stored in freq.freq. When no unit is specified, freq.units
is set to 0, and freq.freq is unscaled.

Typical usage is to setup an array of OptionInfoRecs with all fields ini-
tialised. The value and found fields get set by xf86ProcessOp-

tions(). For cases where the value parsing is more complex, the driver
should specify OPTV_STRING, and parse the string itself. An example of
using this option handling is included in the Sample Driver (section 20.,
page 87) section.

void xf86ShowUnusedOptions(int scrnIndex, pointer options)

Prints out warning messages for each option in the list of options that isn’t
marked as used. This is intended to show options that the driver hasn’t
recognised. It would normally be called near the end of the Chip-

ScreenInit() function, but only when serverGeneration == 1.

OptionInfoPtr xf86TokenToOptinfo(const OptionInfoRec *table,

int token)

Returns a pointer to the OptionInfoRec in table with a token field
matching token. Returns NULL if no match is found.

Bool xf86IsOptionSet(const OptionInfoRec *table, int token)

Returns the found field of the OptionInfoRec in table with a token

field matching token. This can be used for options of all types. Note that
for options of type OPTV_BOOLEAN, it isn’t sufficient to check this to deter-
mine the value of the option. Returns FALSE if no match is found.

char *xf86GetOptValString(const OptionInfoRec *table, int

token)

Returns the value.str field of the OptionInfoRec in table with a
token field matching token. Returns NULL if no match is found.

Bool xf86GetOptValInteger(const OptionInfoRec *table, int

token,

int *value)

Returns via *value the value.num field of the OptionInfoRec in ta-

ble with a token field matching token. *value is only changed when a

XFree86 server 4.x Design (DRAFT) 36

match is found so it can be safely initialised with a default prior to calling
this function. The function return value is as for xf86IsOptionSet().

Bool xf86GetOptValULong(const OptionInfoRec *table, int token,

unsigned long *value)

Like xf86GetOptValInteger(), except the value is treated as an
unsigned long.

Bool xf86GetOptValReal(const OptionInfoRec *table, int token,

double *value)

Like xf86GetOptValInteger(), except that value.realnum is used.

Bool xf86GetOptValFreq(const OptionInfoRec *table, int token,

OptFreqUnits expectedUnits, double *value)

Like xf86GetOptValInteger(), except that the value.freq data is
returned. The frequency value is scaled to the units indicated by expect-

edUnits. The scaling is exact when the units were specified explicitly in
the option’s value. Otherwise, the expectedUnits field is used as a hint
when doing the scaling. In this case, values larger than 1000 are assumed
to have be specified in the next smallest units. For example, if the Option
value is "10000" and expectedUnits is OPTUNITS_MHZ, the value returned
is 10.

Bool xf86GetOptValBool(const OptionInfoRec *table, int token,

Bool *value)

This function is used to check boolean options (OPTV_BOOLEAN). If the
function return value is FALSE, it means the option wasn’t set. Otherwise
*value is set to the boolean value indicated by the option’s value. No
option value is interpreted as TRUE. Option values meaning TRUE are
"1", "yes", "on", "true", and option values meaning FALSE are "0", "no",
"off", "false". Option names both with the "no" prefix in their names, and
with that prefix removed are also checked and handled in the obvious
way. *value is not changed when the option isn’t present. It should nor-
mally be set to a default value before calling this function.

Bool xf86ReturnOptValBool(const OptionInfoRec *table, int

token, Bool def)

This function is used to check boolean options (OPTV_BOOLEAN). If the
option is set, its value is returned. If the options is not set, the default
value specified by def is returned. The option interpretation is the same
as for xf86GetOptValBool().

int xf86NameCmp(const char *s1, const char *s2)

This function should be used when comparing strings from the config file
with expected values. It works like strcmp(), but is not case sensitive
and space, tab, and ‘_’ characters are ignored in the comparison. The use
of this function isn’t restricted to parsing option values. It may be used
anywhere where this functionality required.

XFree86 server 4.x Design (DRAFT) 37

11. Modules, Drivers, Include Files and Interface Issues
NOTE: this section is incomplete.

11.1 Include files

The following include files are typically required by video drivers:

All drivers should include these:

"xf86.h"

"xf86_OSproc.h"

"xf86_ansic.h"

"xf86Resources.h"

Wherever inb/outb (and related things) are used the following should be included:

"compiler.h"

Note: in drivers, this must be included after "xf86_ansic.h".

Drivers that need to access PCI vendor/device definitions need this:

"xf86PciInfo.h"

Drivers that need to access the PCI config space need this:

"xf86Pci.h"

Drivers that initialise a SW cursor need this:

"mipointer.h"

All drivers implementing backing store need this:

"mibstore.h"

All drivers using the mi colourmap code need this:

"micmap.h"

If a driver uses the vgahw module, it needs this:

"vgaHW.h"

Drivers supporting VGA or Hercules monochrome screens need:

"xf1bpp.h"

Drivers supporting VGA or EGC 16-colour screens need:

"xf4bpp.h"

Drivers using cfb need:

#define PSZ 8

#include "cfb.h"

#undef PSZ

Drivers supporting bpp 16, 24 or 32 with cfb need one or more of:

XFree86 server 4.x Design (DRAFT) 38

"cfb16.h"

"cfb24.h"

"cfb32.h"

If a driver uses XAA, it needs these:

"xaa.h"

"xaalocal.h"

If a driver uses the fb manager, it needs this:

"xf86fbman.h"

Non-driver modules should include "xf86_ansic.h" to get the correct wrapping of ANSI
C/libc functions.

All modules must NOT include any system include files, or the following:

"xf86Priv.h"

"xf86Privstr.h"

"xf86_OSlib.h"

"Xos.h"

In addition, "xf86_libc.h" must not be included explicitly. It is included implicitly by
"xf86_ansic.h".

12. Offscreen Memor y Manager
Management of offscreen video memory may be handled by the XFree86 framebuffer manager.
Once the offscreen memory manager is running, drivers or extensions may allocate, free or resize
areas of offscreen video memory using the following functions (definitions taken from
xf86fbman.h):

XFree86 server 4.x Design (DRAFT) 39

typedef struct _FBArea {

ScreenPtr pScreen;

BoxRec box;

int granularity;

void (*MoveAreaCallback)(struct _FBArea*, struct _FBArea*)

void (*RemoveAreaCallback)(struct _FBArea*)

DevUnion devPrivate;

} FBArea, *FBAreaPtr;

typedef void (*MoveAreaCallbackProcPtr)(FBAreaPtr from, FBAreaPtr to)

typedef void (*RemoveAreaCallbackProcPtr)(FBAreaPtr)

FBAreaPtr xf86AllocateOffscreenArea (

ScreenPtr pScreen,

int width, int height,

int granularity,

MoveAreaCallbackProcPtr MoveAreaCallback,

RemoveAreaCallbackProcPtr RemoveAreaCallback,

pointer privData

)

void xf86FreeOffscreenArea (FBAreaPtr area)

Bool xf86ResizeOffscreenArea (

FBAreaPtr area

int w, int h

)

The function:

Bool xf86FBManagerRunning(ScreenPtr pScreen)

can be used by an extension to check if the driver has initialized the memory manager. The man-
ager is not available if this returns FALSE and the functions above will all fail.

xf86AllocateOffscreenArea() can be used to request a rectangle of dimensions width x
height (in pixels) from unused offscreen memory. granularity specifies that the leftmost
edge of the rectangle must lie on some multiple of granularity pixels. A granularity of zero
means the same thing as a granularity of one - no alignment preference. A MoveAreaCallback

can be provided to notify the requester when the offscreen area is moved. If no MoveAreaCall-
back is supplied then the area is considered to be immovable. The privData field will be stored
in the manager’s internal structure for that allocated area and will be returned to the requester in
the FBArea passed via the MoveAreaCallback. An optional RemoveAreaCallback is pro-
vided. If the driver provides this it indicates that the area should be allocated with a lower prior-
ity. Such an area may be removed when a higher priority request (one that doesn’t have a
RemoveAreaCallback) is made. When this function is called, the driver will have an opportu-
nity to do whatever cleanup it needs to do to deal with the loss of the area, but it must finish its
cleanup before the function exits since the offscreen memory manager will free the area immedi-
ately after.

xf86AllocateOffscreenArea() returns NULL if it was unable to allocate the requested area.
When no longer needed, areas should be freed with xf86FreeOffscreenArea().

xf86ResizeOffscreenArea() resizes an existing FBArea. xf86ResizeOffscreenArea()

returns TRUE if the resize was successful. If xf86ResizeOffscreenArea() returns FALSE, the
original FBArea is left unmodified. Resizing an area maintains the area’s original granular-
ity, devPrivate, and MoveAreaCallback. xf86ResizeOffscreenArea() has consider-
ably less overhead than freeing the old area then reallocating the new size, so it should be used
whenever possible.

The function:

XFree86 server 4.x Design (DRAFT) 40

Bool xf86QueryLargestOffscreenArea(

ScreenPtr pScreen,

int *width, int *height,

int granularity,

int preferences,

int priority

)

is provided to query the width and height of the largest single FBArea allocatable given a partic-
ular priority. preferences can be one of the following to indicate whether width, height or
area should be considered when determining which is the largest single FBArea available.

FAVOR_AREA_THEN_WIDTH

FAVOR_AREA_THEN_HEIGHT

FAVOR_WIDTH_THEN_AREA

FAVOR_HEIGHT_THEN_AREA

priority is one of the following:

PRIORITY_LOW

Return the largest block available without stealing anyone else’s space.
This corresponds to the priority of allocating a FBArea when a
RemoveAreaCallback is provided.

PRIORITY_NORMAL

Return the largest block available if it is acceptable to steal a lower priority
area from someone. This corresponds to the priority of allocating a
FBArea without providing a RemoveAreaCallback.

PRIORITY_EXTREME

Return the largest block available if all FBAreas that aren’t locked down
were expunged from memory first. This corresponds to any allocation
made directly after a call to xf86PurgeUnlockedOffscreenAreas().

The function:

Bool xf86PurgeUnlockedOffscreenAreas(ScreenPtr pScreen)

is provided as an extreme method to free up offscreen memory. This will remove all removable
FBArea allocations.

Initialization of the XFree86 framebuffer manager is done via

Bool xf86InitFBManager(ScreenPtr pScreen, BoxPtr FullBox)

XFree86 server 4.x Design (DRAFT) 41

FullBox represents the area of the framebuffer that the manager is allowed to manage. This is
typically a box with a width of pScrn->displayWidth and a height of as many lines as can be
fit within the total video memory, however, the driver can reserve areas at the extremities by
passing a smaller area to the manager.

xf86InitFBManager() must be called before XAA is initialized since XAA uses the manager
for it’s pixmap cache.

An alternative function is provided to allow the driver to initialize the framebuffer manager with
a Region rather than a box.

Bool xf86InitFBManagerRegion(ScreenPtr pScreen,

RegionPtr FullRegion)

xf86InitFBManagerRegion(), unlike xf86InitFBManager(), does not remove the area
used for the visible screen so that area should not be included in the region passed to the func-
tion. xf86InitFBManagerRegion() is useful when non-contiguous areas are available to be
managed, and is required when multiple framebuffers are stored in video memory (as in the case
where an overlay of a different depth is stored as a second framebuffer in offscreen memory).

13. Colormap Handling
A generic colormap handling layer is provided within the XFree86 common layer. This layer
takes care of most of the details, and only requires a function from the driver that loads the hard-
ware palette when required. To use the colormap layer, a driver calls the xf86HandleCol-

ormaps() function.

Bool xf86HandleColormaps(ScreenPtr pScreen, int maxColors,

int sigRGBbits, LoadPaletteFuncPtr loadPalette,

SetOverscanFuncPtr setOverscan, unsigned int flags)

This function must be called after the default colormap has been ini-
tialised. The pScrn->gamma field must also be initialised, preferably by
calling xf86SetGamma(). maxColors is the number of entries in the
palette. sigRGBbits is the size in bits of each color component in the
DAC’s palette. loadPalette is a driver-provided function for loading a
colormap into the hardware, and is described below. setOverscan is an
optional function that may be provided when the overscan color is an
index from the standard LUT and when it needs to be adjusted to keep it
as close to black as possible. The setOverscan function programs the
overscan index. It shouldn’t normally be used for depths other than 8.
setOverscan should be set to NULL when it isn’t needed. flags may be
set to the following (which may be ORed together):

CMAP_PALETTED_TRUECOLOR

the TrueColor visual is paletted and is just a special case of
DirectColor. This flag is only valid for bpp > 8.

CMAP_RELOAD_ON_MODE_SWITCH

reload the colormap automatically after mode switches. This is
useful for when the driver is resetting the hardware during
mode switches and corrupting or erasing the hardware palette.

XFree86 server 4.x Design (DRAFT) 42

CMAP_LOAD_EVEN_IF_OFFSCREEN

reload the colormap even if the screen is switched out of the
server’s VC. The palette is not reloaded when the screen is
switched back in, nor after mode switches. This is useful when
the driver needs to keep track of palette changes.

The colormap layer normally reloads the palette after VT enters so it is not
necessary for the driver to save and restore the palette when switching
VTs. The driver must, however, still save the initial palette during server
start up and restore it during server exit.

void LoadPalette(ScrnInfoPtr pScrn, int numColors, int

*indices,

LOCO *colors, VisualPtr pVisual)

LoadPalette() is a driver-provided function for loading a colormap
into hardware. colors is the array of RGB values that represent the full
colormap. indices is a list of index values into the colors array. These
indices indicate the entries that need to be updated. numColors is the
number of the indices to be updated.

void SetOverscan(ScrnInfoPtr pScrn, int overscan)

SetOverscan() is a driver-provided function for programming the
overscan index. As described above, it is normally only appropriate for
LUT modes where all colormap entries are available for the display, but
where one of them is also used for the overscan (typically 8bpp for VGA
compatible LUTs). It isn’t required in cases where the overscan area is
never visible.

14. DPMS Extension
Support code for the DPMS extension is included in the XFree86 common layer. This code pro-
vides an interface between the main extension code, and a means for drivers to initialise DPMS
when they support it. One function is available to drivers to do this initialisation, and it is always
available, even when the DPMS extension is not supported by the core server (in which case it
returns a failure result).

Bool xf86DPMSInit(ScreenPtr pScreen, DPMSSetProcPtr set, int

flags)

This function registers a driver’s DPMS level programming function set.
It also checks pScrn->options for the "dpms" option, and when present
marks DPMS as being enabled for that screen. The set function is called
whenever the DPMS level changes, and is used to program the requested
level. flags is currently not used, and should be 0. If the initialisation
fails for any reason, including when there is no DPMS support in the core
server, the function returns FALSE.

Drivers that implement DPMS support must provide the following function, that gets called
when the DPMS level is changed:

XFree86 server 4.x Design (DRAFT) 43

void ChipDPMSSet(ScrnInfoPtr pScrn, int level, int flags)

Program the DPMS level specified by level. Valid values of level are
DPMSModeOn, DPMSModeStandby, DPMSModeSuspend, DPMSModeOff.
These values are defined in "extensions/dpms.h".

15. DGA Extension
Drivers can support the XFree86 Direct Graphics Architecture (DGA) by filling out a structure of
function pointers and a list of modes and passing them to DGAInit.

Bool DGAInit(ScreenPtr pScreen, DGAFunctionPtr funcs,

DGAModePtr modes, int num)

/** The DGAModeRec **/

typedef struct {

int num;

DisplayModePtr mode;

int flags;

int imageWidth;

int imageHeight;

int pixmapWidth;

int pixmapHeight;

int bytesPerScanline;

int byteOrder;

int depth;

int bitsPerPixel;

unsigned long red_mask;

unsigned long green_mask;

unsigned long blue_mask;

int viewportWidth;

int viewportHeight;

int xViewportStep;

int yViewportStep;

int maxViewportX;

int maxViewportY;

int viewportFlags;

int offset;

unsigned char *address;

int reserved1;

int reserved2;

} DGAModeRec, *DGAModePtr;

num

Can be ignored. The DGA DDX will assign these numbers.

mode

A pointer to the DisplayModeRec for this mode.

flags

The following flags are defined and may be OR’d together:

DGA_CONCURRENT_ACCESS

Indicates that the driver supports concurrent graph-
ics accelerator and linear framebuffer access.

XFree86 server 4.x Design (DRAFT) 44

DGA_FILL_RECT

DGA_BLIT_RECT

DGA_BLIT_RECT_TRANS

Indicates that the driver supports the FillRect,
BlitRect or BlitTransRect functions in this mode.

DGA_PIXMAP_AVAILABLE

Indicates that Xlib may be used on the framebuffer.
This flag will usually be set unless the driver wishes
to prohibit this for some reason.

DGA_INTERLACED

DGA_DOUBLESCAN

Indicates that these are interlaced or double scan
modes.

imageWidth

imageHeight

These are the dimensions of the linear framebuffer accessible by
the client.

pixmapWidth

pixmapHeight

These are the dimensions of the area of the framebuffer accessi-
ble by the graphics accelerator.

bytesPerScanline

Pitch of the framebuffer in bytes.

byteOrder

Usually the same as pScrn->imageByteOrder.

depth

The depth of the framebuffer in this mode.

bitsPerPixel

The number of bits per pixel in this mode.

red_mask

green_mask

blue_mask

XFree86 server 4.x Design (DRAFT) 45

The RGB masks for this mode, if applicable.

viewportWidth

viewportHeight

Dimensions of the visible part of the framebuffer. Usually
mode->HDisplay and mode->VDisplay.

xViewportStep

yViewportStep

The granularity of x and y viewport positions that the driver
supports in this mode.

maxViewportX

maxViewportY

The maximum viewport position supported by the driver in
this mode.

viewportFlags

The following may be OR’d together:

DGA_FLIP_IMMEDIATE

The driver supports immediate viewport changes.

DGA_FLIP_RETRACE

The driver supports viewport changes at retrace.

offset

The offset into the linear framebuffer that corresponds to pixel
(0,0) for this mode.

address

The virtual address of the framebuffer as mapped by the driver.
This is needed when DGA_PIXMAP_AVAILABLE is set.

/** The DGAFunctionRec **/

typedef struct {

Bool (*OpenFramebuffer)(

ScrnInfoPtr pScrn,

char **name,

unsigned char **mem,

int *size,

int *offset,

int *extra

);

void (*CloseFramebuffer)(ScrnInfoPtr pScrn);

Bool (*SetMode)(ScrnInfoPtr pScrn, DGAModePtr pMode);

void (*SetViewport)(ScrnInfoPtr pScrn, int x, int y, int flags);

int (*GetViewport)(ScrnInfoPtr pScrn);

XFree86 server 4.x Design (DRAFT) 46

void (*Sync)(ScrnInfoPtr);

void (*FillRect)(

ScrnInfoPtr pScrn,

int x, int y, int w, int h,

unsigned long color

);

void (*BlitRect)(

ScrnInfoPtr pScrn,

int srcx, int srcy,

int w, int h,

int dstx, int dsty

);

void (*BlitTransRect)(

ScrnInfoPtr pScrn,

int srcx, int srcy,

int w, int h,

int dstx, int dsty,

unsigned long color

);

} DGAFunctionRec, *DGAFunctionPtr;

Bool OpenFramebuffer (pScrn, name, mem, size, offset, extra)

OpenFramebuffer() should pass the client everything it needs to know
to be able to open the framebuffer. These parameters are OS specific and
their meanings are to be interpreted by an OS specific client library.

name

The name of the device to open or NULL if there is no special
device to open. A NULL name tells the client that it should
open whatever device one would usually open to access physi-
cal memory.

mem

The physical address of the start of the framebuffer.

size

The size of the framebuffer in bytes.

offset

Any offset into the device, if applicable.

flags

Any additional information that the client may need. Cur-
rently, only the DGA_NEED_ROOT flag is defined.

void CloseFramebuffer (pScrn)

CloseFramebuffer() merely informs the driver (if it even cares) that
client no longer needs to access the framebuffer directly. This function is
optional.

XFree86 server 4.x Design (DRAFT) 47

Bool SetMode (pScrn, pMode)

SetMode() tells the driver to initialize the mode passed to it. If pMode is
NULL, then the driver should restore the original pre-DGA mode.

void SetViewport (pScrn, x, y, flags)

SetViewport() tells the driver to make the upper left-hand corner of the
visible screen correspond to coordinate (x,y) on the framebuffer. Flags
currently defined are:

DGA_FLIP_IMMEDIATE

The viewport change should occur immediately.

DGA_FLIP_RETRACE

The viewport change should occur at the vertical retrace, but
this function should return sooner if possible.

The (x,y) locations will be passed as the client specified them, however,
the driver is expected to round these locations down to the next supported
location as specified by the xViewportStep and yViewportStep for the
current mode.

int GetViewport (pScrn)

GetViewport() gets the current page flip status. Set bits in the returned
int correspond to viewport change requests still pending. For instance, set
bit zero if the last SetViewport request is still pending, bit one if the one
before that is still pending, etc.

void Sync (pScrn)

This function should ensure that any graphics accelerator operations have
finished. This function should not return until the graphics accelerator is
idle.

void FillRect (pScrn, x, y, w, h, color)

This optional function should fill a rectangle w × h located at (x,y) in
the given color.

void BlitRect (pScrn, srcx, srcy, w, h, dstx, dsty)

This optional function should copy an area w × h located at
(srcx,srcy) to location (dstx,dsty). This function will need to han-
dle copy directions as appropriate.

void BlitTransRect (pScrn, srcx, srcy, w, h, dstx, dsty, color)

This optional function is the same as BlitRect except that pixels in the
source corresponding to the color key color should be skipped.

XFree86 server 4.x Design (DRAFT) 48

16. The XFree86 X Video Extension (Xv) Device Depen-
dent Layer
XFree86 offers the X Video Extension which allows clients to treat video as any another primitive
and ‘‘Put’’ video into drawables. By default, the extension reports no video adaptors as being
available since the DDX layer has not been initialized. The driver can initialize the DDX layer by
filling out one or more XF86VideoAdaptorRecs as described later in this document and pass-
ing a list of XF86VideoAdaptorPtr pointers to the following function:

Bool xf86XVScreenInit(

ScreenPtr pScreen,

XF86VideoAdaptorPtr *adaptPtrs,

int num)

After doing this, the extension will report video adaptors as being available, providing the data in
their respective XF86VideoAdaptorRecs was valid. xf86XVScreenInit() copies data from
the structure passed to it so the driver may free it after the initialization. At the moment, the
DDX only supports rendering into Window drawables. Pixmap rendering will be supported
after a sufficient survey of suitable hardware is completed.

The XF86VideoAdaptorRec:

typedef struct {

unsigned int type;

int flags;

char *name;

int nEncodings;

XF86VideoEncodingPtr pEncodings;

int nFormats;

XF86VideoFormatPtr pFormats;

int nPorts;

DevUnion *pPortPrivates;

int nAttributes;

XF86AttributePtr pAttributes;

int nImages;

XF86ImagePtr pImages;

PutVideoFuncPtr PutVideo;

PutStillFuncPtr PutStill;

GetVideoFuncPtr GetVideo;

GetStillFuncPtr GetStill;

StopVideoFuncPtr StopVideo;

SetPortAttributeFuncPtr SetPortAttribute;

GetPortAttributeFuncPtr GetPortAttribute;

QueryBestSizeFuncPtr QueryBestSize;

PutImageFuncPtr PutImage;

QueryImageAttributesFuncPtr QueryImageAttributes;

} XF86VideoAdaptorRec, *XF86VideoAdaptorPtr;

Each adaptor will have its own XF86VideoAdaptorRec. The fields are as follows:

type

This can be any of the following flags OR’d together.

XvInputMask XvOutputMask

These refer to the target drawable and are similar to a Win-
dow’s class. XvInputMask indicates that the adaptor can put

XFree86 server 4.x Design (DRAFT) 49

video into a drawable. XvOutputMask indicates that the
adaptor can get video from a drawable.

XvVideoMask XvStillMask XvImageMask

These indicate that the adaptor supports video, still or image
primitives respectively.

XvWindowMask XvPixmapMask

These indicate the types of drawables the adaptor is capable of
rendering into. At the moment, Pixmap rendering is not sup-
ported and the XvPixmapMask flag is ignored.

flags

Currently, the following flags are defined:

VIDEO_NO_CLIPPING

This indicates that the video adaptor does not support clipping.
The driver will never receive ‘‘Put’’ requests where less than
the entire area determined by drw_x, drw_y, drw_w and
drw_h is visible. This flag does not apply to ‘‘Get’’ requests.
Hardware that is incapable of clipping ‘‘Gets’’ may punt or get
the extents of the clipping region passed to it.

VIDEO_INVERT_CLIPLIST

This indicates that the video driver requires the clip list to con-
tain the regions which are obscured rather than the regions
which are are visible.

VIDEO_OVERLAID_STILLS

Implementing PutStill for hardware that does video as an over-
lay can be awkward since it’s unclear how long to leave the
video up for. When this flag is set, StopVideo will be called
whenever the destination gets clipped or moved so that the still
can be left up until then.

VIDEO_OVERLAID_IMAGES

Same as VIDEO_OVERLAID_STILLS but for images.

VIDEO_CLIP_TO_VIEWPORT

Indicates that the clip region passed to the driver functions
should be clipped to the visible portion of the screen in the case
where the viewport is smaller than the virtual desktop.

name

The name of the adaptor.

nEncodings

pEncodings

XFree86 server 4.x Design (DRAFT) 50

The number of encodings the adaptor is capable of and pointer to the
XF86VideoEncodingRec array. The XF86VideoEncodingRec is
described later on. For drivers that only support XvImages there should
be an encoding named "XV_IMAGE" and the width and height should
specify the maximum size source image supported.

nFormats

pFormats

The number of formats the adaptor is capable of and pointer to the
XF86VideoFormatRec array. The XF86VideoFormatRec is described
later on.

nPorts

pPortPrivates

The number of ports is the number of separate data streams which the
adaptor can handle simultaneously. If you have more than one port, the
adaptor is expected to be able to render into more than one window at a
time. pPortPrivates is an array of pointers or ints - one for each port.
A port’s private data will be passed to the driver any time the port is
requested to do something like put the video or stop the video. In the case
where there may be many ports, this enables the driver to know which
port the request is intended for. Most commonly, this will contain a
pointer to the data structure containing information about the port. In Xv,
all ports on a particular adaptor are expected to be identical in their func-
tionality.

nAttributes

pAttributes

The number of attributes recognized by the adaptor and a pointer to the
array of XF86AttributeRecs. The XF86AttributeRec is described
later on.

nImages

pImages

The number of XF86ImageRecs supported by the adaptor and a pointer
to the array of XF86ImageRecs. The XF86ImageRec is described later
on.

PutVideo PutStill GetVideo GetStill StopVideo SetPortAttribute

GetPortAttribute QueryBestSize PutImage QueryImageAttributes

These functions define the DDX->driver interface. In each case, the pointer
data is passed to the driver. This is the port private for that port as
described above. All fields are required except under the following condi-
tions:

1. PutVideo, PutStill and the image routines PutImage and
QueryImageAttributes are not required when the adaptor type
does not contain XvInputMask.

XFree86 server 4.x Design (DRAFT) 51

2. GetVideo and GetStill are not required when the adaptor type
does not contain XvOutputMask.

3. GetVideo and PutVideo are not required when the adaptor type
does not contain XvVideoMask.

4. GetStill and PutStill are not required when the adaptor type
does not contain XvStillMask.

5. PutImage and QueryImageAttributes are not required when
the adaptor type does not contain XvImageMask.

With the exception of QueryImageAttributes, these functions should
return Success if the operation was completed successfully. They can
return XvBadAlloc otherwise. QueryImageAttributes returns the size
of the XvImage queried.

If the VIDEO_NO_CLIPPING flag is set, the clipBoxes may be ignored by
the driver. ClipBoxes is an X-Y banded region identical to those used
throughout the server. The clipBoxes represent the visible portions of the
area determined by drw_x, drw_y, drw_w and drw_h in the Get/Put
function. The boxes are in screen coordinates, are guaranteed not to over-
lap and an empty region will never be passed. If the driver has specified
VIDEO_INVERT_CLIPLIST, clipBoxes will indicate the areas of the
primitive which are obscured rather than the areas visible.

typedef int (* PutVideoFuncPtr)(ScrnInfoPtr pScrn,

short vid_x, short vid_y, short drw_x, short drw_y,

short vid_w, short vid_h, short drw_w, short drw_h,

RegionPtr clipBoxes, pointer data)

This indicates that the driver should take a subsection vid_w by vid_h at
location (vid_x,vid_y) from the video stream and direct it into the rect-
angle drw_w by drw_h at location (drw_x,drw_y) on the screen, scaling
as necessary. Due to the large variations in capabilities of the various
hardware expected to be used with this extension, it is not expected that all
hardware will be able to do this exactly as described. In that case the
driver should just do ‘‘the best it can,’’ scaling as closely to the target rect-
angle as it can without rendering outside of it. In the worst case, the driver
can opt to just not turn on the video.

typedef int (* PutStillFuncPtr)(ScrnInfoPtr pScrn,

short vid_x, short vid_y, short drw_x, short drw_y,

short vid_w, short vid_h, short drw_w, short drw_h,

RegionPtr clipBoxes, pointer data)

This is same as PutVideo except that the driver should place only one
frame from the stream on the screen.

typedef int (* GetVideoFuncPtr)(ScrnInfoPtr pScrn,

short vid_x, short vid_y, short drw_x, short drw_y,

XFree86 server 4.x Design (DRAFT) 52

short vid_w, short vid_h, short drw_w, short drw_h,

RegionPtr clipBoxes, pointer data)

This is same as PutVideo except that the driver gets video from the screen
and outputs it. The driver should do the best it can to get the requested
dimensions correct without reading from an area larger than requested.

typedef int (* GetStillFuncPtr)(ScrnInfoPtr pScrn,

short vid_x, short vid_y, short drw_x, short drw_y,

short vid_w, short vid_h, short drw_w, short drw_h,

RegionPtr clipBoxes, pointer data)

This is the same as GetVideo except that the driver should place only one
frame from the screen into the output stream.

typedef void (* StopVideoFuncPtr)(ScrnInfoPtr pScrn,

pointer data, Bool cleanup)

This indicates the driver should stop displaying the video. This is used to
stop both input and output video. The cleanup field indicates that the
video is being stopped because the client requested it to stop or because
the server is exiting the current VT. In that case the driver should deallo-
cate any offscreen memory areas (if there are any) being used to put the
video to the screen. If cleanup is not set, the video is being stopped tem-
porarily due to clipping or moving of the window, etc... and video will
likely be restarted soon so the driver should not deallocate any offscreen
areas associated with that port.

typedef int (* SetPortAttributeFuncPtr)(ScrnInfoPtr pScrn,

Atom attribute,INT32 value, pointer data)

typedef int (* GetPortAttributeFuncPtr)(ScrnInfoPtr pScrn,

Atom attribute,INT32 *value, pointer data)

A port may have particular attributes such as hue, saturation, brightness
or contrast. Xv clients set and get these attribute values by sending
attribute strings (Atoms) to the server. Such requests end up at these
driver functions. It is recommended that the driver provide at least the fol-
lowing attributes mentioned in the Xv client library docs:

XV_ENCODING

XV_HUE

XV_SATURATION

XV_BRIGHTNESS

XV_CONTRAST

XFree86 server 4.x Design (DRAFT) 53

but the driver may recognize as many atoms as it wishes. If a requested
attribute is unknown by the driver it should return BadMatch.
XV_ENCODING is the attribute intended to let the client specify which
video encoding the particular port should be using (see the description of
XF86VideoEncodingRec below). If the requested encoding is unsup-
ported, the driver should return XvBadEncoding. If the value lies out-
side the advertised range BadValue may be returned. Success should
be returned otherwise.

typedef void (* QueryBestSizeFuncPtr)(ScrnInfoPtr pScrn,

Bool motion, short vid_w, short vid_h,

short drw_w, short drw_h,

unsigned int *p_w, unsigned int *p_h, pointer data)

QueryBestSize provides the client with a way to query what the desti-
nation dimensions would end up being if they were to request that an area
vid_w by vid_h from the video stream be scaled to rectangle of drw_w by
drw_h on the screen. Since it is not expected that all hardware will be able
to get the target dimensions exactly, it is important that the driver provide
this function.

typedef int (* PutImageFuncPtr)(ScrnInfoPtr pScrn,

short src_x, short src_y, short drw_x, short drw_y,

short src_w, short src_h, short drw_w, short drw_h,

int image, char *buf, short width, short height,

Bool sync, RegionPtr clipBoxes, pointer data)

This is similar to PutStill except that the source of the video is not a
port but the data stored in a system memory buffer at buf. The data is in
the format indicated by the image descriptor and represents a source of
size width by height. If sync is TRUE the driver should not return from
this function until it is through reading the data from buf. Returning
when sync is TRUE indicates that it is safe for the data at buf to be
replaced, freed, or modified.

typedef int (* QueryImageAttributesFuncPtr)(ScrnInfoPtr

pScrn,

int image, short *width, short *height,

int *pitches, int *offsets)

This function is called to let the driver specify how data for a particular
image of size width by height should be stored. Sometimes only the
size and corrected width and height are needed. In that case pitches and
offsets are NULL. The size of the memory required for the image is
returned by this function. The width and height of the requested image
can be altered by the driver to reflect format limitations (such as compo-
nent sampling periods that are larger than one). If pitches and offsets

XFree86 server 4.x Design (DRAFT) 54

are not NULL, these will be arrays with as many elements in them as there
are planes in the image format. The driver should specify the pitch (in
bytes) of each scanline in the particular plane as well as the offset to that
plane (in bytes) from the beginning of the image.

The XF86VideoEncodingRec:

typedef struct {

int id;

char *name;

unsigned short width, height;

XvRationalRec rate;

} XF86VideoEncodingRec, *XF86VideoEncodingPtr;

The XF86VideoEncodingRec specifies what encodings the adaptor can support.
Most of this data is just informational and for the client’s benefit, and is what will be
reported by XvQueryEncodings. The id field is expected to be a unique identifier
to allow the client to request a certain encoding via the XV_ENCODING attribute string.

The XF86VideoFormatRec:

typedef struct {

char depth;

short class;

} XF86VideoFormatRec, *XF86VideoFormatPtr;

This specifies what visuals the video is viewable in. depth is the depth of the visual
(not bpp). class is the visual class such as TrueColor, DirectColor or Pseudo-
Color. Initialization of an adaptor will fail if none of the visuals on that screen are
supported.

The XF86AttributeRec:

typedef struct {

int flags;

int min_value;

int max_value;

char *name;

} XF86AttributeListRec, *XF86AttributeListPtr;

Each adaptor may have an array of these advertising the attributes for its ports. Cur-
rently defined flags are XvGettable and XvSettable which may be OR’d together
indicating that attribute is ‘‘gettable’’ or ‘‘settable’’ by the client. The min and max

field specify the valid range for the value. Name is a text string describing the
attribute by name.

The XF86ImageRec:

XFree86 server 4.x Design (DRAFT) 55

typedef struct {

int id;

int type;

int byte_order;

char guid[16];

int bits_per_pixel;

int format;

int num_planes;

/* for RGB formats */

int depth;

unsigned int red_mask;

unsigned int green_mask;

unsigned int blue_mask;

/* for YUV formats */

unsigned int y_sample_bits;

unsigned int u_sample_bits;

unsigned int v_sample_bits;

unsigned int horz_y_period;

unsigned int horz_u_period;

unsigned int horz_v_period;

unsigned int vert_y_period;

unsigned int vert_u_period;

unsigned int vert_v_period;

char component_order[32];

int scanline_order;

} XF86ImageRec, *XF86ImagePtr;

XF86ImageRec describes how video source data is laid out in memory. The fields are
as follows:

id

This is a unique descriptor for the format. It is often good to set this value
to the FOURCC for the format when applicable.

type

This is XvRGB or XvYUV.

byte_order

This is LSBFirst or MSBFirst.

guid

This is the Globally Unique IDentifier for the format. When not applicable,
all characters should be NULL.

bits_per_pixel

The number of bits taken up (but not necessarily used) by each pixel. Note
that for some planar formats which have fractional bits per pixel (such as
IF09) this number may be rounded _down_.

format

This is XvPlanar or XvPacked.

num_planes

The number of planes in planar formats. This should be set to one for

XFree86 server 4.x Design (DRAFT) 56

packed formats.

depth

The significant bits per pixel in RGB formats (analgous to the depth of a
pixmap format).

red_mask green_mask blue_mask

The red, green and blue bitmasks for packed RGB formats.

y_sample_bits u_sample_bits v_sample_bits

The y, u and v sample sizes (in bits).

horz_y_period horz_u_period horz_v_period

The y, u and v sampling periods in the horizontal direction.

vert_y_period vert_u_period vert_v_period

The y, u and v sampling periods in the vertical direction.

component_order

Uppercase ascii characters representing the order that samples are stored
within packed formats. For planar formats this represents the ordering of
the planes. Unused characters in the 32 byte string should be set to NULL.

scanline_order

This is XvTopToBottom or XvBottomToTop.

Since some formats (particular some planar YUV formats) may not be completely
defined by the parameters above, the guid, when available, should provide the most
accurate description of the format.

17. The Loader
This section describes the interfaces to the module loader. The loader interfaces can be divided
into two groups: those that are only available to the XFree86 common layer, and those that are
also available to modules.

17.1 Loader Over view

The loader is capable of loading modules in a range of object formats, and knowledge of these
formats is built in to the loader. Knowledge of new object formats can be added to the loader in a
straightforward manner. This makes it possible to provide OS-independent modules (for a given
CPU architecture type). In addition to this, the loader can load modules via the OS-provided
dlopen(3) service where available. Such modules are not platform independent, and the
semantics of dlopen() on most systems results in significant limitations in the use of modules of
this type. Support for dlopen() modules in the loader is primarily for experimental and devel-
opment purposes.

Symbols exported by the loader (on behalf of the core X server) to modules are determined at
compile time. Only those symbols explicitly exported are available to modules. All external
symbols of loaded modules are exported to other modules, and to the core X server. The loader
can be requested to check for unresolved symbols at any time, and the action to be taken for unre-
solved symbols can be controlled by the caller of the loader. Typically the caller identifies which
symbols can safely remain unresolved and which cannot.

XFree86 server 4.x Design (DRAFT) 57

NOTE: Now that ISO-C allows pointers to functions and pointers to data to have different inter-
nal representations, some of the following interfaces will need to be revisited.

17.2 Semi-private Loader Interface

The following is the semi-private loader interface that is available to the XFree86 common layer.

void LoaderInit(void)

The LoaderInit() function initialises the loader, and it must be called
once before calling any other loader functions. This function initialises the
tables of exported symbols, and anything else that might need to be ini-
tialised.

void LoaderSetPath(const char *path)

The LoaderSetPath() function initialises a default module search path.
This must be called if calls to other functions are to be made without
explicitly specifying a module search path. The search path path must be
a string of one or more comma separated absolute paths. Modules are
expected to be located below these paths, possibly in subdirectories of
these paths.

pointer LoadModule(const char *module, const char *path,

const char **subdirlist, const char **patternlist,

pointer options, const XF86ModReqInfo * modreq,

int *errmaj, int *errmin)

The LoadModule() function loads the module called module. The return
value is a module handle, and may be used in future calls to the loader
that require a reference to a loaded module. The module name module is
normally the module’s canonical name, which doesn’t contain any direc-
tory path information, or any object/library file prefixes of suffixes. Cur-
rently a full pathname and/or filename is also accepted. This might
change. The other parameters are:

path

An optional comma-separated list of module search paths.
When NULL, the default search path is used.

subdirlist

An optional NULL terminated list of subdirectories to search.
When NULL, the default built-in list is used (refer to stdSub-

dirs in loadmod.c). The default list is also substituted for
entries in subdirlist with the value DEFAULT_LIST. This
makes is possible to augment the default list instead of replac-
ing it. Subdir elements must be relative, and must not contain
"..". If any violate this requirement, the load fails.

patternlist

An optional NULL terminated list of POSIX regular expressions
used to connect module filenames with canonical module

XFree86 server 4.x Design (DRAFT) 58

names. Each regex should contain exactly one subexpression
that corresponds to the canonical module name. When NULL,
the default built-in list is used (refer to stdPatterns in
loadmod.c). The default list is also substituted for entries in
patternlist with the value DEFAULT_LIST. This makes it
possible to augment the default list instead of replacing it.

options

An optional parameter that is passed to the newly loaded mod-
ule’s SetupProc function (if it has one). This argument is nor-
mally a NULL terminated list of Options, and must be inter-
preted that way by modules loaded directly by the XFree86
common layer. However, it may be used for application-spe-
cific parameter passing in other situations.

When loading ‘‘external’’ modules (modules that don’t have
the standard entry point, for example a special shared library)
the options parameter can be set to EXTERN_MODULE to tell the
loader not to reject the module when it doesn’t find the stan-
dard entry point.

modreq

An optional XF86ModReqInfo* containing version/ABI/ven-
dor information to requirements to check the newly loaded
module against. The main purpose of this is to allow the loader
to verify that a module of the correct type/version before run-
ning its SetupProc function.

The XF86ModReqInfo struct is defined as follows:
typedef struct {

CARD8 majorversion; /* MAJOR_UNSPEC */

CARD8 minorversion; /* MINOR_UNSPEC */

CARD16 patchlevel; /* PATCH_UNSPEC */

const char * abiclass; /* ABI_CLASS_NONE */

CARD32 abiversion; /* ABI_VERS_UNSPEC */

const char * moduleclass; /* MOD_CLASS_NONE */

} XF86ModReqInfo;

The information here is compared against the equivalent infor-
mation in the module’s XF86ModuleVersionInfo record
(which is described below). The values in comments above
indicate ‘‘don’t care’’ settings for each of the fields. The com-
parisons made are as follows:

majorversion

Must match the module’s majorversion exactly.

minorversion

The module’s minor version must be no less than
this value. This comparison is only made if
majorversion is specified and matches.

patchlevel

XFree86 server 4.x Design (DRAFT) 59

The module’s patchlevel must be no less than this
value. This comparison is only made if minorver-
sion is specified and matches.

abiclass

String must match the module’s abiclass string.

abiversion

Must be consistent with the module’s abiversion
(major equal, minor no older).

moduleclass

String must match the module’s moduleclass string.

errmaj

An optional pointer to a variable holding the major part or the
error code. When provided, *errmaj is filled in when Load-

Module() fails.

errmin

Like errmaj, but for the minor part of the error code.

void UnloadModule(pointer mod)

This function unloads the module referred to by the handle mod. All child
modules are also unloaded recursively. This function must not be used to
directly unload modules that are child modules (i.e., those that have been
loaded with the LoadSubModule() described below).

17.3 Module Requirements

Modules must provide information about themselves to the loader, and may optionally provide
entry points for "setup" and "teardown" functions (those two functions are referred to here as
SetupProc and TearDownProc).

The module information is contained in the XF86ModuleVersionInfo struct, which is defined
as follows:

XFree86 server 4.x Design (DRAFT) 60

typedef struct {

const char * modname; /* name of module, e.g. "foo" */

const char * vendor; /* vendor specific string */

CARD32 _modinfo1_; /* constant MODINFOSTRING1/2 to find */

CARD32 _modinfo2_; /* infoarea with a binary editor/sign tool */

CARD32 xf86version; /* contains XF86_VERSION_CURRENT */

CARD8 majorversion; /* module-specific major version */

CARD8 minorversion; /* module-specific minor version */

CARD16 patchlevel; /* module-specific patch level */

const char * abiclass; /* ABI class that the module uses */

CARD32 abiversion; /* ABI version */

const char * moduleclass; /* module class */

CARD32 checksum[4]; /* contains a digital signature of the */

/* version info structure */

} XF86ModuleVersionInfo;

The fields are used as follows:

modname

The module’s name. This field is currently only for informational pur-
poses, but the loader may be modified in future to require it to match the
module’s canonical name.

vendor

The module vendor. This field is for informational purposes only.

modinfo1

This field holds the first part of a signature that can be used to locate this
structure in the binary. It should always be initialised to MODINFOS-

TRING1.

modinfo2

This field holds the second part of a signature that can be used to locate
this structure in the binary. It should always be initialised to MODINFOS-

TRING2.

xf86version

The XFree86 version against which the module was compiled. This is
mostly for informational/diagnostic purposes. It should be initialised to
XF86_VERSION_CURRENT, which is defined in xf86Version.h.

majorversion

The module-specific major version. For modules where this version is
used for more than simply informational purposes, the major version
should only change (be incremented) when ABI incompatibilities are intro-
duced, or ABI components are removed.

minorversion

The module-specific minor version. For modules where this version is
used for more than simply informational purposes, the minor version
should only change (be incremented) when ABI additions are made in a
backward compatible way. It should be reset to zero when the major ver-
sion is increased.

XFree86 server 4.x Design (DRAFT) 61

patchlevel

The module-specific patch level. The patch level should increase with new
revisions of the module where there are no ABI changes, and it should be
reset to zero when the minor version is increased.

abiclass

The ABI class that the module requires. The class is specified as a string
for easy extensibility. It should indicate which (if any) of the X server’s
built-in ABI classes that the module relies on, or a third-party ABI if appro-
priate. Built-in ABI classes currently defined are:

ABI_CLASS_NONE

no class

ABI_CLASS_ANSIC

only requires the ANSI C interfaces

ABI_CLASS_VIDEODRV

requires the video driver ABI

ABI_CLASS_XINPUT

requires the XInput driver ABI

ABI_CLASS_EXTENSION

requires the extension module ABI

ABI_CLASS_FONT

requires the font module ABI

abiversion

The version of abiclass that the module requires. The version consists of
major and minor components. The major version must match and the
minor version must be no newer than that provided by the server or par-
ent module. Version identifiers for the built-in classes currently defined
are:

ABI_ANSIC_VERSION

ABI_VIDEODRV_VERSION

ABI_XINPUT_VERSION

ABI_EXTENSION_VERSION

ABI_FONT_VERSION

moduleclass

XFree86 server 4.x Design (DRAFT) 62

This is similar to the abiclass field, except that it defines the type of module
rather than the ABI it requires. For example, although all video drivers
require the video driver ABI, not all modules that require the video driver
ABI are video drivers. This distinction can be made with the moduleclass.
Currently pre-defined module classes are:

MOD_CLASS_NONE

MOD_CLASS_VIDEODRV

MOD_CLASS_XINPUT

MOD_CLASS_FONT

MOD_CLASS_EXTENSION

checksum

Not currently used.

The module version information, and the optional SetupProc and TearDownProc entry points
are found by the loader by locating a data object in the module called "modnameModuleData",
where "modname" is the canonical name of the module. Modules must contain such a data
object, and it must be declared with global scope, be compile-time initialised, and is of the follow-
ing type:

typedef struct {

XF86ModuleVersionInfo * vers;

ModuleSetupProc setup;

ModuleTearDownProc teardown;

} XF86ModuleData;

The vers parameter must be initialised to a pointer to a correctly initialised XF86ModuleVer-

sionInfo struct. The other two parameter are optional, and should be initialised to NULL when
not required. The other parameters are defined as

XFree86 server 4.x Design (DRAFT) 63

typedef pointer (*ModuleSetupProc)(pointer, pointer, int *, int

*)

typedef void (*ModuleTearDownProc)(pointer)

pointer SetupProc(pointer module, pointer options,

int *errmaj, int *errmin)

When defined, this function is called by the loader after successfully load-
ing a module. module is a handle for the newly loaded module, and
maybe used by the SetupProc if it calls other loader functions that
require a reference to it. The remaining arguments are those that were
passed to the LoadModule() (or LoadSubModule()), and are described
above. When the SetupProc is successful it must return a non-NULL
value. The loader checks this, and if it is NULL it unloads the module and
reports the failure to the caller of LoadModule(). If the SetupProc does
things that need to be undone when the module is unloaded, it should
define a TearDownProc, and return a pointer that the TearDownProc

can use to undo what has been done.

When a module is loaded multiple times, the SetupProc is called once for
each time it is loaded.

void TearDownProc(pointer tearDownData)

When defined, this function is called when the loader unloads a module.
The tearDownData parameter is the return value of the SetupProc()

that was called when the module was loaded. The purpose of this func-
tion is to clean up before the module is unloaded (for example, by freeing
allocated resources).

17.4 Public Loader Interface

The following is the Loader interface that is available to any part of the server, and may also be
used from within modules.

XFree86 server 4.x Design (DRAFT) 64

pointer LoadSubModule(pointer parent, const char *module,

const char **subdirlist, const char **patternlist,

pointer options, const XF86ModReqInfo * modreq,

int *errmaj, int *errmin)

This function is like the LoadModule() function described above, except
that the module loaded is registered as a child of the calling module. The
parent parameter is the calling module’s handle. Modules loaded with
this function are automatically unloaded when the parent module is
unloaded. The other difference is that the path parameter may not be
specified. The module search path used for modules loaded with this
function is the default search path as initialised with LoaderSetPath().

void UnloadSubModule(pointer module)

This function unloads the module with handle module. If that module
itself has children, they are also unloaded. It is like UnloadModule(),
except that it is safe to use for unloading child modules.

pointer LoaderSymbol(const char *symbol)

This function returns the address of the symbol with name symbol. This
may be used to locate a module entry point with a known name.

char **LoaderlistDirs(const char **subdirlist,

const char **patternlist)

This function returns a NULL terminated list of canonical modules names
for modules found in the default module search path. The subdirlist

and patternlist parameters are as described above, and can be used to
control the locations and names that are searched. If no modules are
found, the return value is NULL. The returned list should be freed by call-
ing LoaderFreeDirList() when it is no longer needed.

void LoaderFreeDirList(char **list)

This function frees a module list created by LoaderlistDirs().

void LoaderReqSymLists(const char **list0, ...)

This function allows the registration of required symbols with the loader.
It is normally used by a caller of LoadSubModule(). If any symbols reg-
istered in this way are found to be unresolved when LoaderCheckUnre-

solved() is called then LoaderCheckUnresolved() will report a fail-
ure. The function takes one or more NULL terminated lists of symbols.
The end of the argument list is indicated by a NULL argument.

void LoaderReqSymbols(const char *sym0, ...)

This function is like LoaderReqSymLists() except that its arguments
are symbols rather than lists of symbols. This function is more convenient
when single functions are to be registered, especially when the single func-
tion might depend on runtime factors. The end of the argument list is

XFree86 server 4.x Design (DRAFT) 65

indicated by a NULL argument.

void LoaderRefSymLists(const char **list0, ...)

This function allows the registration of possibly unresolved symbols with
the loader. When LoaderCheckUnresolved() is run it won’t generate
warnings for symbols registered in this way unless they were also regis-
tered as required symbols. The function takes one or more NULL termi-
nated lists of symbols. The end of the argument list is indicated by a NULL
argument.

void LoaderRefSymbols(const char *sym0, ...)

This function is like LoaderRefSymLists() except that its arguments
are symbols rather than lists of symbols. This function is more convenient
when single functions are to be registered, especially when the single func-
tion might depend on runtime factors. The end of the argument list is
indicated by a NULL argument.

int LoaderCheckUnresolved(int delayflag)

This function checks for unresolved symbols. It generates warnings for
unresolved symbols that have not been registered with LoaderRefSym-

Lists(), and maps them to a dummy function. This behaviour may
change in future. If unresolved symbols are found that have been regis-
tered with LoaderReqSymLists() or LoaderReqSymbols() then this
function returns a non-zero value. If none of these symbols are unresolved
the return value is zero, indicating success.

The delayflag parameter should normally be set to
LD_RESOLV_IFDONE.

LoaderErrorMsg(const char *name, const char *modname,

int errmaj, int errmin)

This function prints an error message that includes the text ‘‘Failed to load
module’’, the module name modname, a message specific to the errmaj

value, and the value if errmin. If name is non-NULL, it is printed as an
identifying prefix to the message (followed by a ‘:’).

17.5 Special Registration Functions

The loader contains some functions for registering some classes of modules. These may be
moved out of the loader at some point.

XFree86 server 4.x Design (DRAFT) 66

void LoadExtension(ExtensionModule *ext)

This registers the entry points for the extension identified by ext. The
ExtensionModule struct is defined as:

typedef struct {

InitExtension initFunc;

char * name;

Bool *disablePtr;

InitExtension setupFunc;

} ExtensionModule;

void LoadFont(FontModule *font)

This registers the entry points for the font rasteriser module identified by
font. The FontModule struct is defined as:

typedef struct {

InitFont initFunc;

char * name;

pointer module;

} FontModule;

18. Helper Functions
This section describe ‘‘helper’’ functions that video driver might find useful. While video drivers
are not required to use any of these to be considered ‘‘compliant’’, the use of appropriate helpers
is strongly encouraged to improve the consistency of driver behaviour.

18.1 Functions for printing messages

XFree86 server 4.x Design (DRAFT) 67

ErrorF(const char *format, ...)

This is the basic function for writing to the error log (typically stderr
and/or a log file). Video drivers should usually avoid using this directly
in favour of the more specialised functions described below. This function
is useful for printing messages while debugging a driver.

FatalError(const char *format, ...)

This prints a message and causes the Xserver to abort. It should rarely be
used within a video driver, as most error conditions should be flagged by
the return values of the driver functions. This allows the higher layers to
decide how to proceed. In rare cases, this can be used within a driver if a
fatal unexpected condition is found.

xf86ErrorF(const char *format, ...)

This is like ErrorF(), except that the message is only printed when the
Xserver’s verbosity level is set to the default (1) or higher. It means that
the messages are not printed when the server is started with the -quiet

flag. Typically this function would only be used for continuing messages
started with one of the more specialised functions described below.

xf86ErrorFVerb(int verb, const char *format, ...)

Like xf86ErrorF(), except the minimum verbosity level for which the
message is to be printed is given explicitly. Passing a verb value of zero
means the message is always printed. A value higher than 1 can be used
for information would normally not be needed, but which might be useful
when diagnosing problems.

xf86Msg(MessageType type, const char *format, ...)

This is like xf86ErrorF(), except that the message is prefixed with a
marker determined by the value of type. The marker is used to indicate
the type of message (warning, error, probed value, config value, etc). Note
the xf86Verbose value is ignored for messages of type X_ERROR.

The marker values are:

X_PROBED

Value was probed.

X_CONFIG

Value was given in the config file.

X_DEFAULT

Value is a default.

X_CMDLINE

Value was given on the command line.

X_NOTICE

Notice.

XFree86 server 4.x Design (DRAFT) 68

X_ERROR

Error message.

X_WARNING

Warning message.

X_INFO

Informational message.

X_NONE

No prefix.

X_NOT_IMPLEMENTED

The message relates to functionality that is not yet
implemented.

xf86MsgVerb(MessageType type, int verb, const char *format,

...)

Like xf86Msg(), but with the verbosity level given explicitly.

xf86DrvMsg(int scrnIndex, MessageType type, const char *format,

...)

This is like xf86Msg() except that the driver’s name (the name field of the
ScrnInfoRec) followed by the scrnIndex in parentheses is printed fol-
lowing the prefix. This should be used by video drivers in most cases as it
clearly indicates which driver/screen the message is for. If scrnIndex is
negative, this function behaves exactly like xf86Msg().

NOTE: This function can only be used after the ScrnInfoRec and its
name field have been allocated. Normally, this means that it can not be
used before the END of the ChipProbe() function. Prior to that, use
xf86Msg(), providing the driver’s name explicitly. No screen number
can be supplied at that point.

xf86DrvMsgVerb(int scrnIndex, MessageType type, int verb,

const char *format, ...)

Like xf86DrvMsg(), but with the verbosity level given explicitly.

18.2 Functions for setting values based on command line and
config file

XFree86 server 4.x Design (DRAFT) 69

Bool xf86SetDepthBpp(ScrnInfoPtr scrp, int depth, int bpp,

int fbbpp, int depth24flags)

This function sets the depth, pixmapBPP and bitsPerPixel fields of
the ScrnInfoRec. It also determines the defaults for display-wide
attributes and pixmap formats the screen will support, and finds the Dis-
play subsection that matches the depth/bpp. This function should nor-
mally be called very early from the ChipPreInit() function.

It requires that the confScreen field of the ScrnInfoRec be initialised
prior to calling it. This is done by the XFree86 common layer prior to call-
ing ChipPreInit().

The parameters passed are:

depth

driver’s preferred default depth if no other is given. If zero, use
the overall server default.

bpp

Same, but for the pixmap bpp.

fbbpp

Same, but for the framebuffer bpp.

depth24flags

Flags that indicate the level of 24/32bpp support and whether
conversion between different framebuffer and pixmap formats
is supported. The flags for this argument are defined as fol-
lows, and multiple flags may be ORed together:

NoDepth24Support

No depth 24 formats supported

Support24bppFb

24bpp framebuffer supported

Support32bppFb

32bpp framebuffer supported

SupportConvert24to32

Can convert 24bpp pixmap to 32bpp fb

SupportConvert32to24

Can convert 32bpp pixmap to 24bpp fb

ForceConvert24to32

XFree86 server 4.x Design (DRAFT) 70

Force 24bpp pixmap to 32bpp fb conversion

ForceConvert32to24

Force 32bpp pixmap to 24bpp fb conversion

It uses the command line, config file, and default values in the correct
order of precedence to determine the depth and bpp values. It is up to the
driver to check the results to see that it supports them. If not the Chip-

PreInit() function should return FALSE.

If only one of depth/bpp is given, the other is set to a reasonable (and con-
sistent) default.

If a driver finds that the initial depth24flags it uses later results in a fb
format that requires more video memory than is available it may call this
function a second time with a different depth24flags setting.

On success, the return value is TRUE. On failure it prints an error message
and returns FALSE.

The following fields of the ScrnInfoRec are initialised by this function:

depth, bitsPerPixel, display, imageByteOrder,
bitmapScanlinePad, bitmapScanlineUnit, bitmap-

BitOrder, numFormats, formats, fbFormat.

void xf86PrintDepthBpp(scrnInfoPtr scrp)

This function can be used to print out the depth and bpp settings. It
should be called after the final call to xf86SetDepthBpp().

Bool xf86SetWeight(ScrnInfoPtr scrp, rgb weight, rgb mask)

This function sets the weight, mask, offset and rgbBits fields of the
ScrnInfoRec. It would normally be called fairly early in the Chip-

PreInit() function for depths > 8bpp.

It requires that the depth and display fields of the ScrnInfoRec be ini-
tialised prior to calling it.

The parameters passed are:
weight

driver’s preferred default weight if no other is given. If zero,
use the overall server default.

mask

Same, but for mask.

It uses the command line, config file, and default values in the correct
order of precedence to determine the weight value. It derives the mask
and offset values from the weight and the defaults. It is up to the driver to
check the results to see that it supports them. If not the ChipPreInit()
function should return FALSE.

On success, this function prints a message showing the weight values
selected, and returns TRUE.

On failure it prints an error message and returns FALSE.

The following fields of the ScrnInfoRec are initialised by this function:

XFree86 server 4.x Design (DRAFT) 71

weight, mask, offset.

Bool xf86SetDefaultVisual(ScrnInfoPtr scrp, int visual)

This function sets the defaultVisual field of the ScrnInfoRec. It
would normally be called fairly early from the ChipPreInit() function.

It requires that the depth and display fields of the ScrnInfoRec be ini-
tialised prior to calling it.

The parameters passed are:

visual

driver’s preferred default visual if no other is given. If -1, use
the overall server default.

It uses the command line, config file, and default values in the correct
order of precedence to determine the default visual value. It is up to the
driver to check the result to see that it supports it. If not the Chip-

PreInit() function should return FALSE.

On success, this function prints a message showing the default visual
selected, and returns TRUE.

On failure it prints an error message and returns FALSE.

Bool xf86SetGamma(ScrnInfoPtr scrp, Gamma gamma)

This function sets the gamma field of the ScrnInfoRec. It would nor-
mally be called fairly early from the ChipPreInit() function in cases
where the driver supports gamma correction.

It requires that the monitor field of the ScrnInfoRec be initialised prior
to calling it.

The parameters passed are:
gamma

driver’s preferred default gamma if no other is given. If zero (<
0.01), use the overall server default.

It uses the command line, config file, and default values in the correct
order of precedence to determine the gamma value. It is up to the driver
to check the results to see that it supports them. If not the Chip-

PreInit() function should return FALSE.

On success, this function prints a message showing the gamma value
selected, and returns TRUE.

On failure it prints an error message and returns FALSE.

void xf86SetDpi(ScrnInfoPtr pScrn, int x, int y)

This function sets the xDpi and yDpi fields of the ScrnInfoRec. The
driver can specify preferred defaults by setting x and y to non-zero values.
The -dpi command line option overrides all other settings. Otherwise, if
the DisplaySize entry is present in the screen’s Monitor config file section,
it is used together with the virtual size to calculate the dpi values. This
function should be called after all the mode resolution has been done.

void xf86SetBlackWhitePixels(ScrnInfoPtr pScrn)

This functions sets the blackPixel and whitePixel fields of the Scrn-

XFree86 server 4.x Design (DRAFT) 72

InfoRec according to whether or not the -flipPixels command line
options is present.

const char *xf86GetVisualName(int visual)

Returns a printable string with the visual name matching the numerical
visual class provided. If the value is outside the range of valid visual
classes, NULL is returned.

18.3 Primary Mode functions

The primary mode helper functions are those which would normally be used by a driver, unless
it has unusual requirements which cannot be catered for the by the helpers.

int xf86ValidateModes(ScrnInfoPtr scrp, DisplayModePtr

availModes,

char **modeNames, ClockRangePtr clockRanges,

int *linePitches, int minPitch, int maxPitch,

int pitchInc, int minHeight, int maxHeight,

int virtualX, int virtualY,

unsigned long apertureSize,

LookupModeFlags strategy)

This function basically selects the set of modes to use based on those avail-
able and the various constraints. It also sets some other related parame-
ters. It is normally called near the end of the ChipPreInit() function.

The parameters passed to the function are:

availModes

List of modes available for the monitor.

modeNames

List of mode names that the screen is requesting.

clockRanges

A list of clock ranges allowed by the driver. Each range
includes whether interlaced or multiscan modes are supported
for that range. See below for more on clockRanges.

linePitches

List of line pitches supported by the driver. This is optional
and should be NULL when not used.

minPitch

XFree86 server 4.x Design (DRAFT) 73

Minimum line pitch supported by the driver. This must be
supplied when linePitches is NULL, and is ignored other-
wise.

maxPitch

Maximum line pitch supported by the driver. This is required
when minPitch is required.

pitchInc

Granularity of horizontal pitch values as supported by the
chipset. This is expressed in bits. This must be supplied.

minHeight

minimum virtual height allowed. If zero, no limit is imposed.

maxHeight

maximum virtual height allowed. If zero, no limit is imposed.

virtualX

If greater than zero, this is the virtual width value that will be
used. Otherwise, the virtual width is chosen to be the smallest
that can accommodate the modes selected.

virtualY

If greater than zero, this is the virtual height value that will be
used. Otherwise, the virtual height is chosen to be the smallest
that can accommodate the modes selected.

apertureSize

The size (in bytes) of the aperture used to access video mem-
ory.

strategy

The strategy to use when choosing from multiple modes with
the same name. The options are:

LOOKUP_DEFAULT

???

LOOKUP_BEST_REFRESH

mode with best refresh rate

XFree86 server 4.x Design (DRAFT) 74

LOOKUP_CLOSEST_CLOCK

mode with closest matching clock

LOOKUP_LIST_ORDER

first usable mode in list

The following options can also be combined (OR’ed) with one
of the above:

LOOKUP_CLKDIV2

Allow halved clocks

LOOKUP_OPTIONAL_TOLERANCES

Allow missing horizontal sync and/or vertical
refresh ranges in the XF86Config Monitor section

LOOKUP_OPTIONAL_TOLERANCES should only be specified
when the driver can ensure all modes it generates can sync on,
or at least not damage, the monitor or digital flat panel. Hori-
zontal sync and/or vertical refresh ranges specified by the user
will still be honoured (and acted upon).

This function requires that the following fields of the ScrnInfoRec are
initialised prior to calling it:

clock[]

List of discrete clocks (when non-programmable)

numClocks

Number of discrete clocks (when non-programmable)

progClock

Whether the clock is programmable or not

monitor

Pointer to the applicable XF86Config monitor section

fdFormat

Format of the screen buffer

videoRam

total video memory size (in bytes)

maxHValue

Maximum horizontal timing value allowed

maxVValue

XFree86 server 4.x Design (DRAFT) 75

Maximum vertical timing value allowed

xInc

Horizontal timing increment in pixels (defaults to 8)

This function fills in the following ScrnInfoRec fields:

modePool

A subset of the modes available to the monitor which are com-
patible with the driver.

modes

One mode entry for each of the requested modes, with the sta-
tus field of each filled in to indicate if the mode has been
accepted or not. This list of modes is a circular list.

virtualX

The resulting virtual width.

virtualY

The resulting virtual height.

displayWidth

The resulting line pitch.

virtualFrom

Where the virtual size was determined from.

The first stage of this function checks that the virtualX and virtualY

values supplied (if greater than zero) are consistent with the line pitch and
maxHeight limitations. If not, an error message is printed, and the return
value is -1.

The second stage sets up the mode pool, eliminating immediately any
modes that exceed the driver’s line pitch limits, and also the virtual width
and height limits (if greater than zero). For each mode removed an infor-
mational message is printed at verbosity level 2. If the mode pool ends up
being empty, a warning message is printed, and the return value is 0.

The final stage is to lookup each mode name, and fill in the remaining
parameters. If an error condition is encountered, a message is printed, and
the return value is -1. Otherwise, the return value is the number of valid
modes found (0 if none are found).

Even if the supplied mode names include duplicates, no two names will
ever match the same mode. Furthermore, if the supplied mode names do
not yield a valid mode (including the case where no names are passed at
all), the function will continue looking through the mode pool until it finds

XFree86 server 4.x Design (DRAFT) 76

a mode that survives all checks, or until the mode pool is exhausted.

A message is only printed by this function when a fundamental problem is
found. It is intended that this function may be called more than once if
there is more than one set of constraints that the driver can work within.

If this function returns -1, the ChipPreInit() function should return
FALSE.

clockRanges is a linked list of clock ranges allowed by the driver. If a
mode doesn’t fit in any of the defined clockRanges, it is rejected. The
first clockRange that matches all requirements is used. This structure
needs to be initialized to NULL when allocated.

clockRanges contains the following fields:

minClock

maxClock

The lower and upper mode clock bounds for which the rest of
the clockRange parameters apply. Since these are the mode
clocks, they are not scaled with the ClockMulFactor and
ClockDivFactor. It is up to the driver to adjust these values
if they depend on the clock scaling factors.

clockIndex

(not used yet) -1 for programmable clocks

interlaceAllowed

TRUE if interlacing is allowed for this range

doubleScanAllowed

TRUE if doublescan or multiscan is allowed for this range

ClockMulFactor

ClockDivFactor

Scaling factors that are applied to the mode clocks ONLY before
selecting a clock index (when there is no programmable clock)
or a SynthClock value. This is useful for drivers that support
pixel multiplexing or that need to scale the clocks because of
hardware restrictions (like sending 24bpp data to an 8 bit RAM-
DAC using a tripled clock).

Note that these parameters describe what must be done to the
mode clock to achieve the data transport clock between graph-
ics controller and RAMDAC. For example for 2:1 pixel multi-
plexing, two pixels are sent to the RAMDAC on each clock.
This allows the RAMDAC clock to be half of the actual pixel
clock. Hence, ClockMulFactor=1 and ClockDivFactor=2.

XFree86 server 4.x Design (DRAFT) 77

This means that the clock used for clock selection (ie, determin-
ing the correct clock index from the list of discrete clocks) or for
the SynthClock field in case of a programmable clock is:
(mode->Clock * ClockMulFactor) / ClockDivFactor.

PrivFlags

This field is copied into the mode->PrivFlags field when this
clockRange is selected by xf86ValidateModes(). It
allows the driver to find out what clock range was selected, so
it knows it needs to set up pixel multiplexing or any other
range-dependent feature. This field is purely driver-defined: it
may contain flag bits, an index or anything else (as long as it is
an INT).

Note that the mode->SynthClock field is always filled in by xf86Vali-

dateModes(): it will contain the ‘‘data transport clock’’, which is the
clock that will have to be programmed in the chip when it has a pro-
grammable clock, or the clock that will be picked from the clocks list when
it is not a programmable one. Thus:

mode->SynthClock =

(mode->Clock * ClockMulFactor) / ClockDivFac-

tor

void xf86PruneDriverModes(ScrnInfoPtr scrp)

This function deletes modes in the modes field of the ScrnInfoRec that
have been marked as invalid. This is normally run after having run
xf86ValidateModes() for the last time. For each mode that is deleted,
a warning message is printed out indicating the reason for it being deleted.

void xf86SetCrtcForModes(ScrnInfoPtr scrp, int adjustFlags)

This function fills in the Crtc* fields for all the modes in the modes field
of the ScrnInfoRec. The adjustFlags parameter determines how the
vertical CRTC values are scaled for interlaced modes. They are halved if it
is INTERLACE_HALVE_V. The vertical CRTC values are doubled for dou-
blescan modes, and are further multiplied by the VScan value.

This function is normally called after calling xf86PruneDriverModes().

void xf86PrintModes(ScrnInfoPtr scrp)

This function prints out the virtual size setting, and the line pitch being
used. It also prints out two lines for each mode being used. The first line
includes the mode’s pixel clock, horizontal sync rate, refresh rate, and
whether it is interlaced, doublescanned and/or multi-scanned. The sec-
ond line is the mode’s Modeline.

This function is normally called after calling xf86SetCrtcForModes().

18.4 Secondary Mode functions

The secondary mode helper functions are functions which are normally used by the primary
mode helper functions, and which are not normally called directly by a driver. If a driver has
unusual requirements and needs to do its own mode validation, it might be able to make use of

XFree86 server 4.x Design (DRAFT) 78

some of these secondary mode helper functions.

int xf86GetNearestClock(ScrnInfoPtr scrp, int freq, Bool allow-

Div2,

int *divider)

This function returns the index of the closest clock to the frequency freq

given (in kHz). It assumes that the number of clocks is greater than zero.
It requires that the numClocks and clock fields of the ScrnInfoRec are
initialised. The allowDiv2 field determines if the clocks can be halved.
The *divider return value indicates whether clock division is used when
determining the clock returned.

This function is only for non-programmable clocks.

const char *xf86ModeStatusToString(ModeStatus status)

This function converts the status value to a descriptive printable string.

ModeStatus xf86LookupMode(ScrnInfoPtr scrp, DisplayModePtr

modep,

ClockRangePtr clockRanges, LookupModeFlags strategy)

This function takes a pointer to a mode with the name filled in, and looks
for a mode in the modePool list which matches. The parameters of the
matching mode are filled in to *modep. The clockRanges and strat-

egy parameters are as for the xf86ValidateModes() function above.

This function requires the modePool, clock[], numClocks and prog-

Clock fields of the ScrnInfoRec to be initialised before being called.
The return value is MODE_OK if a mode was found. Otherwise it indicates
why a matching mode could not be found.

ModeStatus xf86InitialCheckModeForDriver(ScrnInfoPtr scrp,

DisplayModePtr mode, ClockRangePtr clockRanges,

LookupModeFlags strategy, int maxPitch,

int virtualX, int virtualY)

This function checks the passed mode against some basic driver con-
straints. Apart from the ones passed explicitly, the maxHValue and maxV-

Value fields of the ScrnInfoRec are also used. If the ValidMode field
of the ScrnInfoRec is set, that function is also called to check the mode.
Next, the mode is checked against the monitor’s constraints.

If the mode is consistent with all constraints, the return value is MODE_OK.
Otherwise the return value indicates which constraint wasn’t met.

void xf86DeleteMode(DisplayModePtr *modeList, DisplayModePtr

mode)

This function deletes the mode given from the modeList. It never prints
any messages, so it is up to the caller to print a message if required.

XFree86 server 4.x Design (DRAFT) 79

18.5 Functions for handling strings and tokens

Tables associating strings and numerical tokens combined with the following functions provide a
compact way of handling strings from the config file, and for converting tokens into printable
strings. The table data structure is:

typedef struct {

int token;

const char * name;

} SymTabRec, *SymTabPtr;

A table is an initialised array of SymTabRec. The tokens must be non-negative integers. Multi-
ple names may be mapped to a single token. The table is terminated with an element with a
token value of -1 and NULL for the name.

const char *xf86TokenToString(SymTabPtr table, int token)

This function returns the first string in table that matches token. If no
match is found, NULL is returned (NOTE, older versions of this function
would return the string "unknown" when no match is found).

int xf86StringToToken(SymTabPtr table, const char *string)

This function returns the first token in table that matches string. The
xf86NameCmp() function is used to determine the match. If no match is
found, -1 is returned.

18.6 Functions for finding which config file entries to use

These functions can be used to select the appropriate config file entries that match the detected
hardware. They are described above in the Probe (section 5.8, page 8) and Available Functions (sec-
tion 9.3, page 24) sections.

18.7 Probing discrete clocks on old hardware

The xf86GetClocks() function may be used to assist in finding the discrete pixel clock values
on older hardware.

XFree86 server 4.x Design (DRAFT) 80

void xf86GetClocks(ScrnInfoPtr pScrn, int num,

Bool (*ClockFunc)(ScrnInfoPtr, int),

void (*ProtectRegs)(ScrnInfoPtr, Bool),

void (*BlankScreen)(ScrnInfoPtr, Bool),

int vertsyncreg, int maskval, int knownclkindex,

int knownclkvalue)

This function uses a comparative sampling method to measure the discrete
pixel clock values. The number of discrete clocks to measure is given by
num. clockFunc is a function that selects the n’th clock. It should also
save or restore any state affected by programming the clocks when the
index passed is CLK_REG_SAVE or CLK_REG_RESTORE. ProtectRegs is
a function that does whatever is required to protect the hardware state
while selecting a new clock. BlankScreen is a function that blanks the
screen. vertsyncreg and maskval are the register and bitmask to check
for the presence of vertical sync pulses. knownclkindex and knownclk-

value are the index and value of a known clock. These are the known ref-
erences on which the comparative measurements are based. The number
of clocks probed is set in pScrn->numClocks, and the probed clocks are
set in the pScrn->clock[] array. All of the clock values are in units of
kHz.

void xf86ShowClocks(ScrnInfoPtr scrp, MessageType from)

Print out the pixel clocks scrp->clock[]. from indicates whether the
clocks were probed or from the config file.

18.8 Other helper functions

Bool xf86IsUnblank(int mode)

Returns TRUE when the screen saver mode specified by mode requires the
screen be unblanked, and FALSE otherwise. The screen saver modes that
require blanking are SCREEN_SAVER_ON and SCREEN_SAVER_CYCLE,
and the screen saver modes that require unblanking are
SCREEN_SAVER_OFF and SCREEN_SAVER_FORCER. Drivers may call this
helper from their SaveScreen() function to interpret the screen saver
modes.

19. The vgahw module
The vgahw modules provides an interface for saving, restoring and programming the standard
VGA registers, and for handling VGA colourmaps.

19.1 Data Structures

The public data structures used by the vgahw module are vgaRegRec and vgaHWRec. They are
defined in vgaHW.h.

XFree86 server 4.x Design (DRAFT) 81

19.2 General vgahw Functions

Bool vgaHWGetHWRec(ScrnInfoPtr pScrn)

This function allocates a vgaHWRec structure, and hooks it into the Scrn-
InfoRec’s privates. Like all information hooked into the privates, it
is persistent, and only needs to be allocated once per screen. This function
should normally be called from the driver’s ChipPreInit() function.
The vgaHWRec is zero-allocated, and the following fields are explicitly ini-
tialised:

ModeReg.DAC[]

initialised with a default colourmap

ModeReg.Attribute[0x11]

initialised with the default overscan index

ShowOverscan

initialised according to the "ShowOverscan" option

paletteEnabled

initialised to FALSE

cmapSaved

initialised to FALSE

pScrn

initialised to pScrn

In addition to the above, vgaHWSetStdFuncs() is called to initialise the
register access function fields with the standard VGA set of functions.

Once allocated, a pointer to the vgaHWRec can be obtained from the
ScrnInfoPtr with the VGAHWPTR(pScrn) macro.

void vgaHWFreeHWRec(ScrnInfoPtr pScrn)

This function frees a vgaHWRec structure. It should be called from a
driver’s ChipFreeScreen() function.

Bool vgaHWSetRegCounts(ScrnInfoPtr pScrn, int numCRTC,

int numSequencer, int numGraphics, int numAttribute)

This function allows the number of CRTC, Sequencer, Graphics and
Attribute registers to be changed. This makes it possible for extended reg-
isters to be saved and restored with vgaHWSave() and vgaHWRe-

store(). This function should be called after a vgaHWRec has been allo-
cated with vgaHWGetHWRec(). The default values are defined in
vgaHW.h as follows:

#define VGA_NUM_CRTC 25

#define VGA_NUM_SEQ 5

XFree86 server 4.x Design (DRAFT) 82

#define VGA_NUM_GFX 9

#define VGA_NUM_ATTR 21

Bool vgaHWCopyReg(vgaRegPtr dst, vgaRegPtr src)

This function copies the contents of the VGA saved registers in src to
dst. Note that it isn’t possible to simply do this with memcpy() (or simi-
lar). This function returns TRUE unless there is a problem allocating space
for the CRTC and related fields in dst.

void vgaHWSetStdFuncs(vgaHWPtr hwp)

This function initialises the register access function fields of hwp with the
standard VGA set of functions. This is called by vgaHWGetHWRec(), so
there is usually no need to call this explicitly. The register access functions
are described below. If the registers are shadowed in some other port I/O
space (for example a PCI I/O region), these functions can be used to access
the shadowed registers if hwp->PIOOffset is initialised with offset,
calculated in such a way that when the standard VGA I/O port value is
added to it the correct offset into the PIO area results. This value is ini-
tialised to zero in vgaHWGetHWRec(). (Note: the PIOOffset functionality
is present in XFree86 4.1.0 and later.)

void vgaHWSetMmioFuncs(vgaHWPtr hwp, CARD8 *base, int offset)

This function initialised the register access function fields of hwp with a
generic MMIO set of functions. hwp->MMIOBase is initialised with base,
which must be the virtual address that the start of MMIO area is mapped
to. hwp->MMIOOffset is initialised with offset, which must be calcu-
lated in such a way that when the standard VGA I/O port value is added
to it the correct offset into the MMIO area results. That means that these
functions are only suitable when the VGA I/O ports are made available in
a direct mapping to the MMIO space. If that is not the case, the driver will
need to provide its own register access functions. The register access func-
tions are described below.

Bool vgaHWMapMem(ScrnInfoPtr pScrn)

This function maps the VGA memory window. It requires that the vgaH-
WRec be allocated. If a driver requires non-default MapPhys or MapSize
settings (the physical location and size of the VGA memory window) then
those fields of the vgaHWRec must be initialised before calling this func-
tion. Otherwise, this function initialiases the default values of 0xA0000
for MapPhys and (64 * 1024) for MapSize. This function must be
called before attempting to save or restore the VGA state. If the driver
doesn’t call it explicitly, the vgaHWSave() and vgaHWRestore() func-
tions may call it if they need to access the VGA memory (in which case
they will also call vgaHWUnmapMem() to unmap the VGA memory before
exiting).

void vgaHWUnmapMem(ScrnInfoPtr pScrn)

This function unmaps the VGA memory window. It must only be called
after the memory has been mapped. The Base field of the vgaHWRec field
is set to NULL to indicate that the memory is no longer mapped.

void vgaHWGetIOBase(vgaHWPtr hwp)

This function initialises the IOBase field of the vgaHWRec. This function

XFree86 server 4.x Design (DRAFT) 83

must be called before using any other functions that access the video hard-
ware.

A macro VGAHW_GET_IOBASE() is also available in vgaHW.h that returns
the I/O base, and this may be used when the vgahw module is not loaded
(for example, in the ChipProbe() function).

void vgaHWUnlock(vgaHWPtr hwp)

This function unlocks the VGA CRTC[0-7] registers, and must be called
before attempting to write to those registers.

void vgaHWLock(vgaHWPtr hwp)

This function locks the VGA CRTC[0-7] registers.

void vgaHWEnable(vgaHWPtr hwp)

This function enables the VGA subsystem. (Note, this function is present
in XFree86 4.1.0 and later.).

void vgaHWDisable(vgaHWPtr hwp)

This function disables the VGA subsystem. (Note, this function is present
in XFree86 4.1.0 and later.).

void vgaHWSave(ScrnInfoPtr pScrn, vgaRegPtr save, int flags)

This function saves the VGA state. The state is written to the vgaRegRec
pointed to by save. flags is set to one or more of the following flags
ORed together:

VGA_SR_MODE

the mode setting registers are saved

VGA_SR_FONTS

the text mode font/text data is saved

VGA_SR_CMAP

the colourmap (LUT) is saved

VGA_SR_ALL

all of the above are saved

The vgaHWRec and its IOBase fields must be initialised before this func-
tion is called. If VGA_SR_FONTS is set in flags, the VGA memory win-
dow must be mapped. If it isn’t then vgaHWMapMem() will be called to
map it, and vgaHWUnmapMem() will be called to unmap it afterwards.
vgaHWSave() uses the three functions below in the order vgaHWSave-
Colormap(), vgaHWSaveMode(), vgaHWSaveFonts() to carry out the
different save phases. It is undecided at this stage whether they will
remain part of the vgahw module’s public interface or not.

void vgaHWSaveMode(ScrnInfoPtr pScrn, vgaRegPtr save)

This function saves the VGA mode registers. They are saved to the
vgaRegRec pointed to by save. The registers saved are:

MiscOut

XFree86 server 4.x Design (DRAFT) 84

CRTC[0-0x18]

Attribute[0-0x14]

Graphics[0-8]

Sequencer[0-4]

The number of registers actually saved may be modified by a prior call to
vgaHWSetRegCounts().

void vgaHWSaveFonts(ScrnInfoPtr pScrn, vgaRegPtr save)

This function saves the text mode font and text data held in the video
memory. If called while in a graphics mode, no save is done. The VGA
memory window must be mapped with vgaHWMapMem() before to calling
this function.

On some platforms, one or more of the font/text plane saves may be no-
ops. This is the case when the platform’s VC driver already takes care of
this.

void vgaHWSaveColormap(ScrnInfoPtr pScrn, vgaRegPtr save)

This function saves the VGA colourmap (LUT). Before saving it, it
attempts to verify that the colourmap is readable. In rare cases where it
isn’t readable, a default colourmap is saved instead.

void vgaHWRestore(ScrnInfoPtr pScrn, vgaRegPtr restore, int

flags)

This function programs the VGA state. The state programmed is that con-
tained in the vgaRegRec pointed to by restore. flags is the same as
described above for the vgaHWSave() function.

The vgaHWRec and its IOBase fields must be initialised before this func-
tion is called. If VGA_SR_FONTS is set in flags, the VGA memory win-
dow must be mapped. If it isn’t then vgaHWMapMem() will be called to
map it, and vgaHWUnmapMem() will be called to unmap it afterwards.
vgaHWRestore() uses the three functions below in the order vgaHWRe-
storeFonts(), vgaHWRestoreMode(), vgaHWRestoreColormap()

to carry out the different restore phases. It is undecided at this stage
whether they will remain part of the vgahw module’s public interface or
not.

void vgaHWRestoreMode(ScrnInfoPtr pScrn, vgaRegPtr restore)

This function restores the VGA mode registers. They are restored from the
data in the vgaRegRec pointed to by restore. The registers restored are:

MiscOut

CRTC[0-0x18]

Attribute[0-0x14]

Graphics[0-8]

Sequencer[0-4]

The number of registers actually restored may be modified by a prior call

XFree86 server 4.x Design (DRAFT) 85

to vgaHWSetRegCounts().

void vgaHWRestoreFonts(ScrnInfoPtr pScrn, vgaRegPtr restore)

This function restores the text mode font and text data to the video mem-
ory. The VGA memory window must be mapped with vgaHWMapMem()

before to calling this function.

On some platforms, one or more of the font/text plane restores may be no-
ops. This is the case when the platform’s VC driver already takes care of
this.

void vgaHWRestoreColormap(ScrnInfoPtr pScrn, vgaRegPtr restore)

This function restores the VGA colourmap (LUT).

void vgaHWInit(ScrnInfoPtr pScrn, DisplayModePtr mode)

This function fills in the vgaHWRec’s ModeReg field with the values appro-
priate for programming the given video mode. It requires that the Scrn-
InfoRec’s depth field is initialised, which determines how the registers
are programmed.

void vgaHWSeqReset(vgaHWPtr hwp, Bool start)

Do a VGA sequencer reset. If start is TRUE, the reset is started. If start is
FALSE, the reset is ended.

void vgaHWProtect(ScrnInfoPtr pScrn, Bool on)

This function protects VGA registers and memory from corruption during
loads. It is typically called with on set to TRUE before programming, and
with on set to FALSE after programming.

Bool vgaHWSaveScreen(ScreenPtr pScreen, int mode)

This function blanks and unblanks the screen. It is blanked when mode is
SCREEN_SAVER_ON or SCREEN_SAVER_CYCLE, and unblanked when
mode is SCREEN_SAVER_OFF or SCREEN_SAVER_FORCER.

void vgaHWBlankScreen(ScrnInfoPtr pScrn, Bool on)

This function blanks and unblanks the screen. It is blanked when on is
FALSE, and unblanked when on is TRUE. This function is provided for use
in cases where the ScrnInfoRec can’t be derived from the ScreenRec

(while probing for clocks, for example).

19.3 VGA Colormap Functions

The vgahw module uses the standard colormap support (see the Colormap Handling (section 13.,
page 41) section. This is initialised with the following function:

Bool vgaHWHandleColormaps(ScreenPtr pScreen)

19.4 VGA Register Access Functions

The vgahw module abstracts access to the standard VGA registers by using a set of functions
held in the vgaHWRec. When the vgaHWRec is created these function pointers are initialised with
the set of standard VGA I/O register access functions. In addition to these, the vgahw module
includes a basic set of MMIO register access functions, and the vgaHWRec function pointers can
be initialised to these by calling the vgaHWSetMmioFuncs() function described above. Some
drivers/platforms may require a different set of functions for VGA access. The access functions
are described here.

XFree86 server 4.x Design (DRAFT) 86

void writeCrtc(vgaHWPtr hwp, CARD8 index, CARD8 value)

Write value to CRTC register index.

CARD8 readCrtc(vgaHWPtr hwp, CARD8 index)

Return the value read from CRTC register index.
void writeGr(vgaHWPtr hwp, CARD8 index, CARD8 value)

Write value to Graphics Controller register index.

CARD8 readGR(vgaHWPtr hwp, CARD8 index)

Return the value read from Graphics Controller register index.

void writeSeq(vgaHWPtr hwp, CARD8 index, CARD8, value)

Write value to Sequencer register index.

CARD8 readSeq(vgaHWPtr hwp, CARD8 index)

Return the value read from Sequencer register index.

void writeAttr(vgaHWPtr hwp, CARD8 index, CARD8, value)

Write value to Attribute Controller register index. When writing out the
index value this function should set bit 5 (0x20) according to the setting of
hwp->paletteEnabled in order to preserve the palette access state. It
should be cleared when hwp->paletteEnabled is TRUE and set when it
is FALSE.

CARD8 readAttr(vgaHWPtr hwp, CARD8 index)

Return the value read from Attribute Controller register index. When
writing out the index value this function should set bit 5 (0x20) according
to the setting of hwp->paletteEnabled in order to preserve the palette
access state. It should be cleared when hwp->paletteEnabled is TRUE
and set when it is FALSE.

void writeMiscOut(vgaHWPtr hwp, CARD8 value)

Write ‘value’ to the Miscellaneous Output register.

CARD8 readMiscOut(vgwHWPtr hwp)

Return the value read from the Miscellaneous Output register.

void enablePalette(vgaHWPtr hwp)

Clear the palette address source bit in the Attribute Controller index regis-
ter and set hwp->paletteEnabled to TRUE.

void disablePalette(vgaHWPtr hwp)

Set the palette address source bit in the Attribute Controller index register
and set hwp->paletteEnabled to FALSE.

void writeDacMask(vgaHWPtr hwp, CARD8 value)

Write value to the DAC Mask register.

XFree86 server 4.x Design (DRAFT) 87

CARD8 readDacMask(vgaHWptr hwp)

Return the value read from the DAC Mask register.

void writeDacReadAddress(vgaHWPtr hwp, CARD8 value)

Write value to the DAC Read Address register.

void writeDacWriteAddress(vgaHWPtr hwp, CARD8 value)

Write value to the DAC Write Address register.

void writeDacData(vgaHWPtr hwp, CARD8 value)

Write value to the DAC Data register.

CARD8 readDacData(vgaHWptr hwp)

Return the value read from the DAC Data register.

CARD8 readEnable(vgaHWptr hwp)

Return the value read from the VGA Enable register. (Note: This function
is present in XFree86 4.1.0 and later.)

void writeEnable(vgaHWPtr hwp, CARD8 value)

Write value to the VGA Enable register. (Note: This function is present in
XFree86 4.1.0 and later.)

20. Some notes about writing a driver
NOTE: some parts of this are not up to date

The following is an outline for writing a basic unaccelerated driver for a PCI video card with a
linear mapped framebuffer, and which has a VGA core. It is includes some general information
that is relevant to most drivers (even those which don’t fit that basic description).

The information here is based on the initial conversion of the Matrox Millennium driver to the
‘‘new design’’. For a fleshing out and sample implementation of some of the bits outlined here,
refer to that driver. Note that this is an example only. The approach used here will not be appro-
priate for all drivers.

Each driver must reserve a unique driver name, and a string that is used to prefix all of its exter-
nally visible symbols. This is to avoid name space clashes when loading multiple drivers. The
examples here are for the ‘‘ZZZ’’ driver, which uses the ‘‘ZZZ’’ or ‘‘zzz’’ prefix for its externally
visible symbols.

20.1 Include files

All drivers normally include the following headers:

"xf86.h"

"xf86_OSproc.h"

"xf86_ansic.h"

"xf86Resources.h"

XFree86 server 4.x Design (DRAFT) 88

Wherever inb/outb (and related things) are used the following should be included:

"compiler.h"

Note: in drivers, this must be included after "xf86_ansic.h".

Drivers that need to access PCI vendor/device definitions need this:

"xf86PciInfo.h"

Drivers that need to access the PCI config space need this:

"xf86Pci.h"

Drivers using the mi banking wrapper need:

"mibank.h"

Drivers that initialise a SW cursor need this:

"mipointer.h"

All drivers implementing backing store need this:

"mibstore.h"

All drivers using the mi colourmap code need this:

"micmap.h"

If a driver uses the vgahw module, it needs this:

"vgaHW.h"

Drivers supporting VGA or Hercules monochrome screens need:

"xf1bpp.h"

Drivers supporting VGA or EGC 16-colour screens need:

"xf4bpp.h"

Drivers using cfb need:

#define PSZ 8

#include "cfb.h"

#undef PSZ

Drivers supporting bpp 16, 24 or 32 with cfb need one or more of:

"cfb16.h"

"cfb24.h"

"cfb32.h"

The driver’s own header file:

"zzz.h"

Drivers must NOT include the following:

XFree86 server 4.x Design (DRAFT) 89

"xf86Priv.h"

"xf86Privstr.h"

"xf86_libc.h"

"xf86_OSlib.h"

"Xos.h"

any OS header

20.2 Data structures and initialisation

• The following macros should be defined:

#define VERSION <version-as-an-int>

#define ZZZ_NAME "ZZZ" /* the name used to prefix messages */

#define ZZZ_DRIVER_NAME "zzz" /* the driver name as used in config file */

#define ZZZ_MAJOR_VERSION <int>

#define ZZZ_MINOR_VERSION <int>

#define ZZZ_PATCHLEVEL <int>

NOTE: ZZZ_DRIVER_NAME should match the name of the driver module without things
like the "lib" prefix, the "_drv" suffix or filename extensions.

• A DriverRec must be defined, which includes the functions required at the pre-probe phase.
The name of this DriverRec must be an upper-case version of ZZZ_DRIVER_NAME (for the
purposes of static linking).

DriverRec ZZZ = {

VERSION,

ZZZ_DRIVER_NAME,

ZZZIdentify,

ZZZProbe,

ZZZAvailableOptions,

NULL,

0

};

• Define list of supported chips and their matching ID:

static SymTabRec ZZZChipsets[] = {

{ PCI_CHIP_ZZZ1234, "zzz1234a" },

{ PCI_CHIP_ZZZ5678, "zzz5678a" },

{ -1, NULL }

};

The token field may be any integer value that the driver may use to uniquely identify the
supported chipsets. For drivers that support only PCI devices using the PCI device IDs
might be a natural choice, but this isn’t mandatory. For drivers that support both PCI and
other devices (like ISA), some other ID should probably used. When other IDs are used as
the tokens it is recommended that the names be defined as an enum type.

• If the driver uses the xf86MatchPciInstances() helper (recommended for drivers that
support PCI cards) a list that maps PCI IDs to chip IDs and fixed resources must be defined:

XFree86 server 4.x Design (DRAFT) 90

static PciChipsets ZZZPciChipsets[] = {

{ PCI_CHIP_ZZZ1234, PCI_CHIP_ZZZ1234, RES_SHARED_VGA },

{ PCI_CHIP_ZZZ5678, PCI_CHIP_ZZZ5678, RES_SHARED_VGA },

{ -1, -1, RES_UNDEFINED }

}

• Define the XF86ModuleVersionInfo struct for the driver. This is required for the
dynamically loaded version:

#ifdef XFree86LOADER

static XF86ModuleVersionInfo zzzVersRec =

{

"zzz",

MODULEVENDORSTRING,

MODINFOSTRING1,

MODINFOSTRING2,

XF86_VERSION_CURRENT,

ZZZ_MAJOR_VERSION, ZZZ_MINOR_VERSION, ZZZ_PATCHLEVEL,

ABI_CLASS_VIDEODRV,

ABI_VIDEODRV_VERSION,

MOD_CLASS_VIDEODRV,

{0,0,0,0}

};

#endif

• Define a data structure to hold the driver’s screen-specific data. This must be used instead
of global variables. This would be defined in the "zzz.h" file, something like:

typedef struct {

type1 field1;

type2 field2;

int fooHack;

Bool pciRetry;

Bool noAccel;

Bool hwCursor;

CloseScreenProcPtr CloseScreen;

OptionInfoPtr Options;

...

} ZZZRec, *ZZZPtr;

• Define the list of config file Options that the driver accepts. For consistency between
drivers those in the list of ‘‘standard’’ options should be used where appropriate before
inventing new options.

typedef enum {

OPTION_FOO_HACK,

OPTION_PCI_RETRY,

OPTION_HW_CURSOR,

OPTION_NOACCEL

} ZZZOpts;

static const OptionInfoRec ZZZOptions[] = {

{ OPTION_FOO_HACK, "FooHack", OPTV_INTEGER, {0}, FALSE },

{ OPTION_PCI_RETRY, "PciRetry", OPTV_BOOLEAN, {0}, FALSE },

{ OPTION_HW_CURSOR, "HWcursor", OPTV_BOOLEAN, {0}, FALSE },

{ OPTION_NOACCEL, "NoAccel", OPTV_BOOLEAN, {0}, FALSE },

{ -1, NULL, OPTV_NONE, {0}, FALSE }

};

XFree86 server 4.x Design (DRAFT) 91

20.3 Functions

20.3.1 SetupProc

For dynamically loaded modules, a ModuleData variable is required. It is should be the name of
the driver prepended to "ModuleData". A Setup() function is also required, which calls
xf86AddDriver() to add the driver to the main list of drivers.

#ifdef XFree86LOADER

static MODULESETUPPROTO(mgaSetup);

XF86ModuleData zzzModuleData = { &zzzVersRec, zzzSetup, NULL };

static pointer

zzzSetup(pointer module, pointer opts, int *errmaj, int *errmin)

{

static Bool setupDone = FALSE;

/* This module should be loaded only once, but check to be sure. */

if (!setupDone) {

/*

* Modules that this driver always requires may be loaded

* here by calling LoadSubModule().

*/

setupDone = TRUE;

xf86AddDriver(&MGA, module, 0);

/*

* The return value must be non-NULL on success even though

* there is no TearDownProc.

*/

return (pointer)1;

} else {

if (errmaj) *errmaj = LDR_ONCEONLY;

return NULL;

}

}

#endif

20.3.2 GetRec, FreeRec

A function is usually required to allocate the driver’s screen-specific data structure and hook it
into the ScrnInfoRec’s driverPrivate field. The ScrnInfoRec’s driverPrivate is ini-
tialised to NULL, so it is easy to check if the initialisation has already been done. After allocating
it, initialise the fields. By using xnfcalloc() to do the allocation it is zeroed, and if the alloca-
tion fails the server exits.

NOTE: When allocating structures from inside the driver which are defined on the common level
it is important to initialize the structure to zero. Only this guarantees that the server remains
source compatible to future changes in common level structures.

XFree86 server 4.x Design (DRAFT) 92

static Bool

ZZZGetRec(ScrnInfoPtr pScrn)

{

if (pScrn->driverPrivate != NULL)

return TRUE;

pScrn->driverPrivate = xnfcalloc(sizeof(ZZZRec), 1);

/* Initialise as required */

...

return TRUE;

}

Define a macro in "zzz.h" which gets a pointer to the ZZZRec when given pScrn:

#define ZZZPTR(p) ((ZZZPtr)((p)->driverPrivate))

Define a function to free the above, setting it to NULL once it has been freed:

static void

ZZZFreeRec(ScrnInfoPtr pScrn)

{

if (pScrn->driverPrivate == NULL)

return;

xfree(pScrn->driverPrivate);

pScrn->driverPrivate = NULL;

}

20.3.3 Identify

Define the Identify() function. It is run before the Probe, and typically prints out an identify-
ing message, which might include the chipsets it supports. This function is mandatory:

static void

ZZZIdentify(int flags)

{

xf86PrintChipsets(ZZZ_NAME, "driver for ZZZ Tech chipsets",

ZZZChipsets);

}

20.3.4 Probe

Define the Probe() function. The purpose of this is to find all instances of the hardware that the
driver supports, and for the ones not already claimed by another driver, claim the slot, and allo-
cate a ScrnInfoRec. This should be a minimal probe, and it should under no circumstances
leave the state of the hardware changed. Because a device is found, don’t assume that it will be
used. Don’t do any initialisations other than the required ScrnInfoRec initialisations. Don’t
allocate any new data structures.

This function is mandatory.

NOTE: The xf86DrvMsg() functions cannot be used from the Probe.

XFree86 server 4.x Design (DRAFT) 93

static Bool

ZZZProbe(DriverPtr drv, int flags)

{

Bool foundScreen = FALSE;

int numDevSections, numUsed;

GDevPtr *devSections;

int *usedChips;

int i;

/*

* Find the config file Device sections that match this

* driver, and return if there are none.

*/

if ((numDevSections = xf86MatchDevice(ZZZ_DRIVER_NAME,

&devSections)) <= 0) {

return FALSE;

}

/*

* Since this is a PCI card, "probing" just amounts to checking

* the PCI data that the server has already collected. If there

* is none, return.

*

* Although the config file is allowed to override things, it

* is reasonable to not allow it to override the detection

* of no PCI video cards.

*

* The provided xf86MatchPciInstances() helper takes care of

* the details.

*/

/* test if PCI bus present */

if (xf86GetPciVideoInfo()) {

numUsed = xf86MatchPciInstances(ZZZ_NAME, PCI_VENDOR_ZZZ,

ZZZChipsets, ZZZPciChipsets, devSections,

numDevSections, drv, &usedChips);

for (i = 0; i < numUsed; i++) {

ScrnInfoPtr pScrn = NULL;

if ((pScrn = xf86ConfigPciEntity(pScrn, flags, usedChips[i],

ZZZPciChipsets, NULL, NULL,

NULL, NULL, NULL))) {

/* Allocate a ScrnInfoRec */

pScrn->driverVersion = VERSION;

pScrn->driverName = ZZZ_DRIVER_NAME;

pScrn->name = ZZZ_NAME;

pScrn->Probe = ZZZProbe;

pScrn->PreInit = ZZZPreInit;

pScrn->ScreenInit = ZZZScreenInit;

pScrn->SwitchMode = ZZZSwitchMode;

pScrn->AdjustFrame = ZZZAdjustFrame;

pScrn->EnterVT = ZZZEnterVT;

pScrn->LeaveVT = ZZZLeaveVT;

pScrn->FreeScreen = ZZZFreeScreen;

pScrn->ValidMode = ZZZValidMode;

foundScreen = TRUE;

/* add screen to entity */

}

}

xfree(usedChips);

}

#ifdef HAS_ISA_DEVS

/*

* If the driver supports ISA hardware, the following block

XFree86 server 4.x Design (DRAFT) 94

* can be included too.

*/

numUsed = xf86MatchIsaInstances(ZZZ_NAME, ZZZChipsets,

ZZZIsaChipsets, drv, ZZZFindIsaDevice,

devSections, numDevSections, &usedChips);

for (i = 0; i < numUsed; i++) {

ScrnInfoPtr pScrn = NULL;

if ((pScrn = xf86ConfigIsaEntity(pScrn, flags, usedChips[i],

ZZZIsaChipsets, NULL, NULL, NULL,

NULL, NULL))) {

pScrn->driverVersion = VERSION;

pScrn->driverName = ZZZ_DRIVER_NAME;

pScrn->name = ZZZ_NAME;

pScrn->Probe = ZZZProbe;

pScrn->PreInit = ZZZPreInit;

pScrn->ScreenInit = ZZZScreenInit;

pScrn->SwitchMode = ZZZSwitchMode;

pScrn->AdjustFrame = ZZZAdjustFrame;

pScrn->EnterVT = ZZZEnterVT;

pScrn->LeaveVT = ZZZLeaveVT;

pScrn->FreeScreen = ZZZFreeScreen;

pScrn->ValidMode = ZZZValidMode;

foundScreen = TRUE;

}

}

xfree(usedChips);

#endif /* HAS_ISA_DEVS */

xfree(devSections);

return foundScreen;

20.3.5 AvailableOptions

Define the AvailableOptions() function. The purpose of this is to return the available driver
options back to the -configure option, so that an XF86Config file can be built and the user can see
which options are available for them to use.

20.3.6 PreInit

Define the PreInit() function. The purpose of this is to find all the information required to
determine if the configuration is usable, and to initialise those parts of the ScrnInfoRec that can
be set once at the beginning of the first server generation. The information should be found in
the least intrusive way possible.

This function is mandatory.

NOTES:

1. The PreInit() function is only called once during the life of the X server (at the start of
the first generation).

2. Data allocated here must be of the type that persists for the life of the X server. This means
that data that hooks into the ScrnInfoRec’s privates field should be allocated here,
but data that hooks into the ScreenRec’s devPrivates field should not be allocated
here. The driverPrivate field should also be allocated here.

3. Although the ScrnInfoRec has been allocated before this function is called, the Screen-
Rec has not been allocated. That means that things requiring it cannot be used in this
function.

4. Very little of the ScrnInfoRec has been initialised when this function is called. It is
important to get the order of doing things right in this function.

XFree86 server 4.x Design (DRAFT) 95

static Bool

ZZZPreInit(ScrnInfoPtr pScrn, int flags)

{

/* Fill in the monitor field */

pScrn->monitor = pScrn->confScreen->monitor;

/*

* If using the vgahw module, it will typically be loaded

* here by calling xf86LoadSubModule(pScrn, "vgahw");

*/

/*

* Set the depth/bpp. Use the globally preferred depth/bpp. If the

* driver has special default depth/bpp requirements, the defaults should

* be specified here explicitly.

* We support both 24bpp and 32bpp framebuffer layouts.

* This sets pScrn->display also.

*/

if (!xf86SetDepthBpp(pScrn, 0, 0, 0,

Support24bppFb | Support32bppFb)) {

return FALSE;

} else {

if (depth/bpp isn’t one we support) {

print error message;

return FALSE;

}

}

/* Print out the depth/bpp that was set */

xf86PrintDepthBpp(pScrn);

/* Set bits per RGB for 8bpp */

if (pScrn->depth <= 8) {

/* Take into account a dac_6_bit option here */

pScrn->rgbBits = 6 or 8;

}

/*

* xf86SetWeight() and xf86SetDefaultVisual() must be called

* after pScrn->display is initialised.

*/

/* Set weight/mask/offset for depth > 8 */

if (pScrn->depth > 8) {

if (!xf86SetWeight(pScrn, defaultWeight, defaultMask)) {

return FALSE;

} else {

if (weight isn’t one we support) {

print error message;

return FALSE;

}

}

}

/* Set the default visual. */

if (!xf86SetDefaultVisual(pScrn, -1)) {

return FALSE;

} else {

if (visual isn’t one we support) {

print error message;

return FALSE;

}

}

/* If the driver supports gamma correction, set the gamma. */

if (!xf86SetGamma(pScrn, default_gamma)) {

XFree86 server 4.x Design (DRAFT) 96

return FALSE;

}

/* This driver uses a programmable clock */

pScrn->progClock = TRUE;

/* Allocate the ZZZRec driverPrivate */

if (!ZZZGetRec(pScrn)) {

return FALSE;

}

pZzz = ZZZPTR(pScrn);

/* Collect all of the option flags (fill in pScrn->options) */

xf86CollectOptions(pScrn, NULL);

/*

* Process the options based on the information in ZZZOptions.

* The results are written to pZzz->Options. If all of the options

* processing is done within this function a local variable "options"

* can be used instead of pZzz->Options.

*/

if (!(pZzz->Options = xalloc(sizeof(ZZZOptions))))

return FALSE;

(void)memcpy(pZzz->Options, ZZZOptions, sizeof(ZZZOptions));

xf86ProcessOptions(pScrn->scrnIndex, pScrn->options, pZzz->Options);

/*

* Set various fields of ScrnInfoRec and/or ZZZRec based on

* the options found.

*/

from = X_DEFAULT;

pZzz->hwCursor = FALSE;

if (xf86IsOptionSet(pZzz->Options, OPTION_HW_CURSOR)) {

from = X_CONFIG;

pZzz->hwCursor = TRUE;

}

xf86DrvMsg(pScrn->scrnIndex, from, "Using %s cursor\n",

pZzz->hwCursor ? "HW" : "SW");

if (xf86IsOptionSet(pZzz->Options, OPTION_NOACCEL)) {

pZzz->noAccel = TRUE;

xf86DrvMsg(pScrn->scrnIndex, X_CONFIG,

"Acceleration disabled\n");

} else {

pZzz->noAccel = FALSE;

}

if (xf86IsOptionSet(pZzz->Options, OPTION_PCI_RETRY)) {

pZzz->UsePCIRetry = TRUE;

xf86DrvMsg(pScrn->scrnIndex, X_CONFIG, "PCI retry enabled\n");

}

pZzz->fooHack = 0;

if (xf86GetOptValInteger(pZzz->Options, OPTION_FOO_HACK,

&pZzz->fooHack)) {

xf86DrvMsg(pScrn->scrnIndex, X_CONFIG, "Foo Hack set to %d\n",

pZzz->fooHack);

}

/*

* Find the PCI slot(s) that this screen claimed in the probe.

* In this case, exactly one is expected, so complain otherwise.

* Note in this case we’re not interested in the card types so

* that parameter is set to NULL.

*/

if ((i = xf86GetPciInfoForScreen(pScrn->scrnIndex, &pciList, NULL))

!= 1) {

XFree86 server 4.x Design (DRAFT) 97

print error message;

ZZZFreeRec(pScrn);

if (i > 0)

xfree(pciList);

return FALSE;

}

/* Note that pciList should be freed below when no longer needed */

/*

* Determine the chipset, allowing config file chipset and

* chipid values to override the probed information. The config

* chipset value has precedence over its chipid value if both

* are present.

*

* It isn’t necessary to fill in pScrn->chipset if the driver

* keeps track of the chipset in its ZZZRec.

*/

...

/*

* Determine video memory, fb base address, I/O addresses, etc,

* allowing the config file to override probed values.

*

* Set the appropriate pScrn fields (videoRam is probably the

* most important one that other code might require), and

* print out the settings.

*/

...

/* Initialise a clockRanges list. */

...

/* Set any other chipset specific things in the ZZZRec */

...

/* Select valid modes from those available */

i = xf86ValidateModes(pScrn, pScrn->monitor->Modes,

pScrn->display->modes, clockRanges,

NULL, minPitch, maxPitch, rounding,

minHeight, maxHeight,

pScrn->display->virtualX,

pScrn->display->virtualY,

pScrn->videoRam * 1024,

LOOKUP_BEST_REFRESH);

if (i == -1) {

ZZZFreeRec(pScrn);

return FALSE;

}

/* Prune the modes marked as invalid */

xf86PruneDriverModes(pScrn);

/* If no valid modes, return */

if (i == 0 || pScrn->modes == NULL) {

print error message;

ZZZFreeRec(pScrn);

return FALSE;

}

XFree86 server 4.x Design (DRAFT) 98

/*

* Initialise the CRTC fields for the modes. This driver expects

* vertical values to be halved for interlaced modes.

*/

xf86SetCrtcForModes(pScrn, INTERLACE_HALVE_V);

/* Set the current mode to the first in the list. */

pScrn->currentMode = pScrn->modes;

/* Print the list of modes being used. */

xf86PrintModes(pScrn);

/* Set the DPI */

xf86SetDpi(pScrn, 0, 0);

/* Load bpp-specific modules */

switch (pScrn->bitsPerPixel) {

case 1:

mod = "xf1bpp";

break;

case 4:

mod = "xf4bpp";

break;

case 8:

mod = "cfb";

break;

case 16:

mod = "cfb16";

break;

case 24:

mod = "cfb24";

break;

case 32:

mod = "cfb32";

break;

}

if (mod && !xf86LoadSubModule(pScrn, mod))

ZZZFreeRec(pScrn);

return FALSE;

/* Load XAA if needed */

if (!pZzz->noAccel || pZzz->hwCursor)

if (!xf86LoadSubModule(pScrn, "xaa")) {

ZZZFreeRec(pScrn);

return FALSE;

}

/* Done */

return TRUE;

}

20.3.7 MapMem, UnmapMem

Define functions to map and unmap the video memory and any other memory apertures
required. These functions are not mandatory, but it is often useful to have such functions.

XFree86 server 4.x Design (DRAFT) 99

static Bool

ZZZMapMem(ScrnInfoPtr pScrn)

{

/* Call xf86MapPciMem() to map each PCI memory area */

...

return TRUE or FALSE;

}

static Bool

ZZZUnmapMem(ScrnInfoPtr pScrn)

{

/* Call xf86UnMapVidMem() to unmap each memory area */

...

return TRUE or FALSE;

}

20.3.8 Save , Restore

Define functions to save and restore the original video state. These functions are not mandatory,
but are often useful.

static void

ZZZSave(ScrnInfoPtr pScrn)

{

/*

* Save state into per-screen data structures.

* If using the vgahw module, vgaHWSave will typically be

* called here.

*/

...

}

static void

ZZZRestore(ScrnInfoPtr pScrn)

{

/*

* Restore state from per-screen data structures.

* If using the vgahw module, vgaHWRestore will typically be

* called here.

*/

...

}

20.3.9 ModeInit

Define a function to initialise a new video mode. This function isn’t mandatory, but is often use-
ful.

static Bool

ZZZModeInit(ScrnInfoPtr pScrn, DisplayModePtr mode)

{

/*

* Program a video mode. If using the vgahw module,

* vgaHWInit and vgaRestore will typically be called here.

* Once up to the point where there can’t be a failure

* set pScrn->vtSema to TRUE.

*/

...

}

XFree86 server 4.x Design (DRAFT) 100

20.3.10 ScreenInit

Define the ScreenInit() function. This is called at the start of each server generation, and
should fill in as much of the ScreenRec as possible as well as any other data that is initialised
once per generation. It should initialise the framebuffer layers it is using, and initialise the initial
video mode.

This function is mandatory.

NOTE: The ScreenRec (pScreen) is passed to this driver, but it and the ScrnInfoRecs are not
yet hooked into each other. This means that in this function, and functions it calls, one cannot be
found from the other.

static Bool

ZZZScreenInit(int scrnIndex, ScreenPtr pScreen, int argc, char **argv)

{

/* Get the ScrnInfoRec */

pScrn = xf86Screens[pScreen->myNum];

/*

* If using the vgahw module, its data structures and related

* things are typically initialised/mapped here.

*/

/* Save the current video state */

ZZZSave(pScrn);

/* Initialise the first mode */

ZZZModeInit(pScrn, pScrn->currentMode);

/* Set the viewport if supported */

ZZZAdjustFrame(scrnIndex, pScrn->frameX0, pScrn->frameY0, 0);

/*

* Setup the screen’s visuals, and initialise the framebuffer

* code.

*/

/* Reset the visual list */

miClearVisualTypes();

/*

* Setup the visuals supported. This driver only supports

* TrueColor for bpp > 8, so the default set of visuals isn’t

* acceptable. To deal with this, call miSetVisualTypes with

* the appropriate visual mask.

*/

if (pScrn->bitsPerPixel > 8) {

if (!miSetVisualTypes(pScrn->depth, TrueColorMask,

pScrn->rgbBits, pScrn->defaultVisual))

return FALSE;

} else {

if (!miSetVisualTypes(pScrn->depth,

miGetDefaultVisualMask(pScrn->depth),

pScrn->rgbBits, pScrn->defaultVisual))

return FALSE;

}

/*

* Initialise the framebuffer.

*/

switch (pScrn->bitsPerPixel) {

XFree86 server 4.x Design (DRAFT) 101

case 1:

ret = xf1bppScreenInit(pScreen, FbBase,

pScrn->virtualX, pScrn->virtualY,

pScrn->xDpi, pScrn->yDpi,

pScrn->displayWidth);

break;

case 4:

ret = xf4bppScreenInit(pScreen, FbBase,

pScrn->virtualX, pScrn->virtualY,

pScrn->xDpi, pScrn->yDpi,

pScrn->displayWidth);

break;

case 8:

ret = cfbScreenInit(pScreen, FbBase,

pScrn->virtualX, pScrn->virtualY,

pScrn->xDpi, pScrn->yDpi,

pScrn->displayWidth);

break;

case 16:

ret = cfb16ScreenInit(pScreen, FbBase,

pScrn->virtualX, pScrn->virtualY,

pScrn->xDpi, pScrn->yDpi,

pScrn->displayWidth);

break;

case 24:

ret = cfb24ScreenInit(pScreen, FbBase,

pScrn->virtualX, pScrn->virtualY,

pScrn->xDpi, pScrn->yDpi,

pScrn->displayWidth);

break;

case 32:

ret = cfb32ScreenInit(pScreen, FbBase,

pScrn->virtualX, pScrn->virtualY,

pScrn->xDpi, pScrn->yDpi,

pScrn->displayWidth);

break;

default:

print a message about an internal error;

ret = FALSE;

break;

}

if (!ret)

return FALSE;

/* Override the default mask/offset settings */

if (pScrn->bitsPerPixel > 8) {

for (i = 0, visual = pScreen->visuals;

i < pScreen->numVisuals; i++, visual++) {

if ((visual->class | DynamicClass) == DirectColor) {

visual->offsetRed = pScrn->offset.red;

visual->offsetGreen = pScrn->offset.green;

visual->offsetBlue = pScrn->offset.blue;

visual->redMask = pScrn->mask.red;

visual->greenMask = pScrn->mask.green;

visual->blueMask = pScrn->mask.blue;

}

}

}

/*

* If banking is needed, initialise an miBankInfoRec (defined in

* "mibank.h"), and call miInitializeBanking().

*/

if (!miInitializeBanking(pScreen, pScrn->virtualX, pScrn->virtualY,

XFree86 server 4.x Design (DRAFT) 102

pScrn->displayWidth, pBankInfo))

return FALSE;

/*

* If backing store is to be supported (as is usually the case),

* initialise it.

*/

miInitializeBackingStore(pScreen);

/*

* Set initial black & white colourmap indices.

*/

xf86SetBlackWhitePixels(pScreen);

/*

* Install colourmap functions. If using the vgahw module,

* vgaHandleColormaps would usually be called here.

*/

...

/*

* Initialise cursor functions. This example is for the mi

* software cursor.

*/

miDCInitialize(pScreen, xf86GetPointerScreenFuncs());

/* Initialise the default colourmap */

switch (pScrn->depth) {

case 1:

if (!xf1bppCreateDefColormap(pScreen))

return FALSE;

break;

case 4:

if (!xf4bppCreateDefColormap(pScreen))

return FALSE;

break;

default:

if (!cfbCreateDefColormap(pScreen))

return FALSE;

break;

}

/*

* Wrap the CloseScreen vector and set SaveScreen.

*/

ZZZPTR(pScrn)->CloseScreen = pScreen->CloseScreen;

pScreen->CloseScreen = ZZZCloseScreen;

pScreen->SaveScreen = ZZZSaveScreen;

/* Report any unused options (only for the first generation) */

if (serverGeneration == 1) {

xf86ShowUnusedOptions(pScrn->scrnIndex, pScrn->options);

}

/* Done */

return TRUE;

}

20.3.11 SwitchMode

Define the SwitchMode() function if mode switching is supported by the driver.

XFree86 server 4.x Design (DRAFT) 103

static Bool

ZZZSwitchMode(int scrnIndex, DisplayModePtr mode, int flags)

{

return ZZZModeInit(xf86Screens[scrnIndex], mode);

}

20.3.12 AdjustFrame

Define the AdjustFrame() function if the driver supports this.

static void

ZZZAdjustFrame(int scrnIndex, int x, int y, int flags)

{

/* Adjust the viewport */

}

20.3.13 EnterVT, LeaveVT

Define the EnterVT() and LeaveVT() functions.

These functions are mandatory.

static Bool

ZZZEnterVT(int scrnIndex, int flags)

{

ScrnInfoPtr pScrn = xf86Screens[scrnIndex];

return ZZZModeInit(pScrn, pScrn->currentMode);

}

static void

ZZZLeaveVT(int scrnIndex, int flags)

{

ScrnInfoPtr pScrn = xf86Screens[scrnIndex];

ZZZRestore(pScrn);

}

20.3.14 CloseScreen

Define the CloseScreen() function:

This function is mandatory. Note that it unwraps the previously wrapped pScreen->Clos-

eScreen, and finishes by calling it.

static Bool

ZZZCloseScreen(int scrnIndex, ScreenPtr pScreen)

{

ScrnInfoPtr pScrn = xf86Screens[scrnIndex];

if (pScrn->vtSema) {

ZZZRestore(pScrn);

ZZZUnmapMem(pScrn);

}

pScrn->vtSema = FALSE;

pScreen->CloseScreen = ZZZPTR(pScrn)->CloseScreen;

return (*pScreen->CloseScreen)(scrnIndex, pScreen);

}

20.3.15 SaveScreen

Define the SaveScreen() function (the screen blanking function). When using the vgahw mod-
ule, this will typically be:

XFree86 server 4.x Design (DRAFT) 104

static Bool

ZZZSaveScreen(ScreenPtr pScreen, int mode)

{

return vgaHWSaveScreen(pScreen, mode);

}

This function is mandatory. Before modifying any hardware register directly this function needs
to make sure that the Xserver is active by checking if pScrn is non-NULL and for
pScrn->vtSema == TRUE.

20.3.16 FreeScreen

Define the FreeScreen() function. This function is optional. It should be defined if the Scrn-
InfoRec driverPrivate field is used so that it can be freed when a screen is deleted by the
common layer for reasons possibly beyond the driver’s control. This function is not used in dur-
ing normal (error free) operation. The per-generation data is freed by the CloseScreen() func-
tion.

static void

ZZZFreeScreen(int scrnIndex, int flags)

{

/*

* If the vgahw module is used vgaHWFreeHWRec() would be called

* here.

*/

ZZZFreeRec(xf86Screens[scrnIndex]);

}

XFree86 server 4.x Design (DRAFT) 105

CONTENTS

1. Preface .. 1

2. The XF86Config File ... 1
2.1 Device section ... 2
2.2 Screen section ... 2
2.3 InputDevice section ... 2
2.4 ServerLayout section ... 2
2.5 Options .. 3

3. Driver Interface ... 4

4. Resource Access Control Introduction .. 5
4.1 Terms and Definitions ... 5

5. Control Flow in the Server and Mandatory Driver Functions ... 6
5.1 Parse the XF86Config file .. 6
5.2 Initial processing of parsed information and command line options 6
5.3 Enable port I/O access .. 6
5.4 General bus probe .. 6
5.5 Load initial set of modules ... 7
5.6 Register Video and Input Drivers .. 7
5.7 Initialise Access Control .. 8
5.8 Video Driver Probe .. 8
5.9 Matching Screens ... 10
5.10 Allocate non-conflicting resources .. 10
5.11 Sort the Screens and pre-check Monitor Information ... 10
5.12 PreInit ... 11
5.13 Cleaning up Unused Drivers ... 13
5.14 Consistency Checks ... 13
5.15 Check if Resource Control is Needed ... 13
5.16 AddScreen (ScreenInit) ... 13
5.17 Finalising RAC Initialisation .. 14
5.18 Finishing InitOutput() ... 15
5.19 Mode Switching ... 15
5.20 Changing Viewport ... 15
5.21 VT Switching .. 15
5.22 End of server generation ... 16

6. Optional Driver Functions ... 17
6.1 Mode Validation ... 17
6.2 Free screen data .. 17

7. Recommended driver functions ... 18
7.1 Save .. 18
7.2 Restore ... 18
7.3 Initialise Mode .. 18

8. Data and Data Structures ... 18
8.1 Command line data ... 18
8.2 Data handling ... 19
8.3 Accessing global data .. 20
8.4 Allocating private data .. 20

i

9. Keeping Track of Bus Resources ... 22
9.1 Theory of Operation .. 22
9.2 Resource Types ... 23
9.3 Available Functions ... 24

10. Config file ‘‘Option’’ entries .. 33

11. Modules, Drivers, Include Files and Interface Issues .. 37
11.1 Include files ... 37

12. Offscreen Memory Manager ... 38

13. Colormap Handling ... 41

14. DPMS Extension ... 42

15. DGA Extension .. 43

16. The XFree86 X Video Extension (Xv) Device Dependent Layer .. 48

17. The Loader ... 56
17.1 Loader Overview ... 56
17.2 Semi-private Loader Interface .. 57
17.3 Module Requirements ... 59
17.4 Public Loader Interface ... 63
17.5 Special Registration Functions ... 65

18. Helper Functions ... 66
18.1 Functions for printing messages .. 66
18.2 Functions for setting values based on command line and config file 68
18.3 Primary Mode functions ... 72
18.4 Secondary Mode functions ... 77
18.5 Functions for handling strings and tokens .. 79
18.6 Functions for finding which config file entries to use .. 79
18.7 Probing discrete clocks on old hardware ... 79
18.8 Other helper functions .. 80

19. The vgahw module ... 80
19.1 Data Structures ... 80
19.2 General vgahw Functions ... 81
19.3 VGA Colormap Functions .. 85
19.4 VGA Register Access Functions .. 85

20. Some notes about writing a driver ... 87
20.1 Include files ... 87
20.2 Data structures and initialisation .. 89
20.3 Functions ... 91

$XFree86: xc/programs/Xserver/hw/xfree86/doc/sgml/DESIGN.sgml,v 1.54 2003/12/19 20:38:57 dawes Exp $

ii

