XEmacs Lisp Reference Manual

Version 3.4 (for XEmacs 21.1), May 1999

by Ben Wing

Based on the GNU Emacs Lisp Reference Manual
by Bil Lewis, Dan LaLiberte, Richard Stallman
and the GNU Manual Group

Copyright (© 1990, 1991, 1992, 1993, 1994, 1995 Free Software Foundation, Inc. Copyright (©
1994, 1995 Sun Microsystems, Inc. Copyright (© 1995, 1996 Ben Wing.

Version 3.3
Revised for XEmacs Versions 21.1,
April 1998.

Permission is granted to make and distribute verbatim copies of this manual provided the copy-
right notice and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of this manual under the con-
ditions for verbatim copying, provided also that the section entitled “GNU General Public
License” is included exactly as in the original, and provided that the entire resulting derived
work is distributed under the terms of a permission notice identical to this one.

Permission is granted to copy and distribute translations of this manual into another language,
under the above conditions for modified versions, except that the section entitled “GNU General
Public License” may be included in a translation approved by the Free Software Foundation
instead of in the original English.

Cover art by Etienne Suvasa.

Short Contents

GNU GENERAL PUBLICLICENSE ..t v v v it i et iie e eneenns 1
1 Introductioneevevineeeeeeeeeeennnnoeeeeeonss 7
2 LispData Types. e eeeeeeeeeeeeeeeeeeeeeoseeennns 13
3 Numbers.......ooiiiiinniiineeeeiieeennnnnnns 41
4 Strings and Characters « o v oo v vt ev et eveeeenweeeenees 0D
T 17 1 71
6 Sequences, Arrays, and Vectors . e v v v v v v vt vt vt eeennnns 93
7 Symbols. ..ttt ittt i i e e 101
8 Evaluationeeiiiiiiiiii ittt eeeenns 109
9 Control Structures. o v v v v v v v v e oo et eeeeesennnenns 117
10 Variables o o v v v v v ittt ittt 131
11 FUNCtiONS . e o o v v e oo v v oo s oesssoesosoesssoocsssssss 147
12 MACTOS ¢ o o v e oo oo v oo s vosssocssoocsssscsssoocssss 161
13 Writing Customization Definitions . « o o v e v v v v v v e e v 169
14 Loading ..o eeeeeeooeneeeeeeeeeessesnnnnnooonsss 177
15 Byte Compilation « o v v oo v vt en e et in et eeeeeennenas 187
16 Debugging Lisp Programs. . .« v oo v v e e v e e v v vvennnnns 197
17 Reading and Printing Lisp Objects « v v v v v v v e oo e vnn 227
18 Minibuffers. v v v oo oo v v vt v it e e e eeeessoeeeeocons 237
19 Command LOOp « v v v v v v v vneeeeeneeennsnnnoeeens 255
20 Keymaps ¢ o o oo vvvveeeeeesssosssosoeeooossssesss 285
21 MENUS o ¢ o e e oo v v v oo oeessoesssocsssocsssossssoes 305
22 Dialog BOXES & v v v v v oo e e eeeeeeeesssosssoeees 315
23 Toolbar v oo v i vttt i i e i i e i e 317
T 0] L 2 s s
25 Dragand DIop e eeee e oottt eenennnneeeeens 325
26 Major and Minor Modeso v v v ennnnnnneeens 327
27 Documentation . oo oo v v s eessseesssossssossssons 345
S s 1 B
29 Backups and Auto-Saving. . . e oo v e e vttt 383
30 Buffers oo oo v v i ittt it i i i i i e i i 391
31 Windows ¢ v v v v v v vveeeeeeeoeessnsooeeaoosssssos 403
32 Frames ¢ oo e vveeseesesoesssocsssosssssosssonsss 425
33 Consoles and DeviceS . v v v v v v oo oo oo oveeeossoosssss 437
34 POSItIONS 4 e o o v v e oo v v evssossssossssosssssosssssns 441

o
(@34

ii XEmacs Lisp Reference Manual

] 5 463
37 Searching and Matchingcc0vvviieiiiieennn. 495
38 Syntax Tables....oveeeinnnneiiiiieeennnnneeees D13
39 Abbrevs And Abbrev Expansion « « v v v v v v v v e e it iiita... 523
40 EXtentsS o oo oo v e s et eeeesoesssossssocsssoosss 529
A1 Specifiers v v v v oo vttt i i ittt i e 541
42 Faces and Window-System Objects . oo oo v v v v v venn.. 555
T (1 T 565
44 AnnotationsS ... v v e v v e v v e v essnssnnnnonens 579
45 Emacs Display « o v v v v v v ittt i it 585
46 Hash Tables e oo v v v i i it i i i ettt it i i i iineenns 601
47 Range Tables . v v oo i it ittt i iiii ittt ieennnnnns 603
48 Databases ¢ v v v v vttt ittt i i i i i e 605
49 PTOCESSES ¢ ¢ o o o o 000 o0 oossoessssssssosssssssssses 607
50 Operating System Interfaceo, 623
51 Functions Specific to the X Window System + . ..o v oo oo 643
52 ToolTalk SUPPOTt « v v v v v et e et e s e e vveeeessssssss 649
53 LDAP SUpport v v v v v v e v i i ittt i ittt 655
54 Internationalization . « v o v v v v v e e ettt ittt 659
55 MULE . . ittt ittt ittt iieeseneesseensseennsas 663
Appendix A Tipsand Standards « « o v oo v v v e v v e ieneeeenn. 685
Appendix B Building XEmacs; Allocation of Objects « v oo v v u.. 693
Appendix C Standard Errors. .« o oo v oo v vt oo eeeeeneesnnns 701
Appendix D Buffer-Local Variablesc00eeeeenn... 705
Appendix E Standard Keymaps. « « v o v v v v e v v v i i ennnnn. 709
Appendix F' Standard HOOKS . « v v v v v v v v v e e eeeennnns 711

Table of Contents

GNU GENERAL PUBLIC LICENSE 1
Preamble 1
TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND

MODIFICATION . . oo e 1
How to Apply These Terms to Your New Programs................. 5

1 Introduction................. 7
11 Caveats. ..o 7
1.2 Lisp History ... 8
1.3 CONVENTIONS . « .\ttt ettt et e e e e e e 8

1.3.1 Some Termsooniii 8

1.32 niland to 8

1.3.3 Evaluation Notation 9

1.3.4 Printing Notation........... 9

1.3.5 Error Messagesuiiiiniiiiniii. 9

1.3.6 Buffer Text Notation............................... 10

1.3.7 Format of Descriptions 10

1.3.7.1 A Sample Function Description............. 10

1.3.7.2 A Sample Variable Description............. 11

1.4 Acknowledgementsiiiiii 12

2 LispDataTypes........ccvviiiiiiinnninnnnn, 13
2.1 Printed Representation and Read Syntax..................... 13
2.2 Commentsooi 14
2.3 Primitive Types.o 14
2.4 Programming Types..........ooiiimineiinn., 15

2.4.1 Integer Typeo 16
2.4.2 Floating Point Type, 16
2.4.3 Character Type........o. i 16
2.4.4 Symbol Type. ... i 18
2.4.5 Sequence Types..........ooiiiiiiiniiiin ... 19
2.4.6 Cons Cell and List Types..............oo... 20
2.4.6.1 Dotted Pair Notation...................... 21

2.4.6.2 Association List Type 22

2.4.7 Array Type ..o 22
2.4.8 String Type 22
2.4.9 Vector Type.....oooii 23
2.4.10 Bit Vector Type ... 23
2.4.11 Function Type...... ... i 24
2412 Macro Type 24
2.4.13 Primitive Function Type 24
2.4.14 Compiled-Function Type 25
2.4.15 Autoload Type ... 25
2.4.16 Char Table Type ... 25
2.4.17 Hash Table Type i 25
2.4.18 Range Table Typecoo i, 25
2.4.19 Weak List Type ... 26
2.5 Editing Types.ot 26

2.5.1 Buffer Typeo 26

iii

XEmacs Lisp Reference Manual

iv

2.5.2 Marker Typeoooiii 27

2.5.3 Extent Type..... ..o 27

2.5.4 Window Typecoovnii 27

2.5.5 Frame Type........o 28

2.5.6 Device Type.o 28

2.5.7 Console Type. 28

2.5.8 Window Configuration Type........................ 29

259 Event Typeo 29

2.5.10 Process Type......covvuniinni i 29

2.5.11 Stream Type ..o 29

2.5.12 Keymap Type ... 30

2.5.13 Syntax Table Type...........cooo ... 30

2.5.14 Display Table Type........ ... o ... 30

2.5.15 Database Type 30

2.5.16 Charset Type.. ... 30

2.5.17 Coding System Type............ooiiiiii ... 30

2.5.18 ToolTalk Message Typecoovviiiiii ... 31

2.5.19 ToolTalk Pattern Type............ 31

2.6 Window-System Types....... ..o, 31
2.6.1 Face Type....covvoniii 31

2.6.2 Glyph Typeo 31

2.6.3 Specifier Type......ooviiii 31

2.6.4 Font Instance Type o . 31

2.6.5 Color Instance Type ... 31

2.6.6 Image Instance Type.............cooii .. 31

2.6.7 Toolbar Button Type 31

2.6.8 Subwindow Type ... 32

2.6.9 X Resource Typeoooiiiiiiiiiiiiii.. 32

2.7 Type Predicates........ ... 32
2.8 Equality Predicates........... 37
3 Numbers.............iiiiiiiiiiii... 41
3.1 Integer Basics........oouii 41
3.2 Floating Point Basics.......... 42
3.3 Type Predicates for Numbers................................ 42
3.4 Comparison of Numbers 43
3.5 Numeric Conversionsouuineiiineeiinn. .. 45
3.6 Arithmetic Operations............... ... 45
3.7 Rounding Operations................ooiiiiiiiiinnnne.. 48
3.8 Bitwise Operations on Integers 48
3.9 Standard Mathematical Functions 52

3.10 Random Numbers......... 53

4 Strings and Characters....................... 55

4.1 String and Character Basics................, 55
4.2 The Predicates for Strings.............. 55
4.3 Creating Strings.ouuunr e 56
4.4 The Predicates for Characters............................... 58
4.5 Character Codeso 58
4.6 Comparison of Characters and Strings 59
4.7 Conversion of Characters and Strings 60
4.8 Modifying Strings ... 62
4.9 String Properties....... ... 62
4.10 Formatting Stringsooo i 62
4.11 Character Case.uiin e 65
4.12 The Case Table 66
4.13 The Char Table 68
4.13.1 Char Table Types 68

4.13.2 Working With Char Tables........................ 69

5 S 75 13 1= 71
5.1 Listsand Cons Cells......... ... 71
5.2 Lists as Linked Pairs of Boxes 71
5.3 Predicates on Lists 72
5.4 Accessing Elements of Lists 73
5.5 Building Cons Cells and Lists 76
5.6 Modifying Existing List Structure 78
5.6.1 Altering List Elements with setcar................. 78

5.6.2 Altering the CDR of a List 80

5.6.3 Functions that Rearrange Lists 81

5.7 Using Lists as Setso 83
5.8 Association Lists 85
5.9 Property Lists. ... 88
5.9.1 Working With Normal Plists........................ 89

5.9.2 Working With Lax Plists........................... 90

5.9.3 Converting Plists To/From Alists 90

510 Weak Lists. ... 91
6 Sequences, Arrays, and Vectors............... 93
0.1 SeqUENCES.ttt 93
6.2 ATTAYS. oottt ettt e e e e 95
6.3 Functions that Operate on Arraysuia.. 96
6.4 VeCtorst 97
6.5 Functions That Operate on Vectors.......................... 98
6.6 Bit Vectors ... 99
6.7 Functions That Operate on Bit Vectors 99
7 Symbolsciiiiiiiiiiia.. 101
7.1 Symbol Components................oo ... 101
7.2 Defining Symbols........... 102
7.3 Creating and Interning Symbols 103
7.4 Symbol Properties............coo i 105
7.4.1 Property Lists and Association Lists 105

7.4.2 Property List Functions for Symbols 106

7.4.3 Property Lists Outside Symbols.................... 107

vi XEmacs Lisp Reference Manual

8 Evaluation.................... i, 109
81 Eval. .. .o 109
8.2 Kindsof Forms........... 111

8.2.1 Self-Evaluating Forms............................. 111
8.2.2 Symbol Forms............... 112
8.2.3 Classification of List Forms........................ 112
8.2.4 Symbol Function Indirection....................... 112
8.2.5 Evaluation of Function Forms...................... 114
8.2.6 Lisp Macro Evaluation............................ 114
8.2.7 Special Forms 114
8.2.8 Autoloading............... . i 116
8.3 QUOtING 116

9 Control Structures.......................... 117
9.1 SeqUENCINGttt 117
9.2 ConditionalS 118
9.3 Constructs for Combining Conditions 119
9.4 Tteration......... ..o 121
9.5 Nomlocal Exits 121

9.5.1 Explicit Nonlocal Exits: catch and throw.......... 121
9.5.2 Examples of catch and throw 123
9.5.3 EITOrS ... 123
9.5.3.1 How to Signal an Error................... 124
9.5.3.2 How XEmacs Processes Errors 125
9.5.3.3 Writing Code to Handle Errors............ 125
9.5.3.4 Error Symbols and Condition Names 127
9.5.4 Cleaning Up from Nonlocal Exits 128

10 Variables............. it 131
10.1 Global Variables i 131
10.2 Variables That Never Change 131
10.3 Local Variables.......... 132
10.4 When a Variable is “Void” 133
10.5 Defining Global Variables................................. 134
10.6 Accessing Variable Values................................. 137
10.7 How to Alter a Variable Value............................. 137
10.8 Scoping Rules for Variable Bindings 139

10.8. 1 SCOPE . vttt 139
10.8.2 Extent........ ... 140
10.8.3 Implementation of Dynamic Scoping 140
10.8.4 Proper Use of Dynamic Scoping................... 141
10.9 Buffer-Local Variables 141
10.9.1 Introduction to Buffer-Local Variables............. 141
10.9.2 Creating and Deleting Buffer-Local Bindings. 142
10.9.3 The Default Value of a Buffer-Local Variable 144

10.10 Variable ALASeS 145

11 Functions............oiiiiiiiiinnnnnnn. 147
11.1 What Is a Function?......... 147

11.2 Lambda Expressions.............. ..., 148

11.2.1 Components of a Lambda Expression.............. 148

11.2.2 A Simple Lambda-Expression Example............ 149

11.2.3 Advanced Features of Argument Lists............. 149

11.2.4 Documentation Strings of Functions............... 150

11.3 Naming a Function........... 151

11.4 Defining Functions 151

11.5 Calling Functions i 153

11.6 Mapping Functions........... i 154

11.7 Anonymous Functions 155

11.8 Accessing Function Cell Contents.......................... 156

11.9 Inline Functions.......... i 158

11.10 Other Topics Related to Functions........................ 158

12 Macros ...ttt i i 161
12.1 A Simple Example of a Macro............................. 161

12.2 Expansion of a Macro Call............. 161

12.3 Macros and Byte Compilation............................. 162

12,4 Defining Macros. ... 162

12.5 Backquote....... ... 163

12.6 Common Problems Using Macros.......................... 164

12.6.1 Evaluating Macro Arguments Repeatedly.......... 164

12.6.2 Local Variables in Macro Expansions.............. 165

12.6.3 Evaluating Macro Arguments in Expansion........ 166

12.6.4 How Many Times is the Macro Expanded?......... 166

13 Writing Customization Definitions.......... 169
13.1 Common Keywords for All Kinds of Ttems.................. 169

13.2 Defining Custom Groups.c.couuuiinnneeeeiei. 170

13.3 Defining Customization Variables.......................... 170

13.4 Customization Types ..., 172

13.4.1 Simple Types. ... 172

13.4.2 Composite Types..........oooiiiiiiii ... 173

13.4.3 Splicing into Lists 175

13.4.4 Type Keywords........... 175

14 Loading.........ccvvtiiiinnnnnnnnnnnnnns 177
14.1 How Programs Do Loading................................ 177

14.2 Autoload 180

14.3 Repeated Loading i 181

144 Features.........oimi e 182

14.5 Unloading 184

14.6 Hooks for Loading............ ... i, 185

15 Byte Compilation 187
15.1 Performance of Byte-Compiled Code....................... 187

15.2 The Compilation Functions 188

15.3 Documentation Strings and Compilation 190

15.4 Dynamic Loading of Individual Functions 190

15.5 Evaluation During Compilation............................ 191

15.6 Compiled-Function Objects 191

15.7 Disassembled Byte-Code, 193

vii

viii XEmacs Lisp Reference Manual

16 Debugging Lisp Programs.................. 197
16.1 The Lisp Debuggero i 197
16.1.1 Entering the Debugger on an Error 197

16.1.2 Debugging Infinite Loops......................... 198

16.1.3 Entering the Debugger on a Function Call......... 198

16.1.4 Explicit Entry to the Debugger 199

16.1.5 Using the Debugger.............................. 200

16.1.6 Debugger Commands 200

16.1.7 Invoking the Debugger 201

16.1.8 Internals of the Debugger 203

16.2 Debugging Invalid Lisp Syntax 204
16.2.1 Excess Open Parentheses......................... 205

16.2.2 Excess Close Parentheses......................... 205

16.3 Debugging Problems in Compilation....................... 205
16.4 Edebug........ ..o 206
16.4.1 Using Edebug 206

16.4.2 Instrumenting for Edebug 207

16.4.3 Edebug Execution Modes......................... 208

16.4.4 Jumpingooiiiiii 209

16.4.5 Miscellaneoust 210

16.4.6 Breakpoints............ 210
16.4.6.1 Global Break Condition 211

16.4.6.2 Embedded Breakpoints.................. 211

16.4.7 Trapping Errors i 211

16.4.8 Edebug Views.......... 212

16.4.9 Evaluation 212
16.4.10 Evaluation List Buffer 213

16.4.11 Reading in Edebug 214
16.4.12 Printing in Edebug 214
16.4.13 Tracingooeinii 215
16.4.14 Coverage Testingc i .. 215
16.4.15 The Outside Context 216
16.4.15.1 Checking Whether to Stop.............. 216

16.4.15.2 Edebug Display Update 216

16.4.15.3 Edebug Recursive Edit 217

16.4.16 Instrumenting Macro Calls 217
16.4.16.1 Specification List....................... 218

16.4.16.2 Backtracking 221

16.4.16.3 Debugging Backquote 221

16.4.16.4 Specification Examples 222

16.4.17 Edebug Optionsooviineiinnenn... 223

17 Reading and Printing Lisp Objects 227
17.1 Introduction to Reading and Printing...................... 227
17.2 Input Streamsot 227
17.3 Input Functions.........., 229
17.4 Output Streams....... ...t 230
17.5 Output Functions 232

17.6 Variables Affecting Output................................ 233

18 Minibufferscoviiiiii .. 237

18.1 Imtroduction to Minibuffers 237
18.2 Reading Text Strings with the Minibuffer 237
18.3 Reading Lisp Objects with the Minibuffer.................. 239
18.4 Minibuffer History............ 240
18.5 Completion 241
18.5.1 Basic Completion Functions 242

18.5.2 Completion and the Minibuffer 243

18.5.3 Minibuffer Commands That Do Completion 244

18.5.4 High-Level Completion Functions 246

18.5.5 Reading File Names 247

18.5.6 Programmed Completion......................... 248

18.6 Yes-or-No QUeTriesouuiiinne ... 249
18.7 Asking Multiple Y-or-N Questions......................... 251
18.8 Minibuffer Miscellany, 252
19 Command Loop.............covvviien.... 255
19.1 Command Loop Overview, 255
19.2 Defining Commandsc.ooi ... 256
19.2.1 Using interactive............c.ooviiiuniinn... 256

19.2.2 Code Characters for interactive................. 257

19.2.3 Examples of Using interactive.................. 259

19.3 Imteractive Call 260
19.4 Information from the Command Loop...................... 261
19.5 Events. 263
19.5.1 Event Typesoooiiii i 263

19.5.2 Contents of the Different Types of Events 264

19.5.3 Event Predicates, 266

19.5.4 Accessing the Position of a Mouse Event........... 267
19.5.4.1 Frame-Level Event Position Info.......... 267

19.5.4.2 Window-Level Event Position Info........ 267

19.5.4.3 Event Text Position Info................. 268

19.5.4.4 Event Glyph Position Info 269

19.5.4.5 Event Toolbar Position Info.............. 269

19.5.4.6 Other Event Position Info................ 269

19.5.5 Accessing the Other Contents of Events 270

19.5.6 Working With Events............................ 270

19.5.7 Converting Events 272

19.6 Reading Input 273
19.6.1 Key Sequence Input............... 273

19.6.2 Reading One Event 274

19.6.3 Dispatchingan Event 275

19.6.4 Quoted Character Input.......................... 275

19.6.5 Miscellaneous Event Input Features 276

19.7 Waiting for Elapsed Time or Input 277
19.8 Quittingo 278
19.9 Prefix Command Argumentsooiiia. ... 279
19.10 Recursive Editing 281
19.11 Disabling Commands 282
19.12 Command History.......... ..., 283

19.13 Keyboard Macros ... 283

XEmacs Lisp Reference Manual

X
20 Keymapsovvviiiiiiiiiiieeeennnnn. 285
20.1 Keymap Terminologyoooiiiniinniinn ... 285

20.2 Format of Keymapsc.oo i 285

20.3 Creating Keymaps 286

20.4 Inheritance and Keymaps............. 286

20.5 Key Sequencesooi it 287

20.6 Prefix Keys.....ooo 289

20.7 Active Keymaps. ... 290

20.8 Key Lookup ... 293

20.9 Functions for Key Lookup 294

20.10 Changing Key Bindings.................. 296

20.11 Commands for Binding Keys............................. 299

20.12 Scanning Keymaps ... 300

20.13 Other Keymap Functions 303

21 MenusSovtiiiniinnnreennneneonnnnns 305
21.1 Format of Menust 305

21.2 Format of the Menubar 308

21.3 Menubar 308

21.4 Modifying Menus. ... 309

21.5 Menu Filters.o 311

21.6 Pop-Up Menus..........oviiniinii .. 311

21.7 Menu Accelerators ... 312

21.7.1 Creating Menu Accelerators 312

21.7.2 Keyboard Menu Traversal 313

21.7.3 Menu Accelerator Functions 313

21.8 Buffers Menu 314

22 DialogBoxes.........ovoviiiiiiiiiiiiiii... 315
22.1 Dialog Box Format 315

22.2 Dialog Box Functions.............. 315

23 Toolbar...........cciiiiiiiiiiiinnnnnn. 317
23.1 Toolbar Introo 317

23.2 Toolbar Descriptor Format................................ 317

23.3 Specifying the Toolbar........... 318

23.4 Other Toolbar Variables 320

24 scrollbars.............coiiiiiiiiiiiii... 323
25 Dragand Drop..............cooiiiii.... 325
25.1 Supported Protocols.............. .. 325

25.1.1 OfX DND.o 325

25.1.2 CDEdb.......o 325

25.1.3 MSWindows OLE 325

25.1.4 Loose endsoviiiii 326

25.2 Drop Interface 326

25.3 Drag Interface i 326

26 Major and Minor Modes................... 327

26.1 Major Modesoiii 327
26.1.1 Major Mode Conventions. 327

26.1.2 Major Mode Examples........................ ... 329

26.1.3 How XEmacs Chooses a Major Mode.............. 332

26.1.4 Getting Help about a Major Mode 334

26.1.5 Defining Derived Modes.......................... 335

26.2 Minor Modes e 33D
26.2.1 Conventions for Writing Minor Modes............. 336

26.2.2 Keymaps and Minor Modes 337

26.3 Modeline Format........... 337
26.3.1 The Data Structure of the Modeline............... 337

26.3.2 Variables Used in the Modeline 339

26.3.3 %-Constructs in the ModeLine 341

26.4 HOOKS 342
27 Documentation......................... ... 345
27.1 Documentation Basics............ i 345
27.2 Access to Documentation Strings.......................... 346
27.3 Substituting Key Bindings in Documentation............... 348
27.4 Describing Characters for Help Messages 349
275 Help Functions......... i 350
27.6 Obsoletenessoovuiin i 302
28 Files.......cooiiiiiiii i 355
28.1 Visiting Files ... 355
28.1.1 Functions for Visiting Files....................... 355

28.1.2 Subroutines of Visiting........................... 357

28.2 Saving Buffers 357
28.3 Reading from Files 359
28.4 Writing to Files o i 360
285 File Locks ... oo 361
28.6 Information about Files............ 362
28.6.1 Testing Accessibility 362

28.6.2 Distinguishing Kinds of Files 363

28.6.3 Truenames........... ...t 364

28.6.4 Other Information about Files.................... 364

28.7 Changing File Names and Attributes 366
28.8 File Namesooii 368
28.8.1 File Name Components 368

28.8.2 Directory Names. ..., 370

28.8.3 Absolute and Relative File Names................. 371

28.8.4 Functions that Expand Filenames................. 371

28.8.5 Generating Unique File Names.................... 373

28.8.6 File Name Completion 373

28.9 Contents of Directories o ... 374
28.10 Creating and Deleting Directories 375
28.11 Making Certain File Names “Magic”...................... 375
28.12 Partial Files 377
28.12.1 Intro to Partial Files............................ 377
28.12.2 Creating a Partial File.......................... 378
28.12.3 Detached Partial Files 378

28.13 File Format Conversioncooiiiina... 378

28.14 Files and MS-DOS 380

xii XEmacs Lisp Reference Manual

29 Backups and Auto-Saving.................. 383
29.1 Backup Files......... 383
29.1.1 Making Backup Files............................. 383

29.1.2 Backup by Renaming or by Copying? 384

29.1.3 Making and Deleting Numbered Backup Files. 385

29.1.4 Naming Backup Files 386

29.2 AUto-Saving 387
293 Reverting......... ..o i 390
30 Buffers i, 391
30.1 Buffer Basics. ... 391
30.2 The Current Buffer............... 391
30.3 Buffer Names.............. 393
30.4 Buffer File Name................. 3%
30.5 Buffer Modification............... 395
30.6 Comparison of Modification Time 396
30.7 Read-Only Buffers........ 397
30.8 The Buffer List 398
30.9 Creating Buffers............. 399
30.10 Killing Buffers 400
30.11 Indirect Buffers 401
31 Windows.......coviiiiiiiiiiiiirennnnn. 403
31.1 Basic Concepts of Emacs Windows 403
31.2 Splitting WIndows. 404
31.3 Deleting Windows 406
31.4 Selecting Windows ... 407
31.5 Cyclic Ordering of Windows. 408
31.6 Buffers and Windows 410
31.7 Displaying Buffers in Windows 410
31.8 Choosing a Window for Display 412
31.9 Windows and Point 414
31.10 The Window Start Position 415
31.11 Vertical Scrolling........... ... 416
31.12 Horizontal Scrolling 418
31.13 The Size of a Window 419
31.14 The Position of a Window 421
31.15 Changing the Size of a Window 422

31.16 Window Configurations............ ..., 423

32 Framesccuiiiiiiiiiiiiiiiiiiii 425
32.1 Creating Frames 425
32.2 Frame Properties.......... ... 425

32.2.1 Access to Frame Properties....................... 426
32.2.2 Initial Frame Properties.......................... 426
32.2.3 X Window Frame Properties...................... 427
32.2.4 Frame Size And Position 428
32.2.5 The Name of a Frame (As Opposed to Its Title) ... 429
32.3 Frame Titles.o 429
32.4 Deleting Frames..........c. i 430
32.5 Finding All Frames.............. . i 430
32.6 Frames and Windows 431
32.7 Minibuffers and Frames............, 432
32.8 Input Focus.......... 432
32.9 Visibility of Frames......... 433
32.10 Raising and Lowering Frames 434
32.11 Frame Configurations. 434
32.12 Hooks for Customizing Frame Behavior 435

33 Consoles and Devices...................... 437
33.1 Basic Console Functions 437
33.2 Basic Device Functions L 438
33.3 Console Types and Device Classes 438
33.4 Connecting to a Console or Device......................... 439
33.5 The Selected Console and Device 440
33.6 Console and Device I/O L. 440

34 Positions............ceiiiiiiiiiiiiiiin.. 441
341 Point.o 441
342 Motiono 442

34.2.1 Motion by Characters............................ 442
34.2.2 Motion by Words, 443
34.2.3 Motion to an End of the Buffer................... 443
34.2.4 Motion by Text Lines............................ 444
34.2.5 Motion by Screen Lines 445
34.2.6 Moving over Balanced Expressions................ 446
34.2.7 Skipping Characters, 447
34.3 EXCUISIONS . . o\ttt e e e 448
344 NarrOWINGottt e 449

35 Markerscoiiiiiiiiiiiii i 453
35.1 Overview of Markers 453
35.2 Predicates on Markers........... 454
35.3 Functions That Create Markers 455
35.4 Information from Markers................................. 456
35.5 Changing Marker Positions................ 457
35.6 The Mark ... 457
35.7 The Regiono 460

xiii

XEmacs Lisp Reference Manual

36 Text......coiiiiiiiiiiii i 463
36.1 Examining Text Near Point 463
36.2 Examining Buffer Contents 464
36.3 Comparing Text. 465
36.4 Inserting Text....... ... i 465
36.5 User-Level Insertion Commands 466
36.6 Deleting Textoonii 467
36.7 User-Level Deletion Commands............................ 468
36.8 The Kill Ringt 470

36.8.1 Kill Ring Conceptsccovvvnvieiiiii... 470
36.8.2 Functions for Killing 471
36.8.3 Functions for Yanking......................... ... 471
36.8.4 Low-Level Kill Ring.............. 472
36.8.5 Internals of the Kill Ring......................... 473
36.9 Undo. ... 474
36.10 Maintaining Undo Lists........... 475
36.11 Filling. 476
36.12 Margins for Filling 478
36.13 Auto Filling 479
36.14 Sorting Textt 479
36.15 Counting Columnso oo 482
36.16 Indentation............ 483
36.16.1 Indentation Primitives 483
36.16.2 Indentation Controlled by Major Mode........... 483
36.16.3 Indenting an Entire Region...................... 484
36.16.4 Indentation Relative to Previous Lines 485
36.16.5 Adjustable “Tab Stops” 486
36.16.6 Indentation-Based Motion Commands............ 486
36.17 Case Changeso, 486
36.18 Text Properties i 488
36.18.1 Examining Text Properties...................... 488
36.18.2 Changing Text Properties....................... 489
36.18.3 Property Search Functions 490
36.18.4 Properties with Special Meanings 491
36.18.5 Saving Text Properties in Files 491
36.19 Substituting for a Character Code 492
36.20 Registers 493
36.21 Transposition of Text............ 494
36.22 Change Hooks 494

37 Searching and Matching 495
37.1 Searching for Stringscoiii i 495
37.2 Regular Expressions o i 496

37.2.1 Syntax of Regular Expressions.................... 497
37.2.2 Complex Regexp Example........................ 501
37.3 Regular Expression Searching 502
37.4 POSIX Regular Expression Searching 504
37.5 Search and Replace........ 505
37.6 The Match Data 506
37.6.1 Simple Match Data Access 506
37.6.2 Replacing the Text That Matched................. 508
37.6.3 Accessing the Entire Match Data 508
37.6.4 Saving and Restoring the Match Data............. 509
37.7 Searching and Case...........ooiiii i 509
37.8 Standard Regular Expressions Used in Editing.............. 510

38 Syntax Tables....................c..... 513

38.1 Syntax Table Conceptsoiiiiiii .. 513
38.2 Syntax Descriptorso 513
38.2.1 Table of Syntax Classes ..., 514
3822 Syntax Flagsco i, 516
38.3 Syntax Table Functions................................... 517
38.4 Motion and Syntax.......... ... 518
38.5 Parsing Balanced Expressions 519
38.6 Some Standard Syntax Tables............................. 521
38.7 Syntax Table Internals..................... 521
39 Abbrevs And Abbrev Expansion 523
39.1 Setting Up Abbrev Mode 523
39.2 Abbrev Tables 523
39.3 Defining Abbrevs. 524
39.4 Saving Abbrevsin Files.......... 525
39.5 Looking Up and Expanding Abbreviations 525
39.6 Standard Abbrev Tables 527
40 Extents..............iiiiiiiiiiiiiiiiia.., 529
40.1 Introduction to Extents.............. 529
40.2 Creating and Modifying Extents........................... 530
40.3 Extent Endpoints 530
40.4 Finding Extents. 531
40.5 Mapping Over Extents.................................... 532
40.6 Properties of Extents 534
40.7 Detached Extents 538
40.8 Extent Parents........... 938
40.9 Duplicable Extents 539
40.10 Interaction of Extents with Keyboard and Mouse Events ... 540
40.11 Atomic Extents 540
41 Specifiers i 541
41.1 Introduction to Specifiers 541
41.2 In-Depth Overview of a Specifier 541
41.3 How a Specifier Is Instanced 542
41.4 Specifier Types. ... 543
41.5 Adding specifications to a Specifier 545
41.6 Retrieving the Specifications from a Specifier............... 548
41.7 Working With Specifier Tags.............. 549
41.8 Functions for Instancing a Specifier........................ 550
41.9 Example of Specifier Usage................ ... 550
41.10 Creating New Specifier Objects........................... 551
41.11 Functions for Checking the Validity of Specifier Components
.. 552

41.12 Other Functions for Working with Specifications in a Specifier
.. 553

xvi XEmacs Lisp Reference Manual

42 Faces and Window-System Objects......... 555
42,1 Faces . .ot 555
42.1.1 Merging Faces for Display 555

42.1.2 Basic Functions for Working with Faces 556

42.1.3 Face Properties.................................. 5506

42.1.4 Face Convenience Functions 559

42.1.5 Other Face Display Functions..................... 560

422 FOntS. ..o 560
42.2.1 Font Specifiers............cooviiiiiiniin... 560

42.2.2 Font Instances............ 560

42.2.3 Font Instance Names............................. 961

42.2.4 Font Instance Size ..., 561

42.2.5 Font Instance Characteristics..................... 562

42.2.6 Font Convenience Functions 562

423 CO0lOrS . oot 563
42.3.1 Color Specifiers................ i 563

42.3.2 Color Instancesooiiiiiineiin... 563

42.3.3 Color Instance Properties 563

42.3.4 Color Convenience Functions 563

43 Glyphs ... 565
43.1 Glyph Functions 565
43.1.1 Creating Glyphs........, 565

43.1.2 Glyph Properties 566

43.1.3 Glyph Convenience Functions..................... 568

43.1.4 Glyph Dimensions, 569

43.2 Tmages 569
43.2.1 TImage Specifiersco i 570

43.2.2 Image Instantiator Conversion 573

43.2.3 ImageInstances 573
43.2.3.1 Image Instance Types 574

43.2.3.2 Image Instance Functions................ 575

43.3 Glyph Types. . ..o 576
43.4 Mouse Pointer 577
43.5 Redisplay Glyphs 578
43.6 SUBWINAOWS ...ttt 578
44 Annotations................ ..., 579
44.1 Annotation Basics............ ... 579
44.2 Annotation Primitives............... 580
44.3 Annotation Properties............... 580
44.4 Locating Annotations.ooiiiiiiiiiinnnaaa... 582
44.5 Margin Primitives....... 582

44.6 Annotation HOOKSo 583

45

46

47

48

49

Emacs Display 585
45.1 Refreshing the Screen.......... 585
45.2 Truncation......... ... 586
45.3 The Echo Area......... ..., 586
454 Warningsoov e 589
45.5 Invisible Texto 590
45.6 Selective Display ... 591
45.7 The Overlay Arrow.......... 592
45.8 Temporary Displaysoo i 593
45.9 Blinking Parentheses L. 594
45.10 Usual Display Conventions....................ooooio.... 595
45.11 Display Tables 596

45.11.1 Display Table Format 596

45.11.2 Active Display Table............................ 597

45.11.3 Character Descriptors............ 597
4512 Beeping oo 597
Hash Tables............................... 601
46.1 Introduction to Hash Tables............................... 601
46.2 Working With Hash Tables 601
46.3 Weak Hash Tables.............. 602
Range Tables............... 603
47.1 Introduction to Range Tables 603
47.2 Working With Range Tables 603
Databases..............ooiiiiiiiiinnnn... 605
48.1 Connecting to a Database................................. 605
48.2 Working With a Database 605
48.3 Other Database Functions 606
Processescoviiiiiiiiiiininnnnns 607
49.1 Functions that Create Subprocesses........................ 607
49.2 Creating a Synchronous Process........................... 608
49.3 MS-DOS Subprocesses.oouiiiiiiiii . 610
49.4 Creating an Asynchronous Process......................... 610
49.5 Deleting Processes. 612
49.6 Process Information 612
49.7 Sending Input to Processes..........., 614
49.8 Sending Signals to Processes 615
49.9 Receiving Output from Processes.......................... 616

49.9.1 Process Buffers........... L. 616

49.9.2 Process Filter Functions.......................... 617

49.9.3 Accepting Output from Processes................. 619
49.10 Sentinels: Detecting Process Status Changes 619
49.11 Process Window Size ... 620
49.12 Transaction QUEUESovieineniee., 620

49.13 Network Connectionsouuu ... 621

xvii

xviii XEmacs Lisp Reference Manual

50 Operating System Interface................ 623
50.1 Starting Up XEmacs ... 623
50.1.1 Summary: Sequence of Actions at Start Up........ 623

50.1.2 The Init File: ‘.emacs’........................... 624

50.1.3 Terminal-Specific Initialization.................... 625

50.1.4 Command Line Arguments 626

50.2 Getting out of XEmacs 627
50.2.1 Killing XEmacs.covuiiniinin ... 627

50.2.2 Suspending XEmacsoovieiiiin. .. 627

50.3 Operating System Environment 629
50.4 User Identification.............. 631
50.5 Timeof Dayo 633
50.6 Time Conversionouuuuniiiinneiinnenn .. 633
50.7 Timers for Delayed Execution 635
50.8 Terminal Input....... 636
50.8.1 Input Modes 636

50.8.2 Translating Input Events......................... 637

50.8.3 Recording Input 638

50.9 Terminal OQutput........... ... 639
50.10 Flow Control 640
50.11 Batch Mode 641

51 Functions Specific to the X Window System

.. 643
51.1 X Selections 643
B1.2 X SOIVeT . ..ottt 644
51.2.1 ReSOUICESottt 644
51.2.2 Data about the X Server 645
51.2.3 Restricting Access to the Server by Other Apps.... 646
51.3 Miscellaneous X Functions and Variables................... 646
52 ToolTalk Support.......................... 649
52.1 XEmacs ToolTalk API Summary 649
52.2 Sending MeSSAZES . ..o oottt 649
52.2.1 Example of Sending Messages..................... 649
52.2.2 Elisp Interface for Sending Messages 650
52.3 Receiving Messages. ... 651
52.3.1 Example of Receiving Messages................... 651
52.3.2 Elisp Interface for Receiving Messages............. 652
53 LDAP Support................ciiiiii... 655
53.1 Building XEmacs with LDAP support 655
53.2 XEmacs LDAP APL....... . 655
53.2.1 LDAP Variables................., 655
53.2.2 The High-Level LDAP APL....................... 656
53.2.3 The Low-Level LDAP APT 656
53.2.3.1 The LDAP Lisp Object.................. 656

53.2.3.2 Opening and Closing a LDAP Connection
.. 657

53.2.3.3 Searching on a LDAP Server (Low-level) .. 657
53.3 Syntax of Search Filters 658

54 Internationalization........................ 659
54.1 TI8N Levels land 2 i, 659
54.2 TI8N Level 3 ... 659

54.2.1 Level 3Basics...........oo i 659
54.2.2 Level 3 Primitives 659
54.2.3 Dynamic Messaging.................coiii.... 660
54.2.4 Domain Specification 660
54.2.5 Documentation String Extraction................. 661
54.3 TI8N Level 4. ... 661

55 MULE......... ... i, 663
55.1 Internationalization Terminology 663
55.2 CharsetS.t 665

55.2.1 Charset Properties............................... 665
55.2.2 Basic Charset Functions.......................... 666
55.2.3 Charset Property Functions 667
55.2.4 Predefined Charsets.............................. 668
55.3 MULE Characters...........oouuiiiniiiii. .. 669
55.4 Composite Characters 669
55.5 ISO 2022 ..o 670
55.6 Coding Systemst 672
55.6.1 Coding System Types................coiiii... 673
55.6.2 EOL Conversion...............coviveiiiineion... 673
55.6.3 Coding System Properties........................ 674
55.6.4 Basic Coding System Functions................... 675
55.6.5 Coding System Property Functions................ 676
55.6.6 Encoding and Decoding Text 676
55.6.7 Detection of Textual Encoding.................... 676
55.6.8 Bigh and Shift-JIS Functions 677
B5.7 CCOL o 677
55.7.1 CCL SYIAX. . vveeeee e 678
55.7.2 CCL Statements.................ooiiiiii .. 679
55.7.3 CCL EXpressionsoouiiiiiinneenn .. 680
55.7.4 Calling CCL 681
55.7.5 CCL Examples, 682
55.8 Category Tables...... ... i 682

Appendix A Tips and Standards 685
A.1 Writing Clean Lisp Programs 685
A.2 Tips for Making Compiled Code Fast....................... 687
A.3 Tips for Documentation Strings............................ 688
A4 Tips on Writing Comments..................ooiuioi.. 689
A.5 Conventional Headers for XEmacs Libraries................. 690

Appendix B Building XEmacs; Allocation of

Objectsoviiiiiiiiiiii i, 693
B.1 Building XEmacsooo i 693
B.2 Pure Storage 695
B.3 Garbage Collection.ooo ., 695
Appendix C Standard Errors.................. 701

Appendix D Buffer-Local Variables............ 705

Xix

XX

XEmacs Lisp Reference Manual

GNU GENERAL PUBLIC LICENSE 1

GNU GENERAL PUBLIC LICENSE

Version 2, June 1991

Copyright (©) 1989, 1991 Free Software Foundation, Inc.
675 Mass Ave, Cambridge, MA 02139, USA

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

Preamble

The licenses for most software are designed to take away your freedom to share and change
it. By contrast, the GNU General Public License is intended to guarantee your freedom to share
and change free software—to make sure the software is free for all its users. This General Public
License applies to most of the Free Software Foundation’s software and to any other program
whose authors commit to using it. (Some other Free Software Foundation software is covered
by the GNU Library General Public License instead.) You can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General Public
Licenses are designed to make sure that you have the freedom to distribute copies of free software
(and charge for this service if you wish), that you receive source code or can get it if you want
it, that you can change the software or use pieces of it in new free programs; and that you know
you can do these things.

To protect your rights, we need to make restrictions that forbid anyone to deny you these
rights or to ask you to surrender the rights. These restrictions translate to certain responsibilities
for you if you distribute copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whether gratis or for a fee, you must
give the recipients all the rights that you have. You must make sure that they, too, receive or
can get the source code. And you must show them these terms so they know their rights.

We protect your rights with two steps: (1) copyright the software, and (2) offer you this
license which gives you legal permission to copy, distribute and/or modify the software.

Also, for each author’s protection and ours, we want to make certain that everyone under-
stands that there is no warranty for this free software. If the software is modified by someone
else and passed on, we want its recipients to know that what they have is not the original, so
that any problems introduced by others will not reflect on the original authors’ reputations.

Finally, any free program is threatened constantly by software patents. We wish to avoid the
danger that redistributors of a free program will individually obtain patent licenses, in effect
making the program proprietary. To prevent this, we have made it clear that any patent must
be licensed for everyone’s free use or not licensed at all.

The precise terms and conditions for copying, distribution and modification follow.

TERMS AND CONDITIONS FOR COPYING,
DISTRIBUTION AND MODIFICATION

0. This License applies to any program or other work which contains a notice placed by
the copyright holder saying it may be distributed under the terms of this General Public
License. The “Program”, below, refers to any such program or work, and a “work based
on the Program” means either the Program or any derivative work under copyright law:
that is to say, a work containing the Program or a portion of it, either verbatim or with
modifications and /or translated into another language. (Hereinafter, translation is included
without limitation in the term “modification”.) Each licensee is addressed as “you”.

XEmacs Lisp Reference Manual

Activities other than copying, distribution and modification are not covered by this License;
they are outside its scope. The act of running the Program is not restricted, and the output
from the Program is covered only if its contents constitute a work based on the Program
(independent of having been made by running the Program). Whether that is true depends
on what the Program does.

. You may copy and distribute verbatim copies of the Program’s source code as you receive
it, in any medium, provided that you conspicuously and appropriately publish on each copy
an appropriate copyright notice and disclaimer of warranty; keep intact all the notices that
refer to this License and to the absence of any warranty; and give any other recipients of
the Program a copy of this License along with the Program.

You may charge a fee for the physical act of transferring a copy, and you may at your option
offer warranty protection in exchange for a fee.

. You may modify your copy or copies of the Program or any portion of it, thus forming a
work based on the Program, and copy and distribute such modifications or work under the
terms of Section 1 above, provided that you also meet all of these conditions:

a. You must cause the modified files to carry prominent notices stating that you changed
the files and the date of any change.

b. You must cause any work that you distribute or publish, that in whole or in part
contains or is derived from the Program or any part thereof, to be licensed as a whole
at no charge to all third parties under the terms of this License.

c. If the modified program normally reads commands interactively when run, you must
cause it, when started running for such interactive use in the most ordinary way, to
print or display an announcement including an appropriate copyright notice and a
notice that there is no warranty (or else, saying that you provide a warranty) and that
users may redistribute the program under these conditions, and telling the user how to
view a copy of this License. (Exception: if the Program itself is interactive but does
not normally print such an announcement, your work based on the Program is not
required to print an announcement.)

These requirements apply to the modified work as a whole. If identifiable sections of that
work are not derived from the Program, and can be reasonably considered independent
and separate works in themselves, then this License, and its terms, do not apply to those
sections when you distribute them as separate works. But when you distribute the same
sections as part of a whole which is a work based on the Program, the distribution of the
whole must be on the terms of this License, whose permissions for other licensees extend to
the entire whole, and thus to each and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights to work
written entirely by you; rather, the intent is to exercise the right to control the distribution
of derivative or collective works based on the Program.

In addition, mere aggregation of another work not based on the Program with the Program
(or with a work based on the Program) on a volume of a storage or distribution medium
does not bring the other work under the scope of this License.

. You may copy and distribute the Program (or a work based on it, under Section 2) in object
code or executable form under the terms of Sections 1 and 2 above provided that you also
do one of the following:

a. Accompany it with the complete corresponding machine-readable source code, which
must be distributed under the terms of Sections 1 and 2 above on a medium customarily
used for software interchange; or,

b. Accompany it with a written offer, valid for at least three years, to give any third
party, for a charge no more than your cost of physically performing source distribution,
a complete machine-readable copy of the corresponding source code, to be distributed

GNU GENERAL PUBLIC LICENSE 3

under the terms of Sections 1 and 2 above on a medium customarily used for software
interchange; or,

¢. Accompany it with the information you received as to the offer to distribute corre-
sponding source code. (This alternative is allowed only for noncommercial distribution
and only if you received the program in object code or executable form with such an
offer, in accord with Subsection b above.)

The source code for a work means the preferred form of the work for making modifications
to it. For an executable work, complete source code means all the source code for all
modules it contains, plus any associated interface definition files, plus the scripts used to
control compilation and installation of the executable. However, as a special exception, the
source code distributed need not include anything that is normally distributed (in either
source or binary form) with the major components (compiler, kernel, and so on) of the
operating system on which the executable runs, unless that component itself accompanies
the executable.

If distribution of executable or object code is made by offering access to copy from a
designated place, then offering equivalent access to copy the source code from the same
place counts as distribution of the source code, even though third parties are not compelled
to copy the source along with the object code.

4. You may not copy, modify, sublicense, or distribute the Program except as expressly pro-
vided under this License. Any attempt otherwise to copy, modify, sublicense or distribute
the Program is void, and will automatically terminate your rights under this License. How-
ever, parties who have received copies, or rights, from you under this License will not have
their licenses terminated so long as such parties remain in full compliance.

5. You are not required to accept this License, since you have not signed it. However, nothing
else grants you permission to modify or distribute the Program or its derivative works.
These actions are prohibited by law if you do not accept this License. Therefore, by modi-
fying or distributing the Program (or any work based on the Program), you indicate your
acceptance of this License to do so, and all its terms and conditions for copying, distributing
or modifying the Program or works based on it.

6. Each time you redistribute the Program (or any work based on the Program), the recipient
automatically receives a license from the original licensor to copy, distribute or modify the
Program subject to these terms and conditions. You may not impose any further restrictions
on the recipients’ exercise of the rights granted herein. You are not responsible for enforcing
compliance by third parties to this License.

7. If, as a consequence of a court judgment or allegation of patent infringement or for any
other reason (not limited to patent issues), conditions are imposed on you (whether by
court order, agreement or otherwise) that contradict the conditions of this License, they do
not excuse you from the conditions of this License. If you cannot distribute so as to satisfy
simultaneously your obligations under this License and any other pertinent obligations,
then as a consequence you may not distribute the Program at all. For example, if a patent
license would not permit royalty-free redistribution of the Program by all those who receive
copies directly or indirectly through you, then the only way you could satisfy both it and
this License would be to refrain entirely from distribution of the Program.

If any portion of this section is held invalid or unenforceable under any particular circum-
stance, the balance of the section is intended to apply and the section as a whole is intended
to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any patents or other property
right claims or to contest validity of any such claims; this section has the sole purpose of
protecting the integrity of the free software distribution system, which is implemented by
public license practices. Many people have made generous contributions to the wide range
of software distributed through that system in reliance on consistent application of that

4 XEmacs Lisp Reference Manual

system; it is up to the author/donor to decide if he or she is willing to distribute software
through any other system and a licensee cannot impose that choice.

This section is intended to make thoroughly clear what is believed to be a consequence of
the rest of this License.

8. If the distribution and/or use of the Program is restricted in certain countries either by
patents or by copyrighted interfaces, the original copyright holder who places the Program
under this License may add an explicit geographical distribution limitation excluding those
countries, so that distribution is permitted only in or among countries not thus excluded. In
such case, this License incorporates the limitation as if written in the body of this License.

9. The Free Software Foundation may publish revised and/or new versions of the General
Public License from time to time. Such new versions will be similar in spirit to the present
version, but may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Program specifies a version
number of this License which applies to it and “any later version”, you have the option of
following the terms and conditions either of that version or of any later version published
by the Free Software Foundation. If the Program does not specify a version number of this
License, you may choose any version ever published by the Free Software Foundation.

10. If you wish to incorporate parts of the Program into other free programs whose distribution
conditions are different, write to the author to ask for permission. For software which
is copyrighted by the Free Software Foundation, write to the Free Software Foundation;
we sometimes make exceptions for this. Our decision will be guided by the two goals of
preserving the free status of all derivatives of our free software and of promoting the sharing
and reuse of software generally.

NO WARRANTY

11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WAR-
RANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE
LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM “AS IS” WITH-
OUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUD-
ING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABIL-
ITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE
QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE
PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY
SERVICING, REPAIR OR CORRECTION.

12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN
WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY
MODIFY AND/OR REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE
LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCI-
DENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR IN-
ABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY
YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH
ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN
ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS

GNU GENERAL PUBLIC LICENSE 5

How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest possible use to the
public, the best way to achieve this is to make it free software which everyone can redistribute
and change under these terms.

To do so, attach the following notices to the program. It is safest to attach them to the start
of each source file to most effectively convey the exclusion of warranty; and each file should have
at least the “copyright” line and a pointer to where the full notice is found.

one line to give the program’s name and an idea of what it does.
Copyright (C) 19yy name of author

This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License

as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.

Also add information on how to contact you by electronic and paper mail.

If the program is interactive, make it output a short notice like this when it starts in an
interactive mode:

Gnomovision version 69, Copyright (C) 19yy name of author
Gnomovision comes with ABSOLUTELY NO WARRANTY; for details
type ‘show w’. This is free software, and you are welcome
to redistribute it under certain conditions; type ‘show c’
for details.

The hypothetical commands ‘show w’ and ‘show ¢’ should show the appropriate parts of the
General Public License. Of course, the commands you use may be called something other than
‘show w’ and ‘show c’; they could even be mouse-clicks or menu items—whatever suits your
program.

You should also get your employer (if you work as a programmer) or your school, if any, to
sign a “copyright disclaimer” for the program, if necessary. Here is a sample; alter the names:

Yoyodyne, Inc., hereby disclaims all copyright
interest in the program ‘Gnomovision’

(which makes passes at compilers) written

by James Hacker.

signature of Ty Coon, 1 April 1989
Ty Coon, President of Vice

This General Public License does not permit incorporating your program into proprietary
programs. If your program is a subroutine library, you may consider it more useful to permit
linking proprietary applications with the library. If this is what you want to do, use the GNU
Library General Public License instead of this License.

XEmacs Lisp Reference Manual

Chapter 1: Introduction 7

1 Introduction

Most of the XEmacs text editor is written in the programming language called XEmacs Lisp.
You can write new code in XEmacs Lisp and install it as an extension to the editor. However,
XEmacs Lisp is more than a mere “extension language”; it is a full computer programming
language in its own right. You can use it as you would any other programming language.

Because XEmacs Lisp is designed for use in an editor, it has special features for scanning
and parsing text as well as features for handling files, buffers, displays, subprocesses, and so on.
XEmacs Lisp is closely integrated with the editing facilities; thus, editing commands are func-
tions that can also conveniently be called from Lisp programs, and parameters for customization
are ordinary Lisp variables.

This manual describes XEmacs Lisp, presuming considerable familiarity with the use of
XEmacs for editing. (See The XEmacs Reference Manual, for this basic information.) Generally
speaking, the earlier chapters describe features of XEmacs Lisp that have counterparts in many
programming languages, and later chapters describe features that are peculiar to XEmacs Lisp
or relate specifically to editing.

This is edition 3.3.

1.1 Caveats

This manual has gone through numerous drafts. It is nearly complete but not flawless. There
are a few topics that are not covered, either because we consider them secondary (such as most
of the individual modes) or because they are yet to be written. Because we are not able to
deal with them completely, we have left out several parts intentionally. This includes most
information about usage on VMS.

The manual should be fully correct in what it does cover, and it is therefore open to criticism
on anything it says—from specific examples and descriptive text, to the ordering of chapters
and sections. If something is confusing, or you find that you have to look at the sources or
experiment to learn something not covered in the manual, then perhaps the manual should be
fixed. Please let us know.

As you use the manual, we ask that you mark pages with corrections so you can later look
them up and send them in. If you think of a simple, real-life example for a function or group
of functions, please make an effort to write it up and send it in. Please reference any comments
to the chapter name, section name, and function name, as appropriate, since page numbers
and chapter and section numbers will change and we may have trouble finding the text you are
talking about. Also state the number of the edition you are criticizing.

This manual was originally written for FSF Emacs 19 and was updated by Ben Wing
(wing@666.com) for Lucid Emacs 19.10 and later for XEmacs 19.12, 19.13, 19.14, and 20.0.
It was further updated by the XEmacs Development Team for 19.15, version 20 and 21. Please
send comments and corrections relating to XEmacs-specific portions of this manual to

xemacs@xemacs.org
or post to the newsgroup
Comp . emacs . Xemacs

—Ben Wing

8 XEmacs Lisp Reference Manual

1.2 Lisp History

Lisp (LISt Processing language) was first developed in the late 1950’s at the Massachusetts
Institute of Technology for research in artificial intelligence. The great power of the Lisp language
makes it superior for other purposes as well, such as writing editing commands.

Dozens of Lisp implementations have been built over the years, each with its own idiosyn-
crasies. Many of them were inspired by Maclisp, which was written in the 1960’s at MIT’s
Project MAC. Eventually the implementors of the descendants of Maclisp came together and
developed a standard for Lisp systems, called Common Lisp.

XEmacs Lisp is largely inspired by Maclisp, and a little by Common Lisp. If you know
Common Lisp, you will notice many similarities. However, many of the features of Common
Lisp have been omitted or simplified in order to reduce the memory requirements of XEmacs.
Sometimes the simplifications are so drastic that a Common Lisp user might be very confused.
We will occasionally point out how XEmacs Lisp differs from Common Lisp. If you don’t know
Common Lisp, don’t worry about it; this manual is self-contained.

1.3 Conventions

This section explains the notational conventions that are used in this manual. You may want
to skip this section and refer back to it later.

1.3.1 Some Terms

Throughout this manual, the phrases “the Lisp reader” and “the Lisp printer” are used to
refer to those routines in Lisp that convert textual representations of Lisp objects into actual
Lisp objects, and vice versa. See Section 2.1 [Printed Representation], page 13, for more details.
You, the person reading this manual, are thought of as “the programmer” and are addressed as
“you”. “The user” is the person who uses Lisp programs, including those you write.

Examples of Lisp code appear in this font or form: (list 1 2 3). Names that represent
arguments or metasyntactic variables appear in this font or form: first-number.

1.3.2 nil and t

In Lisp, the symbol nil has three separate meanings: it is a symbol with the name ‘nil’; it
is the logical truth value false; and it is the empty list—the list of zero elements. When used as
a variable, nil always has the value nil.

As far as the Lisp reader is concerned, ‘()” and ‘nil’ are identical: they stand for the same
object, the symbol nil. The different ways of writing the symbol are intended entirely for human
readers. After the Lisp reader has read either ‘() or ‘nil’, there is no way to determine which
representation was actually written by the programmer.

In this manual, we use () when we wish to emphasize that it means the empty list, and
we use nil when we wish to emphasize that it means the truth value false. That is a good
convention to use in Lisp programs also.

(cons ’foo ()) ; Emphasize the empty list
(not nil) ; Emphasize the truth value false

In contexts where a truth value is expected, any non-nil value is considered to be true.
However, t is the preferred way to represent the truth value true. When you need to choose

Chapter 1: Introduction 9

a value which represents true, and there is no other basis for choosing, use t. The symbol t
always has value t.

In XEmacs Lisp, nil and t are special symbols that always evaluate to themselves. This is
so that you do not need to quote them to use them as constants in a program. An attempt to
change their values results in a setting-constant error. See Section 10.6 [Accessing Variables|
page 137.

1.3.3 Evaluation Notation

A Lisp expression that you can evaluate is called a form. Evaluating a form always produces
a result, which is a Lisp object. In the examples in this manual, this is indicated with ‘=":

(car (1 2))
= 1

You can read this as “(car ’ (1 2)) evaluates to 1”.

When a form is a macro call, it expands into a new form for Lisp to evaluate. We show the
result of the expansion with ‘—’. We may or may not show the actual result of the evaluation
of the expanded form.

(news-cadr ’(a b c))
— (car (cdr ’(a b c)))
= Db

Sometimes to help describe one form we show another form that produces identical results.
The exact equivalence of two forms is indicated with ‘=".

(cons ’a nil) = (1list ’a)

1.3.4 Printing Notation

Many of the examples in this manual print text when they are evaluated. If you execute
example code in a Lisp Interaction buffer (such as the buffer ‘*scratch#’), the printed text is
inserted into the buffer. If you execute the example by other means (such as by evaluating the
function eval-region), the printed text is displayed in the echo area. You should be aware that
text displayed in the echo area is truncated to a single line.

Examples in this manual indicate printed text with ‘ -, irrespective of where that text goes.
The value returned by evaluating the form (here bar) follows on a separate line.

(progn (print ’foo) (print ’bar))
- foo

- bar
= bar

1.3.5 Error Messages

Some examples signal errors. This normally displays an error message in the echo area. We
show the error message on a line starting with ‘[error] *. Note that ‘[error] ’ itself does not
appear in the echo area.

(+ 23 ’x)
Wrong type argument: integer-or-marker-p, X

10 XEmacs Lisp Reference Manual

1.3.6 Buffer Text Notation

Some examples show modifications to text in a buffer, with “before” and “after” versions of
the text. These examples show the contents of the buffer in question between two lines of dashes
containing the buffer name. In addition, ‘+’ indicates the location of point. (The symbol for
point, of course, is not part of the text in the buffer; it indicates the place between two characters
where point is located.)

—————————— Buffer: foo --——————-—-
This is the xcontents of foo.
—————————— Buffer: foo --—-—-——----

(insert "changed ")

= nil
—————————— Buffer: foo --——————-—-
This is the changed xcontents of foo.
—————————— Buffer: foo --————-----

1.3.7 Format of Descriptions

Functions, variables, macros, commands, user options, and special forms are described in
this manual in a uniform format. The first line of a description contains the name of the item
followed by its arguments, if any. The category—function, variable, or whatever—is printed
next to the right margin. The description follows on succeeding lines, sometimes with examples.

1.3.7.1 A Sample Function Description

In a function description, the name of the function being described appears first. It is followed
on the same line by a list of parameters. The names used for the parameters are also used in
the body of the description.

The appearance of the keyword &optional in the parameter list indicates that the arguments
for subsequent parameters may be omitted (omitted parameters default to nil). Do not write
&optional when you call the function.

The keyword &rest (which will always be followed by a single parameter) indicates that any
number of arguments can follow. The value of the single following parameter will be a list of all
these arguments. Do not write &rest when you call the function.

Here is a description of an imaginary function foo:

foo integerl &optional integer2 &rest integers Function
The function foo subtracts integerl from integer2, then adds all the rest of the arguments
to the result. If integer2 is not supplied, then the number 19 is used by default.

(foo 1 5 3 9)
= 16
(foo 5)
= 14
More generally,

(foo w x y...)

(_+ -xw) y...)

Chapter 1: Introduction 11

Any parameter whose name contains the name of a type (e.g., integer, integerl or buffer) is
expected to be of that type. A plural of a type (such as buffers) often means a list of objects
of that type. Parameters named object may be of any type. (See Chapter 2 [Lisp Data Types],
page 13, for a list of XEmacs object types.) Parameters with other sorts of names (e.g., new-file)
are discussed specifically in the description of the function. In some sections, features common
to parameters of several functions are described at the beginning.

See Section 11.2 [Lambda Expressions|, page 148, for a more complete description of optional
and rest arguments.

Command, macro, and special form descriptions have the same format, but the word ‘Func-
tion’ is replaced by ‘Command’, ‘Macro’, or ‘Special Form’, respectively. Commands are simply
functions that may be called interactively; macros process their arguments differently from func-
tions (the arguments are not evaluated), but are presented the same way.

Special form descriptions use a more complex notation to specify optional and repeated
parameters because they can break the argument list down into separate arguments in more
complicated ways. ‘[optional-arg] means that optional-arg is optional and ‘repeated-args. ..’
stands for zero or more arguments. Parentheses are used when several arguments are grouped
into additional levels of list structure. Here is an example:

count-loop (var [from to [inc]]) body. . . Special Form
This imaginary special form implements a loop that executes the body forms and then
increments the variable var on each iteration. On the first iteration, the variable has the
value from; on subsequent iterations, it is incremented by 1 (or by inc if that is given).
The loop exits before executing body if var equals to. Here is an example:
(count-loop (i 0 10)
(prinl i) (princ " ")
(prinl (aref vector i)) (terpri))
If from and to are omitted, then var is bound to nil before the loop begins, and the loop
exits if var is non-nil at the beginning of an iteration. Here is an example:
(count-loop (done)
(if (pending)
(fixit)
(setq done t)))
In this special form, the arguments from and to are optional, but must both be present or
both absent. If they are present, inc may optionally be specified as well. These arguments
are grouped with the argument var into a list, to distinguish them from body, which
includes all remaining elements of the form.

1.3.7.2 A Sample Variable Description

A variable is a name that can hold a value. Although any variable can be set by the user,
certain variables that exist specifically so that users can change them are called user options.
Ordinary variables and user options are described using a format like that for functions except
that there are no arguments.

Here is a description of the imaginary electric-future-map variable.

electric-future-map Variable
The value of this variable is a full keymap used by Electric Command Future mode.
The functions in this map allow you to edit commands you have not yet thought about
executing.

User option descriptions have the same format, but ‘Variable’ is replaced by ‘User Option’.

12 XEmacs Lisp Reference Manual

1.4 Acknowledgements

This manual was based on the GNU Emacs Lisp Reference Manual, version 2.4, written by
Robert Krawitz, Bil Lewis, Dan LaLiberte, Richard M. Stallman and Chris Welty, the volunteers
of the GNU manual group, in an effort extending over several years. Robert J. Chassell helped
to review and edit the manual, with the support of the Defense Advanced Research Projects
Agency, ARPA Order 6082, arranged by Warren A. Hunt, Jr. of Computational Logic, Inc.

Ben Wing adapted this manual for XEmacs 19.14 and 20.0, and earlier for Lucid Emacs
19.10, XEmacs 19.12, and XEmacs 19.13. He is the sole author of many of the manual sections,
in particular the XEmacs-specific sections: events, faces, extents, glyphs, specifiers, toolbar,
menubars, scrollbars, dialog boxes, devices, consoles, hash tables, range tables, char tables,
databases, and others. The section on annotations was originally written by Chuck Thompson.
Corrections to v3.1 and later were done by Martin Buchholz, Steve Baur, and Hrvoje Niksic.

Corrections to the original GNU Emacs Lisp Reference Manual were supplied by Karl
Berry, Jim Blandy, Bard Bloom, Stephane Boucher, David Boyes, Alan Carroll, Richard Davis,
Lawrence R. Dodd, Peter Doornbosch, David A. Duff, Chris Eich, Beverly Erlebacher, David
Eckelkamp, Ralf Fassel, Eirik Fuller, Stephen Gildea, Bob Glickstein, Eric Hanchrow, George
Hartzell, Nathan Hess, Masayuki Ida, Dan Jacobson, Jak Kirman, Bob Knighten, Frederick M.
Korz, Joe Lammens, Glenn M. Lewis, K. Richard Magill, Brian Marick, Roland McGrath,
Skip Montanaro, John Gardiner Myers, Thomas A. Peterson, Francesco Potorti, Friedrich
Pukelsheim, Arnold D. Robbins, Raul Rockwell, Per Starback, Shinichirou Sugou, Kimmo
Suominen, Edward Tharp, Bill Trost, Rickard Westman, Jean White, Matthew Wilding, Carl
Witty, Dale Worley, Rusty Wright, and David D. Zuhn.

Chapter 2: Lisp Data Types 13

2 Lisp Data Types

A Lisp object is a piece of data used and manipulated by Lisp programs. For our purposes,
a type or data type is a set of possible objects.

Every object belongs to at least one type. Objects of the same type have similar structures
and may usually be used in the same contexts. Types can overlap, and objects can belong to
two or more types. Consequently, we can ask whether an object belongs to a particular type,
but not for “the” type of an object.

A few fundamental object types are built into XEmacs. These, from which all other types
are constructed, are called primitive types. Each object belongs to one and only one primitive
type. These types include integer, character (starting with XEmacs 20.0), float, cons, symbol,
string, vector, bit-vector, subr, compiled-function, hashtable, range-table, char-table, weak-list,
and several special types, such as buffer, that are related to editing. (See Section 2.5 [Editing
Types|, page 26.)

Each primitive type has a corresponding Lisp function that checks whether an object is a
member of that type.

Note that Lisp is unlike many other languages in that Lisp objects are self-typing: the
primitive type of the object is implicit in the object itself. For example, if an object is a vector,
nothing can treat it as a number; Lisp knows it is a vector, not a number.

In most languages, the programmer must declare the data type of each variable, and the type
is known by the compiler but not represented in the data. Such type declarations do not exist
in XEmacs Lisp. A Lisp variable can have any type of value, and it remembers whatever value
you store in it, type and all.

This chapter describes the purpose, printed representation, and read syntax of each of the
standard types in Emacs Lisp. Details on how to use these types can be found in later chapters.

2.1 Printed Representation and Read Syntax

The printed representation of an object is the format of the output generated by the Lisp
printer (the function prinl) for that object. The read syntax of an object is the format of the
input accepted by the Lisp reader (the function read) for that object. Most objects have more
than one possible read syntax. Some types of object have no read syntax; except for these cases,
the printed representation of an object is also a read syntax for it.

In other languages, an expression is text; it has no other form. In Lisp, an expression is
primarily a Lisp object and only secondarily the text that is the object’s read syntax. Often
there is no need to emphasize this distinction, but you must keep it in the back of your mind,
or you will occasionally be very confused.

Every type has a printed representation. Some types have no read syntax, since it may not
make sense to enter objects of these types directly in a Lisp program. For example, the buffer
type does not have a read syntax. Objects of these types are printed in hash notation: the
characters ‘#<’ followed by a descriptive string (typically the type name followed by the name
of the object), and closed with a matching ‘>’. Hash notation cannot be read at all, so the Lisp
reader signals the error invalid-read-syntax whenever it encounters ‘#<’.

(current-buffer)
= #<buffer "objects.texi">

When you evaluate an expression interactively, the Lisp interpreter first reads the textual
representation of it, producing a Lisp object, and then evaluates that object (see Chapter 8
[Evaluation|, page 109). However, evaluation and reading are separate activities. Reading

14 XEmacs Lisp Reference Manual

returns the Lisp object represented by the text that is read; the object may or may not be
evaluated later. See Section 17.3 [Input Functions|, page 229, for a description of read, the
basic function for reading objects.

2.2 Comments

A comment is text that is written in a program only for the sake of humans that read the
program, and that has no effect on the meaning of the program. In Lisp, a semicolon (‘;’) starts
a comment if it is not within a string or character constant. The comment continues to the end
of line. The Lisp reader discards comments; they do not become part of the Lisp objects which
represent the program within the Lisp system.

The ‘#@count’ construct, which skips the next count characters, is useful for program-
generated comments containing binary data. The XEmacs Lisp byte compiler uses this in
its output files (see Chapter 15 [Byte Compilation], page 187). It isn’t meant for source files,
however.

See Section A4 [Comment Tips|, page 689, for conventions for formatting comments.

2.3 Primitive Types

For reference, here is a list of all the primitive types that may exist in XEmacs. Note that
some of these types may not exist in some XEmacs executables; that depends on the options

that XEmacs was configured with.
e bit-vector
e buffer
e char-table
e character

charset

coding-system

cons
color-instance

compiled-function

console
database

device

event
extent

face
float
font-instance

frame
glyph
hashtable

image-instance

integer

keymap

Chapter 2: Lisp Data Types

marker

process
range-table
specifier

string

subr

subwindow
symbol
toolbar-button
tooltalk-message
tooltalk-pattern
vector

weak-list
window
window-configuration

X-resource

15

In addition, the following special types are created internally but will never be seen by

Lisp code. You may encounter them, however, if you are debugging XEmacs. The printed

representation of these objects begins ‘#<INTERNAL EMACS BUG’, which indicates to the Lisp
programmer that he has found an internal bug in XEmacs if he ever encounters any of these
objects.

2.4 Programming Types

char-table-entry
command-builder
extent-auxiliary
extent-info

lecrecord-list

Istream

opaque

opaque-list

popup-data
symbol-value-buffer-local
symbol-value-forward
symbol-value-lisp-magic
symbol-value-varalias
toolbar-data

There are two general categories of types in XEmacs Lisp: those having to do with Lisp pro-

gramming, and those having to do with editing. The former exist in many Lisp implementations,

in one form or another. The latter are unique to XEmacs Lisp.

16 XEmacs Lisp Reference Manual

2.4.1 Integer Type

The range of values for integers in XEmacs Lisp is —134217728 to 134217727 (28 bits; i.e.,
—2%7 t0 2?® — 1) on most machines. (Some machines, in particular 64-bit machines such as
the DEC Alpha, may provide a wider range.) It is important to note that the XEmacs Lisp
arithmetic functions do not check for overflow. Thus (1+ 134217727) is —134217728 on most
machines. (However, you will get an error if you attempt to read an out-of-range number using
the Lisp reader.)

The read syntax for integers is a sequence of (base ten) digits with an optional sign at the
beginning. (The printed representation produced by the Lisp interpreter never has a leading
4+7.)

-1 ; The integer -1.

1 ; The integer 1.

+1 ; Also the integer 1.

268435457 ; Causes an error on a 28-bit implementation.

See Chapter 3 [Numbers|, page 41, for more information.

2.4.2 Floating Point Type

XEmacs supports floating point numbers. The precise range of floating point numbers is
machine-specific.

The printed representation for floating point numbers requires either a decimal point (with
at least one digit following), an exponent, or both. For example, ‘1500.0’, ‘15e2’, ‘15.0e2’,
‘1.5e3’, and ‘.15e4’ are five ways of writing a floating point number whose value is 1500. They
are all equivalent.

See Chapter 3 [Numbers|, page 41, for more information.

2.4.3 Character Type

In XEmacs version 19, and in all versions of FSF GNU Emacs, a character in XEmacs Lisp
is nothing more than an integer. This is yet another holdover from XEmacs Lisp’s derivation
from vintage-1980 Lisps; modern versions of Lisp consider this equivalence a bad idea, and
have separate character types. In XEmacs version 20, the modern convention is followed, and
characters are their own primitive types. (This change was necessary in order for MULE, i.e.
Asian-language, support to be correctly implemented.)

Even in XEmacs version 20, remnants of the equivalence between characters and integers
still exist; this is termed the char-int confoundance disease. In particular, many functions such
as eq, equal, and memq have equivalent functions (old-eq, old-equal, old-memq, etc.) that
pretend like characters are integers are the same. Byte code compiled under any version 19
Emacs will have all such functions mapped to their 01d- equivalents when the byte code is read
into XEmacs 20. This is to preserve compatibility — Emacs 19 converts all constant characters to
the equivalent integer during byte-compilation, and thus there is no other way to preserve byte-
code compatibility even if the code has specifically been written with the distinction between
characters and integers in mind.

Every character has an equivalent integer, called the character code. For example, the charac-
ter A is represented as the integer 65, following the standard ASCII representation of characters.
If XEmacs was not compiled with MULE support, the range of this integer will always be 0 to
255 — eight bits, or one byte. (Integers outside this range are accepted but silently truncated;

Chapter 2: Lisp Data Types 17

however, you should most decidedly not rely on this, because it will not work under XEmacs
with MULE support.) When MULE support is present, the range of character codes is much
larger. (Currently, 19 bits are used.)

FSF GNU Emacs uses kludgy character codes above 255 to represent keyboard input of
ASCII characters in combination with certain modifiers. XEmacs does not use this (a more
general mechanism is used that does not distinguish between ASCII keys and other keys), so
you will never find character codes above 255 in a non-MULE XEmacs.

Individual characters are not often used in programs. It is far more common to work with
strings, which are sequences composed of characters. See Section 2.4.8 [String Typel, page 22.

The read syntax for characters begins with a question mark, followed by the character (if
it’s printable) or some symbolic representation of it. In XEmacs 20, where characters are their
own type, this is also the print representation. In XEmacs 19, however, where characters are
really integers, the printed representation of a character is a decimal number. This is also a
possible read syntax for a character, but writing characters that way in Lisp programs is a very
bad idea. You should always use the special read syntax formats that XEmacs Lisp provides for
characters.

The usual read syntax for alphanumeric characters is a question mark followed by the char-
acter; thus, ‘?A’ for the character A, ‘?B’ for the character B, and ‘?a’ for the character a.

For example:

;3 Under XEmacs 20:

70 = 7Q 79 = 7q

(char-int 7Q) = 81

;3 Under XEmacs 19:

70 = 81 7q = 113

You can use the same syntax for punctuation characters, but it is often a good idea to add a

‘\” so that the Emacs commands for editing Lisp code don’t get confused. For example, ‘?\ ’ is
the way to write the space character. If the character is ‘\’, you must use a second ‘\’ to quote
it: ‘“?\\". XEmacs 20 always prints punctuation characters with a ‘\’ in front of them, to avoid
confusion.

You can express the characters Control-g, backspace, tab, newline, vertical tab, formfeed,
return, and escape as ‘?\a’, ‘?\b’, ‘?\t’, ‘?\n’, ‘?\v’, ‘?\f’, ‘“?\r’, ‘?\e’, respectively. Their
character codes are 7, 8, 9, 10, 11, 12, 13, and 27 in decimal. Thus,

;3 Under XEmacs 20:

\a = 7\"C ; C-g

(char-int ?\a) = 7

?2\b = ?\"H ; backspace, BS), C-h
(char-int ?\b) = 8

2\t = 7\t ; tab, (TAB), C-i

(char-int ?\t) = 9

?2\n = ?\n ; newline, (LFD), C-j

2\v = 7\7K ; vertical tab, C-k

2\f = 7\'L ; formfeed character, C-1
\r = ?\r ; carriage return, RET), C-m
2\e = 7\ [; escape character, (ESC), C-[
2\\ = 7\\ ; backslash character, \

;3 Under XEmacs 19:

Na = 7 ; C-g

?\b = 8 ; backspace, BS), C-h

2\t = 9 ; tab, (TAB), C-i

?\n = 10 ; newline, (LFD), C-j

\v = 11 ; vertical tab, C-k

18 XEmacs Lisp Reference Manual

2\f = 12 ; formfeed character, C-1
\r = 13 ; carriage return, RET), C-m
2\e = 27 ; escape character, (ESC), C-[
2\\ = 92 ; backslash character, \

These sequences which start with backslash are also known as escape sequences, because
backslash plays the role of an escape character; this usage has nothing to do with the character
ESC).

Control characters may be represented using yet another read syntax. This consists of a
question mark followed by a backslash, caret, and the corresponding non-control character, in
either upper or lower case. For example, both ‘?\"I” and ‘?\"i’ are valid read syntax for the
character C-i, the character whose value is 9.

Instead of the *~’, you can use ‘C-’; thus, ‘?\C-1i’ is equivalent to ‘?\"I’ and to ‘?\"i”:

;3 Under XEmacs 20:

\"I = 7\t ?\C-I = 7\t

(char-int ?\"I) = 9

;3 Under XEmacs 19:

?\"I = 9 ?\C-I = 9

There is also a character read syntax beginning with ‘\M-". This sets the high bit of the

character code (same as adding 128 to the character code). For example, ‘?\M-A’ stands for
the character with character code 193, or 128 plus 65. You should not use this syntax in your
programs. It is a holdover of yet another confoundance disease from earlier Emacsen. (This was
used to represent keyboard input with the key set, thus the ‘M’; however, it conflicts with
the legitimate ISO-8859-1 interpretation of the character code. For example, character code 193
is a lowercase ‘a’ with an acute accent, in ISO-8859-1.)

Finally, the most general read syntax consists of a question mark followed by a backslash and
the character code in octal (up to three octal digits); thus, ‘?\101’ for the character 4, ‘?\001’
for the character C-a, and ?\002 for the character C-b. Although this syntax can represent any
ASCII character, it is preferred only when the precise octal value is more important than the
ASCII representation.

;3 Under XEmacs 20:

?\012 = ?\n \n = ?\n ?\C—j = 7\n
?\101 = 7A 7A = 7A

;3 Under XEmacs 19:

?\012 = 10 ?\n = 10 ?\C—j = 10
?\101 = 65 ?A = 65

A backslash is allowed, and harmless, preceding any character without a special escape mean-
ing; thus, ‘?\+’ is equivalent to ‘?+’. There is no reason to add a backslash before most charac-
ters. However, you should add a backslash before any of the characters ‘O\1|;’‘"#.,’ to avoid
confusing the Emacs commands for editing Lisp code. Also add a backslash before whitespace
characters such as space, tab, newline and formfeed. However, it is cleaner to use one of the
easily readable escape sequences, such as ‘\t’, instead of an actual whitespace character such as
a tab.

2.4.4 Symbol Type

A symbol in XEmacs Lisp is an object with a name. The symbol name serves as the printed
representation of the symbol. In ordinary use, the name is unique—mno two symbols have the
same name.

A symbol can serve as a variable, as a function name, or to hold a property list. Or it may
serve only to be distinct from all other Lisp objects, so that its presence in a data structure may

Chapter 2: Lisp Data Types 19

be recognized reliably. In a given context, usually only one of these uses is intended. But you
can use one symbol in all of these ways, independently.

A symbol name can contain any characters whatever. Most symbol names are written with
letters, digits, and the punctuation characters ‘—=+=+*/’. Such names require no special punctua-
tion; the characters of the name suffice as long as the name does not look like a number. (If it
does, write a ‘\’ at the beginning of the name to force interpretation as a symbol.) The char-
acters ‘_"10$%"&:<>{} are less often used but also require no special punctuation. Any other
characters may be included in a symbol’s name by escaping them with a backslash. In contrast
to its use in strings, however, a backslash in the name of a symbol simply quotes the single
character that follows the backslash. For example, in a string, ‘\t’ represents a tab character;
in the name of a symbol, however, ‘\t” merely quotes the letter t. To have a symbol with a tab
character in its name, you must actually use a tab (preceded with a backslash). But it’s rare to
do such a thing.

Common Lisp note: In Common Lisp, lower case letters are always “folded” to
upper case, unless they are explicitly escaped. In Emacs Lisp, upper case and lower
case letters are distinct.

Here are several examples of symbol names. Note that the ‘4 in the fifth example is escaped
to prevent it from being read as a number. This is not necessary in the sixth example because
the rest of the name makes it invalid as a number.

foo ; A symbol named ‘foo’.

FOO ;A symbol named ‘FOQ’, different from ‘foo’.
char-to-string ; A symbol named ‘char-to-string’.

1+ ;A symbol named 1+’

; (not ‘+41’, which is an integer).

\+1 ; A symbol named ‘+1’
; (not a very readable name).
NG\ 1\ 2)\) ; A symbol named ‘(x 1 2)’ (a worse name).

+-x/_"10%%"&=:<>{} ; A symbol named ‘“+-*/_"10$%"&=:<>{}".
; These characters need not be escaped.

2.4.5 Sequence Types

A sequence is a Lisp object that represents an ordered set of elements. There are two kinds
of sequence in XEmacs Lisp, lists and arrays. Thus, an object of type list or of type array is
also considered a sequence.

Arrays are further subdivided into strings, vectors, and bit vectors. Vectors can hold elements
of any type, but string elements must be characters, and bit vector elements must be either 0 or
1. However, the characters in a string can have extents (see Chapter 40 [Extents|, page 529) and
text properties (see Section 36.18 [Text Properties|, page 488) like characters in a buffer; vectors
do not support extents or text properties even when their elements happen to be characters.

Lists, strings, vectors, and bit vectors are different, but they have important similarities.
For example, all have a length I, and all have elements which can be indexed from zero to I
minus one. Also, several functions, called sequence functions, accept any kind of sequence. For
example, the function elt can be used to extract an element of a sequence, given its index. See
Chapter 6 [Sequences Arrays Vectors], page 93.

It is impossible to read the same sequence twice, since sequences are always created anew
upon reading. If you read the read syntax for a sequence twice, you get two sequences with
equal contents. There is one exception: the empty list () always stands for the same object,
nil.

20 XEmacs Lisp Reference Manual

2.4.6 Cons Cell and List Types

A cons cell is an object comprising two pointers named the CAR and the CDR. Each of them
can point to any Lisp object.

A list is a series of cons cells, linked together so that the CDR of each cons cell points either
to another cons cell or to the empty list. See Chapter 5 [Lists|, page 71, for functions that work

on lists. Because most cons cells are used as part of lists, the phrase list structure has come to
refer to any structure made out of cons cells.

The names CAR and CDR have only historical meaning now. The original Lisp implementation
ran on an IBM 704 computer which divided words into two parts, called the “address” part and
the “decrement”; CAR was an instruction to extract the contents of the address part of a register,
and CDR an instruction to extract the contents of the decrement. By contrast, “cons cells” are
named for the function cons that creates them, which in turn is named for its purpose, the
construction of cells.

Because cons cells are so central to Lisp, we also have a word for “an object which is not a
cons cell”. These objects are called atoms.

The read syntax and printed representation for lists are identical, and consist of a left paren-
thesis, an arbitrary number of elements, and a right parenthesis.

Upon reading, each object inside the parentheses becomes an element of the list. That is, a
cons cell is made for each element. The CAR of the cons cell points to the element, and its CDR
points to the next cons cell of the list, which holds the next element in the list. The CDR of the
last cons cell is set to point to nil.

A list can be illustrated by a diagram in which the cons cells are shown as pairs of boxes.
(The Lisp reader cannot read such an illustration; unlike the textual notation, which can be
understood by both humans and computers, the box illustrations can be understood only by
humans.) The following represents the three-element list (rose violet buttercup):

--> rose --> violet --> buttercup

In this diagram, each box represents a slot that can refer to any Lisp object. Each pair
of boxes represents a cons cell. Each arrow is a reference to a Lisp object, either an atom or
another cons cell.

In this example, the first box, the CAR of the first cons cell, refers to or “contains” rose (a
symbol). The second box, the CDR of the first cons cell, refers to the next pair of boxes, the
second cons cell. The CAR of the second cons cell refers to violet and the CDR refers to the
third cons cell. The CDR of the third (and last) cons cell refers to nil.

Here is another diagram of the same list, (rose violet buttercup), sketched in a different
manner:

| car | cdr | | car | cdr | | car | cdr |

A list with no elements in it is the empty list; it is identical to the symbol nil. In other
words, nil is both a symbol and a list.

Here are examples of lists written in Lisp syntax:

Chapter 2: Lisp Data Types 21

(A 2 "A™) ; A list of three elements.

O ; A list of no elements (the empty list).

nil ; A list of no elements (the empty list).

™A OM ; A list of one element: the string "A ()".

A O ; A list of two elements: A and the empty list.
(A nil) ; Equivalent to the previous.

((A B Q) ;A list of one element

; (which is a list of three elements).
Here is the list (A ()), or equivalently (A nil), depicted with boxes and arrows:

2.4.6.1 Dotted Pair Notation

Dotted pair notation is an alternative syntax for cons cells that represents the CAR and CDR
explicitly. In this syntax, (a . b) stands for a cons cell whose CAR is the object a, and whose
CDR is the object b. Dotted pair notation is therefore more general than list syntax. In the
dotted pair notation, the list ‘(1 2 3)’is writtenas ‘(1 . (2 . (3 . nil)))’. For nil-terminated
lists, the two notations produce the same result, but list notation is usually clearer and more
convenient when it is applicable. When printing a list, the dotted pair notation is only used if
the CDR of a cell is not a list.

Here’s how box notation can illustrate dotted pairs. This example shows the pair (rose .
violet):

[___l___|--> violet
|
|

—-=> rose

Dotted pair notation can be combined with list notation to represent a chain of cons cells
with a non-nil final CDR. For example, (rose violet . buttercup) is equivalent to (rose .
(violet . buttercup)). The object looks like this:

--> rose --> violet

These diagrams make it evident why (rose . violet . buttercup) is invalid syntax; it
would require a cons cell that has three parts rather than two.

The list (rose violet) is equivalent to (rose . (violet)) and looks like this:

--> rose --> violet

Similarly, the three-element list (rose violet buttercup) is equivalent to (rose . (violet
. (buttercup))).

22 XEmacs Lisp Reference Manual

2.4.6.2 Association List Type

An association list or alist is a specially-constructed list whose elements are cons cells. In
each element, the CAR is considered a key, and the CDR is considered an associated value. (In
some cases, the associated value is stored in the CAR of the CDR.) Association lists are often
used as stacks, since it is easy to add or remove associations at the front of the list.

For example,

(setq alist-of-colors
>((rose . red) (lily . white) (buttercup . yellow)))

sets the variable alist-of-colors to an alist of three elements. In the first element, rose is
the key and red is the value.

See Section 5.8 [Association Lists|, page 85, for a further explanation of alists and for functions
that work on alists.

2.4.7 Array Type

An array is composed of an arbitrary number of slots for referring to other Lisp objects,
arranged in a contiguous block of memory. Accessing any element of an array takes the same
amount of time. In contrast, accessing an element of a list requires time proportional to the
position of the element in the list. (Elements at the end of a list take longer to access than
elements at the beginning of a list.)

XEmacs defines three types of array, strings, vectors, and bit vectors. A string is an array of
characters, a vector is an array of arbitrary objects, and a bit vector is an array of 1’s and 0’s.
All are one-dimensional. (Most other programming languages support multidimensional arrays,
but they are not essential; you can get the same effect with an array of arrays.) Each type of
array has its own read syntax; see Section 2.4.8 [String Type|, page 22, Section 2.4.9 [Vector
Type], page 23, and Section 2.4.10 [Bit Vector Type|, page 23.

An array may have any length up to the largest integer; but once created, it has a fixed size.
The first element of an array has index zero, the second element has index 1, and so on. This is
called zero-origin indexing. For example, an array of four elements has indices 0, 1, 2, and 3.

The array type is contained in the sequence type and contains the string type, the vector
type, and the bit vector type.

2.4.8 String Type

A string is an array of characters. Strings are used for many purposes in XEmacs, as can
be expected in a text editor; for example, as the names of Lisp symbols, as messages for the
user, and to represent text extracted from buffers. Strings in Lisp are constants: evaluation of
a string returns the same string.

The read syntax for strings is a double-quote, an arbitrary number of characters, and another
double-quote, "1ike this". The Lisp reader accepts the same formats for reading the characters
of a string as it does for reading single characters (without the question mark that begins a
character literal). You can enter a nonprinting character such as tab or C-a using the convenient
escape sequences, like this: "\t, \C-a". You can include a double-quote in a string by preceding
it with a backslash; thus, "\"" is a string containing just a single double-quote character. (See
Section 2.4.3 [Character Typel, page 16, for a description of the read syntax for characters.)

The printed representation of a string consists of a double-quote, the characters it contains,
and another double-quote. However, you must escape any backslash or double-quote characters
in the string with a backslash, like this: "this \" is an embedded quote".

Chapter 2: Lisp Data Types 23

The newline character is not special in the read syntax for strings; if you write a new line
between the double-quotes, it becomes a character in the string. But an escaped newline—one
that is preceded by ‘\’—does not become part of the string; i.e., the Lisp reader ignores an
escaped newline while reading a string.

"It is useful to include newlines
in documentation strings,
but the newline is \
ignored if escaped."
= "It is useful to include newlines
in documentation strings,
but the newline is ignored if escaped."

A string can hold extents and properties of the text it contains, in addition to the characters
themselves. This enables programs that copy text between strings and buffers to preserve
the extents and properties with no special effort. See Chapter 40 [Extents|, page 529, See
Section 36.18 [Text Properties|, page 488.

Note that FSF GNU Emacs has a special read and print syntax for strings with text prop-
erties, but XEmacs does not currently implement this. It was judged better not to include this
in XEmacs because it entails that equal return nil when passed a string with text properties
and the equivalent string without text properties, which is often counter-intuitive.

See Chapter 4 [Strings and Characters|, page 55, for functions that work on strings.

2.4.9 Vector Type

A vector is a one-dimensional array of elements of any type. It takes a constant amount of
time to access any element of a vector. (In a list, the access time of an element is proportional
to the distance of the element from the beginning of the list.)

The printed representation of a vector consists of a left square bracket, the elements, and
a right square bracket. This is also the read syntax. Like numbers and strings, vectors are
considered constants for evaluation.

[1 "two" (three)] ;A vector of three elements.
= [1 "two" (three)]

See Section 6.4 [Vectors|, page 97, for functions that work with vectors.

2.4.10 Bit Vector Type

A bit vector is a one-dimensional array of 1’s and 0’s. It takes a constant amount of time
to access any element of a bit vector, as for vectors. Bit vectors have an extremely compact
internal representation (one machine bit per element), which makes them ideal for keeping track
of unordered sets, large collections of boolean values, etc.

The printed representation of a bit vector consists of ‘#*’ followed by the bits in the vector.
This is also the read syntax. Like numbers, strings, and vectors, bit vectors are considered
constants for evaluation.

#x00101000 ;A bit vector of eight elements.
= #x00101000

See Section 6.6 [Bit Vectors|, page 99, for functions that work with bit vectors.

24 XEmacs Lisp Reference Manual

2.4.11 Function Type

Just as functions in other programming languages are executable, Lisp function objects are
pieces of executable code. However, functions in Lisp are primarily Lisp objects, and only
secondarily the text which represents them. These Lisp objects are lambda expressions: lists
whose first element is the symbol lambda (see Section 11.2 [Lambda Expressions|, page 148).

In most programming languages, it is impossible to have a function without a name. In Lisp,
a function has no intrinsic name. A lambda expression is also called an anonymous function (see
Section 11.7 [Anonymous Functions|, page 155). A named function in Lisp is actually a symbol
with a valid function in its function cell (see Section 11.4 [Defining Functions], page 151).

Most of the time, functions are called when their names are written in Lisp expressions in
Lisp programs. However, you can construct or obtain a function object at run time and then
call it with the primitive functions funcall and apply. See Section 11.5 [Calling Functions],
page 153.

2.4.12 Macro Type

A Lisp macro is a user-defined construct that extends the Lisp language. It is represented as
an object much like a function, but with different parameter-passing semantics. A Lisp macro
has the form of a list whose first element is the symbol macro and whose CDR is a Lisp function
object, including the lambda symbol.

Lisp macro objects are usually defined with the built-in defmacro function, but any list that
begins with macro is a macro as far as XEmacs is concerned. See Chapter 12 [Macros|, page 161,
for an explanation of how to write a macro.

2.4.13 Primitive Function Type

A primitive function is a function callable from Lisp but written in the C programming
language. Primitive functions are also called subrs or built-in functions. (The word “subr” is
derived from “subroutine”.) Most primitive functions evaluate all their arguments when they
are called. A primitive function that does not evaluate all its arguments is called a special form
(see Section 8.2.7 [Special Forms|, page 114).

It does not matter to the caller of a function whether the function is primitive. However,
this does matter if you try to substitute a function written in Lisp for a primitive of the same
name. The reason is that the primitive function may be called directly from C code. Calls to
the redefined function from Lisp will use the new definition, but calls from C code may still use
the built-in definition.

The term function refers to all Emacs functions, whether written in Lisp or C. See Sec-
tion 2.4.11 [Function Type|, page 24, for information about the functions written in Lisp.

Primitive functions have no read syntax and print in hash notation with the name of the
subroutine.

(symbol-function ’car) ; Access the function cell
; of the symbol.
= #<subr car>
(subrp (symbol-function ’car)) ; Is this a primitive function?
=t ; Yes.

Chapter 2: Lisp Data Types 25

2.4.14 Compiled-Function Type

The byte compiler produces compiled-function objects. The evaluator handles this data
type specially when it appears as a function to be called. See Chapter 15 [Byte Compilation],
page 187, for information about the byte compiler.

The printed representation for a compiled-function object is normally
‘#<compiled-function...>. If print-readably is true, however, it is ‘#[...]".

2.4.15 Autoload Type

An autoload object is a list whose first element is the symbol autoload. It is stored as the
function definition of a symbol as a placeholder for the real definition; it says that the real
definition is found in a file of Lisp code that should be loaded when necessary. The autoload
object contains the name of the file, plus some other information about the real definition.

After the file has been loaded, the symbol should have a new function definition that is not
an autoload object. The new definition is then called as if it had been there to begin with. From
the user’s point of view, the function call works as expected, using the function definition in the
loaded file.

An autoload object is usually created with the function autoload, which stores the object
in the function cell of a symbol. See Section 14.2 [Autoload], page 180, for more details.

2.4.16 Char Table Type

(not yet documented)

2.4.17 Hash Table Type

A hash table is a table providing an arbitrary mapping from one Lisp object to another, using
an internal indexing method called hashing. Hash tables are very fast (much more efficient that
using an association list, when there are a large number of elements in the table).

Hash tables have no read syntax. They print in hash notation (The “hash” in “hash notation”
has nothing to do with the “hash” in “hash table”), giving the number of elements, total space
allocated for elements, and a unique number assigned at the time the hash table was created.
(Hash tables automatically resize as necessary so there is no danger of running out of space for
elements.)

(make-hashtable 50)
= #<hashtable 0/71 0x313a>

See Chapter 46 [Hash Tables|, page 601, for information on how to create and work with
hash tables.

2.4.18 Range Table Type

A range table is a table that maps from ranges of integers to arbitrary Lisp objects. Range ta-
bles automatically combine overlapping ranges that map to the same Lisp object, and operations
are provided for mapping over all of the ranges in a range table.

Range tables have a special read syntax beginning with ‘#s (range-table’ (this is an example
of structure read syntax, which is also used for char tables and faces).

26 XEmacs Lisp Reference Manual

(setq x (make-range-table))
(put-range-table 20 50 ’foo x)
(put-range-table 100 200 "bar" x)
X
= #s(range-table data ((20 50) foo (100 200) "bar"))

See Chapter 47 [Range Tables|, page 603, for information on how to create and work with
range tables.

2.4.19 Weak List Type

(not yet documented)

2.5 Editing Types

The types in the previous section are common to many Lisp dialects. XEmacs Lisp provides
several additional data types for purposes connected with editing.

2.5.1 Buffer Type

A buffer is an object that holds text that can be edited (see Chapter 30 [Buffers|, page 391).
Most buffers hold the contents of a disk file (see Chapter 28 [Files|, page 355) so they can be
edited, but some are used for other purposes. Most buffers are also meant to be seen by the
user, and therefore displayed, at some time, in a window (see Chapter 31 [Windows|, page 403).
But a buffer need not be displayed in any window.

The contents of a buffer are much like a string, but buffers are not used like strings in XEmacs
Lisp, and the available operations are different. For example, insertion of text into a buffer is
very efficient, whereas “inserting” text into a string requires concatenating substrings, and the
result is an entirely new string object.

Each buffer has a designated position called point (see Chapter 34 [Positions|, page 441). At
any time, one buffer is the current buffer. Most editing commands act on the contents of the
current buffer in the neighborhood of point. Many of the standard Emacs functions manipulate
or test the characters in the current buffer; a whole chapter in this manual is devoted to describing
these functions (see Chapter 36 [Text|, page 463).

Several other data structures are associated with each buffer:

e a local syntax table (see Chapter 38 [Syntax Tables|, page 513);

e a local keymap (see Chapter 20 [Keymaps|, page 285);

e a local variable binding list (see Section 10.9 [Buffer-Local Variables|, page 141);
o a list of extents (see Chapter 40 [Extents|, page 529);

e and various other related properties.

The local keymap and variable list contain entries that individually override global bindings
or values. These are used to customize the behavior of programs in different buffers, without
actually changing the programs.

A buffer may be indirect, which means it shares the text of another buffer. See Section 30.11
[Indirect Buffers|, page 401.

Buffers have no read syntax. They print in hash notation, showing the buffer name.

(current-buffer)
= #<buffer "objects.texi">

Chapter 2: Lisp Data Types 27

2.5.2 Marker Type

A marker denotes a position in a specific buffer. Markers therefore have two components:
one for the buffer, and one for the position. Changes in the buffer’s text automatically relocate
the position value as necessary to ensure that the marker always points between the same two
characters in the buffer.

Markers have no read syntax. They print in hash notation, giving the current character
position and the name of the buffer.

(point-marker)
= #<marker at 50661 in objects.texi>

See Chapter 35 [Markers|, page 453, for information on how to test, create, copy, and move
markers.

2.5.3 Extent Type

An extent specifies temporary alteration of the display appearance of a part of a buffer (or
string). It contains markers delimiting a range of the buffer, plus a property list (a list whose
elements are alternating property names and values). Extents are used to present parts of the
buffer temporarily in a different display style. They have no read syntax, and print in hash
notation, giving the buffer name and range of positions.

Extents can exist over strings as well as buffers; the primary use of this is to preserve extent
and text property information as text is copied from one buffer to another or between different
parts of a buffer.

Extents have no read syntax. They print in hash notation, giving the range of text they
cover, the name of the buffer or string they are in, the address in core, and a summary of some
of the properties attached to the extent.

(extent-at (point))
= #<extent [51742, 51748) font-lock text-prop 0x90121e0 in buffer objects.texi:

See Chapter 40 [Extents|, page 529, for how to create and use extents.
Extents are used to implement text properties. See Section 36.18 [Text Properties|, page 488.

2.5.4 Window Type

A window describes the portion of the frame that XEmacs uses to display a buffer. (In
standard window-system usage, a window is what XEmacs calls a frame; XEmacs confusingly
uses the term “window” to refer to what is called a pane in standard window-system usage.)
Every window has one associated buffer, whose contents appear in the window. By contrast, a
given buffer may appear in one window, no window, or several windows.

Though many windows may exist simultaneously, at any time one window is designated the
selected window. This is the window where the cursor is (usually) displayed when XEmacs is
ready for a command. The selected window usually displays the current buffer, but this is not
necessarily the case.

Windows are grouped on the screen into frames; each window belongs to one and only one
frame. See Section 2.5.5 [Frame Type|, page 28.

Windows have no read syntax. They print in hash notation, giving the name of the buffer
being displayed and a unique number assigned at the time the window was created. (This

number can be useful because the buffer displayed in any given window can change frequently.)

28 XEmacs Lisp Reference Manual

(selected-window)
= #<window on "objects.texi" 0x266c>

See Chapter 31 [Windows|, page 403, for a description of the functions that work on windows.

2.5.5 Frame Type

A frame is a rectangle on the screen (a window in standard window-system terminology) that
contains one or more non-overlapping Emacs windows (panes in standard window-system ter-
minology). A frame initially contains a single main window (plus perhaps a minibuffer window)
which you can subdivide vertically or horizontally into smaller windows.

Frames have no read syntax. They print in hash notation, giving the frame’s type, name as
used for resourcing, and a unique number assigned at the time the frame was created.

(selected-frame)
= #<x-frame "emacs" 0x9db>

See Chapter 32 [Frames|, page 425, for a description of the functions that work on frames.

2.5.6 Device Type

A device represents a single display on which frames exist. Normally, there is only one device
object, but there may be more than one if XEmacs is being run on a multi-headed display
(e.g. an X server with attached color and mono screens) or if XEmacs is simultaneously driving
frames attached to different consoles, e.g. an X display and a TTY connection.

Devices do not have a read syntax. They print in hash notation, giving the device’s type,
connection name, and a unique number assigned at the time the device was created.

(selected-device)
= #<x-device on ":0.0" 0x5b9>

See Chapter 33 [Consoles and Devices|, page 437, for a description of several functions related
to devices.

2.5.7 Console Type

A console represents a single keyboard to which devices (i.e. displays on which frames
exist) are connected. Normally, there is only one console object, but there may be more than
one if XEmacs is simultaneously driving frames attached to different X servers and/or TTY
connections. (XEmacs is capable of driving multiple X and TTY connections at the same
time, and provides a robust mechanism for handling the differing display capabilities of such
heterogeneous environments. A buffer with embedded glyphs and multiple fonts and colors, for
example, will display reasonably if it simultaneously appears on a frame on a color X display, a
frame on a mono X display, and a frame on a TTY connection.)

Consoles do not have a read syntax. They print in hash notation, giving the console’s type,
connection name, and a unique number assigned at the time the console was created.

(selected-console)
= #<x-console on "localhost:0" 0x5b7>

See Chapter 33 [Consoles and Devices|, page 437, for a description of several functions related
to consoles.

Chapter 2: Lisp Data Types 29

2.5.8 Window Configuration Type

A window configuration stores information about the positions, sizes, and contents of the
windows in a frame, so you can recreate the same arrangement of windows later.

Window configurations do not have a read syntax. They print in hash notation, giving a
unique number assigned at the time the window configuration was created.

(current-window-configuration)
= #<window-configuration Ox2db4>

See Section 31.16 [Window Configurations|, page 423, for a description of several functions
related to window configurations.

2.5.9 Event Type

(not yet documented)

2.5.10 Process Type

The word process usually means a running program. XEmacs itself runs in a process of
this sort. However, in XEmacs Lisp, a process is a Lisp object that designates a subprocess
created by the XEmacs process. Programs such as shells, GDB, ftp, and compilers, running in
subprocesses of XEmacs, extend the capabilities of XEmacs.

An Emacs subprocess takes textual input from Emacs and returns textual output to Emacs
for further manipulation. Emacs can also send signals to the subprocess.

Process objects have no read syntax. They print in hash notation, giving the name of the
process, its associated process 1D, and the current state of the process:

(process-list)
= (#<process "shell" pid 2909 state:run>)

See Chapter 49 [Processes|, page 607, for information about functions that create, delete,
return information about, send input or signals to, and receive output from processes.

2.5.11 Stream Type

A stream is an object that can be used as a source or sink for characters—either to supply
characters for input or to accept them as output. Many different types can be used this way:
markers, buffers, strings, and functions. Most often, input streams (character sources) obtain
characters from the keyboard, a buffer, or a file, and output streams (character sinks) send
characters to a buffer, such as a ‘*Help*’ buffer, or to the echo area.

The object nil, in addition to its other meanings, may be used as a stream. It stands for
the value of the variable standard-input or standard-output. Also, the object t as a stream
specifies input using the minibuffer (see Chapter 18 [Minibuffers|, page 237) or output in the
echo area (see Section 45.3 [The Echo Areal, page 586).

Streams have no special printed representation or read syntax, and print as whatever primitive
type they are.

See Chapter 17 [Read and Print|, page 227, for a description of functions related to streams,
including parsing and printing functions.

30 XEmacs Lisp Reference Manual

2.5.12 Keymap Type

A keymap maps keys typed by the user to commands. This mapping controls how the user’s
command input is executed.

NOTE: In XEmacs, a keymap is a separate primitive type. In FSF GNU Emacs, a keymap
is actually a list whose CAR is the symbol keymap.

See Chapter 20 [Keymaps|, page 285, for information about creating keymaps, handling prefix
keys, local as well as global keymaps, and changing key bindings.

2.5.13 Syntax Table Type

Under XEmacs 20, a syntax table is a particular type of char table. Under XEmacs 19, a
syntax table a vector of 256 integers. In both cases, each element defines how one character
is interpreted when it appears in a buffer. For example, in C mode (see Section 26.1 [Major
Modes|, page 327), the ‘+’ character is punctuation, but in Lisp mode it is a valid character in
a symbol. These modes specify different interpretations by changing the syntax table entry for
(+7.

Syntax tables are used only for scanning text in buffers, not for reading Lisp expressions.
The table the Lisp interpreter uses to read expressions is built into the XEmacs source code and
cannot be changed; thus, to change the list delimiters to be ‘{’ and ‘}’ instead of ‘C’ and *)’
would be impossible.

See Chapter 38 [Syntax Tables|, page 513, for details about syntax classes and how to make
and modify syntax tables.

2.5.14 Display Table Type

A display table specifies how to display each character code. Each buffer and each window
can have its own display table. A display table is actually a vector of length 256, although in
XEmacs 20 this may change to be a particular type of char table. See Section 45.11 [Display
Tables]|, page 596.

2.5.15 Database Type

(not yet documented)

2.5.16 Charset Type

(not yet documented)

2.5.17 Coding System Type

(not yet documented)

Chapter 2: Lisp Data Types 31

2.5.18 ToolTalk Message Type

(not yet documented)

2.5.19 ToolTalk Pattern Type

(not yet documented)

2.6 Window-System Types

XEmacs also has some types that represent objects such as faces (collections of display
characters), fonts, and pixmaps that are commonly found in windowing systems.

2.6.1 Face Type

(not yet documented)

2.6.2 Glyph Type

(not yet documented)

2.6.3 Specifier Type

(not yet documented)

2.6.4 Font Instance Type

(not yet documented)

2.6.5 Color Instance Type

(not yet documented)

2.6.6 Image Instance Type

(not yet documented)

2.6.7 Toolbar Button Type

(not yet documented)

32 XEmacs Lisp Reference Manual

2.6.8 Subwindow Type

(not yet documented)

2.6.9 X Resource Type

(not yet documented)

2.7 Type Predicates

The XEmacs Lisp interpreter itself does not perform type checking on the actual arguments
passed to functions when they are called. It could not do so, since function arguments in Lisp
do not have declared data types, as they do in other programming languages. It is therefore
up to the individual function to test whether each actual argument belongs to a type that the
function can use.

All built-in functions do check the types of their actual arguments when appropriate, and
signal a wrong-type-argument error if an argument is of the wrong type. For example, here is
what happens if you pass an argument to + that it cannot handle:

(+ 2 a)
Wrong type argument: integer-or-marker-p, a

If you want your program to handle different types differently, you must do explicit type
checking. The most common way to check the type of an object is to call a type predicate
function. Emacs has a type predicate for each type, as well as some predicates for combinations
of types.

A type predicate function takes one argument; it returns t if the argument belongs to the
appropriate type, and nil otherwise. Following a general Lisp convention for predicate functions,
most type predicates’ names end with ‘p’.

Here is an example which uses the predicates 1istp to check for a list and symbolp to check
for a symbol.

(defun add-on (x)
(cond ((symbolp x)
;3 If X is a symbol, put it on LIST.
(setq list (cons x list)))
((1istp x)
;; If X is a list, add its elements to LIST.
(setq list (append x list)))

Chapter 2: Lisp Data Types 33

(t
;; We only handle symbols and lists.
(error "Invalid argument %s in add-on" x))))

Here is a table of predefined type predicates, in alphabetical order, with references to further
information.

annotationp
See Section 44.2 [Annotation Primitives], page 580.

arrayp See Section 6.3 [Array Functions], page 96.
atom See Section 5.3 [List-related Predicates|, page 72.

bit-vector-p
See Section 6.7 [Bit Vector Functions], page 99.

bitp See Section 6.7 [Bit Vector Functions], page 99.

boolean-specifier-p
See Section 41.4 [Specifier Types|, page 543.

buffer-glyph-p
See Section 43.3 [Glyph Types]|, page 576.

buffer-live-p
See Section 30.10 [Killing Buffers], page 400.

bufferp See Section 30.1 [Buffer Basics]|, page 391.

button-event-p
See Section 19.5.3 [Event Predicates], page 266.

button-press-event-p
See Section 19.5.3 [Event Predicates], page 266.

button-release-event-p
See Section 19.5.3 [Event Predicates], page 266.

case-table-p

See Section 4.12 [Case Tables|, page 66.
char-int-p

See Section 4.5 [Character Codes], page 58.
char-or-char-int-p

See Section 4.5 [Character Codes], page 58.
char-or-string-p

See Section 4.2 [Predicates for Strings], page 55.

char-table-p
See Section 4.13 [Char Tables|, page 68.

characterp
See Section 4.4 [Predicates for Characters|, page 58.

color-instance-p

See Section 42.3 [Colors|, page 563.
color-pixmap-image-instance-p

See Section 43.2.3.1 [Image Instance Types], page 574.
color-specifier-p

See Section 41.4 [Specifier Types|, page 543.

34 XEmacs Lisp Reference Manual

commandp See Section 19.3 [Interactive Call], page 260.

compiled-function-p
See Section 2.4.14 [Compiled-Function Type]|, page 25.

console-live-p
See Section 33.4 [Connecting to a Console or Device], page 439.

consolep See Chapter 33 [Consoles and Devices|, page 437.
consp See Section 5.3 [List-related Predicates|, page 72.

database-live-p
See Section 48.1 [Connecting to a Database], page 605.

databasep
See Chapter 48 [Databases|, page 605.

device-live-p
See Section 33.4 [Connecting to a Console or Device], page 439.

device-or-frame-p
See Section 33.2 [Basic Device Functions], page 438.

devicep See Chapter 33 [Consoles and Devices], page 437.

eval-event-p
See Section 19.5.3 [Event Predicates], page 266.

event-live-p
See Section 19.5.3 [Event Predicates], page 266.

eventp See Section 19.5 [Events|, page 263.

extent-live-p
See Section 40.2 [Creating and Modifying Extents], page 530.

)

extentp See Chapter 40 [Extents], page 529.

face-boolean-specifier-p
See Section 41.4 [Specifier Types|, page 543.

facep See Section 42.1.2 [Basic Face Functions], page 556.
floatp See Section 3.3 [Predicates on Numbers], page 42.

font-instance-p
See Section 42.2 [Fonts|, page 560.

font-specifier-p
See Section 41.4 [Specifier Types|, page 543.

frame-live-p
See Section 32.4 [Deleting Frames|, page 430.

framep See Chapter 32 [Frames], page 425.

functionp
(not yet documented)

generic-specifier-p
See Section 41.4 [Specifier Types|, page 543.

glyphp See Chapter 43 [Glyphs], page 565.

hashtablep
See Chapter 46 [Hash Tables|, page 601.

Chapter 2: Lisp Data Types 35

icon-glyph-p
See Section 43.3 [Glyph Types], page 576.

image-instance-p
See Section 43.2 [Images], page 569.

image-specifier-p
See Section 41.4 [Specifier Types|, page 543.

integer-char-or-marker-p
See Section 35.2 [Predicates on Markers], page 454.

integer-or-char-p
See Section 4.4 [Predicates for Characters|, page 58.

integer-or-marker-p
See Section 35.2 [Predicates on Markers], page 454.

integer-specifier-p
See Section 41.4 [Specifier Types|, page 543.

integerp See Section 3.3 [Predicates on Numbers], page 42.
itimerp (not yet documented)

key-press—event-p
See Section 19.5.3 [Event Predicates], page 266.

keymapp See Section 20.3 [Creating Keymaps|, page 286.
keywordp (not yet documented)

listp See Section 5.3 [List-related Predicates|, page 72.
markerp See Section 35.2 [Predicates on Markers], page 454.

misc-user—event-p
See Section 19.5.3 [Event Predicates], page 266.

mono-pixmap-image-instance-p
See Section 43.2.3.1 [Image Instance Types|, page 574.

motion-event-p
See Section 19.5.3 [Event Predicates], page 266.

mouse-event-p
See Section 19.5.3 [Event Predicates], page 266.

natnum-specifier-p
See Section 41.4 [Specifier Types|, page 543.

natnump See Section 3.3 [Predicates on Numbers], page 42.
nlistp See Section 5.3 [List-related Predicates|, page 72.

nothing-image-instance-p
See Section 43.2.3.1 [Image Instance Types|, page 574.

number-char-or-marker-p
See Section 35.2 [Predicates on Markers], page 454.

number-or-marker-p
See Section 35.2 [Predicates on Markers], page 454.

numberp See Section 3.3 [Predicates on Numbers|, page 42.

36 XEmacs Lisp Reference Manual

pointer-glyph-p
See Section 43.3 [Glyph Types], page 576.

pointer-image-instance-p
See Section 43.2.3.1 [Image Instance Types|, page 574.

process-event-p
See Section 19.5.3 [Event Predicates], page 266.

processp See Chapter 49 [Processes|, page 607.

range-table-p
See Chapter 47 [Range Tables|, page 603.

ringp (not yet documented)

sequencep
See Section 6.1 [Sequence Functions], page 93.

specifierp

See Chapter 41 [Specifiers|, page 541.
stringp See Section 4.2 [Predicates for Strings], page 55.
subrp See Section 11.8 [Function Cells], page 156.

subwindow-image-instance-p
See Section 43.2.3.1 [Image Instance Types], page 574.

subwindowp
See Section 43.6 [Subwindows], page 578.

symbolp See Chapter 7 [Symbols|, page 101.

syntax-table-p
See Chapter 38 [Syntax Tables], page 513.

text-image-instance-p
See Section 43.2.3.1 [Image Instance Types|, page 574.

timeout-event-p
See Section 19.5.3 [Event Predicates], page 266.

toolbar-button-p
See Chapter 23 [Toolbar], page 317.

toolbar-specifier-p
See Chapter 23 [Toolbar|, page 317.

user-variable-p
See Section 10.5 [Defining Variables|, page 134.

vectorp See Section 6.4 [Vectors|, page 97.
weak-list-p
See Section 5.10 [Weak Lists], page 91.

window-configuration-p
See Section 31.16 [Window Configurations|, page 423.

window-live-p
See Section 31.3 [Deleting Windows], page 406.
windowp See Section 31.1 [Basic Windows]|, page 403.

The most general way to check the type of an object is to call the function type-of. Recall
that each object belongs to one and only one primitive type; type-of tells you which one (see
Chapter 2 [Lisp Data Types|, page 13). But type-of knows nothing about non-primitive types.
In most cases, it is more convenient to use type predicates than type-of.

Chapter 2: Lisp Data Types 37

type-of object Function

This function returns a symbol naming the primitive type of object. The value is one of
bit-vector, buffer, char-table, character, charset, coding-system, cons, color-
instance, compiled-function, console, database, device, event, extent, face,
float, font-instance, frame, glyph, hashtable, image-instance, integer, keymap,
marker, process, range—-table, specifier, string, subr, subwindow, symbol, toolbar-
button, tooltalk-message, tooltalk-pattern, vector, weak-1list, window, window-
configuration, or x-resource.

(type-of 1)
= integer
(type-of ’nil)
= symbol
(type-of ’()) ;0 O isnil.
= symbol
(type-of ’(x))
= cons

2.8 Equality Predicates

Here we describe two functions that test for equality between any two objects. Other func-
tions test equality between objects of specific types, e.g., strings. For these predicates, see the
appropriate chapter describing the data type.

eq objectl object2 Function
This function returns t if objectl and object2 are the same object, nil otherwise. The
“same object” means that a change in one will be reflected by the same change in the
other.

eq returns t if object] and object2 are integers with the same value. Also, since symbol
names are normally unique, if the arguments are symbols with the same name, they are
eq. For other types (e.g., lists, vectors, strings), two arguments with the same contents
or elements are not necessarily eq to each other: they are eq only if they are the same
object.

(The make-symbol function returns an uninterned symbol that is not interned in the
standard obarray. When uninterned symbols are in use, symbol names are no longer
unique. Distinct symbols with the same name are not eq. See Section 7.3 [Creating
Symbols|, page 103.)

NOTE: Under XEmacs 19, characters are really just integers, and thus characters and
integers are eq. Under XEmacs 20, it was necessary to preserve remnants of this in
function such as old-eq in order to maintain byte-code compatibility. Byte code compiled

under any Emacs 19 will automatically have calls to eq mapped to old-eq when executed
under XEmacs 20.

(eq ’foo ’foo)

=t

(eq 456 456)
=t

(eq "asdf" "asdf")
= nil

(eq ’(1 (2 (3))) (1 (2 (3))))
= nil

38 XEmacs Lisp Reference Manual

(setq foo (1 (2 (3))))
= (1 (2 3N

(eq foo foo)
=t

(eq foo ’(1 (2 (3))))
= nil

(eq [(1 2) 3] [(1 2) 3])
= nil

(eq (point-marker) (point-marker))
= nil

old-eq objl obj2 Function
This function exists under XEmacs 20 and is exactly like eq except that it suffers from
the char-int confoundance disease. In other words, it returns t if given a character and
the equivalent integer, even though the objects are of different types! You should not ever
call this function explicitly in your code. However, be aware that all calls to eq in byte
code compiled under version 19 map to old-eq in XEmacs 20. (Likewise for old-equal,
old-memq, old-member, old-assq and old-assoc.)

; 5 Remember, this does not apply under XEmacs 19.

7A
= 7A
(char-int ?7A)
= 65
(old-eq ?7A 65)
=t ; Eek, we’ve been infected.
(eq ?7A 65)
= nil ; We are still healthy.
equal objectl object2 Function

This function returns t if objectl and object2 have equal components, nil otherwise.
Whereas eq tests if its arguments are the same object, equal looks inside nonidentical
arguments to see if their elements are the same. So, if two objects are eq, they are equal,
but the converse is not always true.

(equal ’foo ’foo)

=t

(equal 456 456)
=t

(equal "asdf" "asdf")
=t

(eq "asdf" "asdf")
= nil

(equal (1 (2 (3))) (1 (2 (3))))
=t

(eq 7 (1 (2 (3))) > (1 (2 (3))))
= nil

(equal [(1 2) 3] [(1 2) 3])
=t

Chapter 2: Lisp Data Types 39

(eq [(1 2) 3] [(1 2) 31D
= nil
(equal (point-marker) (point-marker))
=t
(eq (point-marker) (point-marker))
= nil
Comparison of strings is case-sensitive.
Note that in FSF GNU Emacs, comparison of strings takes into account their text proper-
ties, and you have to use string-equal if you want only the strings themselves compared.
This difference does not exist in XEmacs; equal and string-equal always return the same
value on the same strings.
(equal "asdf" "ASDF")
= nil
Two distinct buffers are never equal, even if their contents are the same.

The test for equality is implemented recursively, and circular lists may therefore cause infinite
recursion (leading to an error).

40

XEmacs Lisp Reference Manual

Chapter 3: Numbers 41

3 Numbers

XEmacs supports two numeric data types: integers and floating point numbers. Integers
are whole numbers such as —3, 0, #b0111, #xFEED, #0744. Their values are exact. The
number prefixes ‘#b’, ‘#0’, and ‘#x’ are supported to represent numbers in binary, octal, and
hexadecimal notation (or radix). Floating point numbers are numbers with fractional parts,
such as —4.5, 0.0, or 2.71828. They can also be expressed in exponential notation: 1.5e2 equals
150; in this example, ‘€2’ stands for ten to the second power, and is multiplied by 1.5. Floating
point values are not exact; they have a fixed, limited amount of precision.

3.1 Integer Basics

The range of values for an integer depends on the machine. The minimum range is
—134217728 to 134217727 (28 bits; i.e., —2%7 to 227 — 1), but some machines may provide a
wider range. Many examples in this chapter assume an integer has 28 bits.

The Lisp reader reads an integer as a sequence of digits with optional initial sign and optional
final period.

1 ; The integer 1.
1. ; The integer 1.
+1 ; Also the integer 1.
-1 ; The integer —1.
268435457 ; Also the integer 1, due to overflow.
0 ; The integer 0.
-0 ; The integer 0.

To understand how various functions work on integers, especially the bitwise operators (see
Section 3.8 [Bitwise Operations|, page 48), it is often helpful to view the numbers in their binary
form.

In 28-bit binary, the decimal integer 5 looks like this:
0000 0000 0000 0000 0000 0000 0101

(We have inserted spaces between groups of 4 bits, and two spaces between groups of 8 bits, to
make the binary integer easier to read.)

The integer —1 looks like this:
1111 1111 1111 1111 1111 1111 1111
—1 is represented as 28 ones. (This is called two’s complement notation.)

The negative integer, —5, is creating by subtracting 4 from —1. In binary, the decimal integer
4 is 100. Consequently, —5 looks like this:

1111 1111 1111 1111 1111 1111 1011

In this implementation, the largest 28-bit binary integer is the decimal integer 134,217,727.
In binary, it looks like this:

0111 11171 1111 1111 1111 1111 1111
Since the arithmetic functions do not check whether integers go outside their range, when
you add 1 to 134,217,727, the value is the negative integer —134,217,728:

(+ 1 134217727)
= -134217728
= 1000 0000 0000 0000 0000 0000 0000

Many of the following functions accept markers for arguments as well as integers. (See
Chapter 35 [Markers|, page 453.) More precisely, the actual arguments to such functions may

42 XEmacs Lisp Reference Manual

be either integers or markers, which is why we often give these arguments the name int-or-marker.
When the argument value is a marker, its position value is used and its buffer is ignored.

3.2 Floating Point Basics

XFEmacs supports floating point numbers. The precise range of floating point numbers is
machine-specific; it is the same as the range of the C data type double on the machine in
question.

The printed representation for floating point numbers requires either a decimal point (with
at least one digit following), an exponent, or both. For example, ‘1500.0’, ‘15e2’, ‘15.0e2’,
‘1.5e3’, and ‘. 15e4’ are five ways of writing a floating point number whose value is 1500. They
are all equivalent. You can also use a minus sign to write negative floating point numbers, as in
‘-1.0".

Most modern computers support the IEEE floating point standard, which provides for posi-
tive infinity and negative infinity as floating point values. It also provides for a class of values
called NaN or “not-a-number”; numerical functions return such values in cases where there is
no correct answer. For example, (sqrt -1.0) returns a NaN. For practical purposes, there’s
no significant difference between different NaN values in XEmacs Lisp, and there’s no rule for
precisely which NaN value should be used in a particular case, so this manual doesn’t try to
distinguish them. XEmacs Lisp has no read syntax for NaNs or infinities; perhaps we should
create a syntax in the future.

You can use logb to extract the binary exponent of a floating point number (or estimate the
logarithm of an integer):

logb number Function
This function returns the binary exponent of number. More precisely, the value is the
logarithm of number base 2, rounded down to an integer.

3.3 Type Predicates for Numbers

The functions in this section test whether the argument is a number or whether it is a cer-
tain sort of number. The functions integerp and floatp can take any type of Lisp object
as argument (the predicates would not be of much use otherwise); but the zerop predicate re-
quires a number as its argument. See also integer-or-marker-p, integer-char-or-marker-p,
number-or-marker-p and number-char-or-marker-p, in Section 35.2 [Predicates on Markers],
page 454.

floatp object Function
This predicate tests whether its argument is a floating point number and returns t if so,
nil otherwise.

floatp does not exist in Emacs versions 18 and earlier.

integerp object Function
This predicate tests whether its argument is an integer, and returns t if so, nil otherwise.

numberp object Function
This predicate tests whether its argument is a number (either integer or floating point),
and returns t if so, nil otherwise.

Chapter 3: Numbers 43

natnump object Function
The natnump predicate (whose name comes from the phrase “natural-number-p”) tests to
see whether its argument is a nonnegative integer, and returns t if so, nil otherwise. 0 is
considered non-negative.

zerop number Function
This predicate tests whether its argument is zero, and returns t if so, nil otherwise. The
argument must be a number.

These two forms are equivalent: (zerop x) = (= x 0).

3.4 Comparison of Numbers

To test numbers for numerical equality, you should normally use =, not eq. There can be
many distinct floating point number objects with the same numeric value. If you use eq to
compare them, then you test whether two values are the same object. By contrast, = compares
only the numeric values of the objects.

At present, each integer value has a unique Lisp object in XEmacs Lisp. Therefore, eq is
equivalent to = where integers are concerned. It is sometimes convenient to use eq for comparing
an unknown value with an integer, because eq does not report an error if the unknown value is
not a number—it accepts arguments of any type. By contrast, = signals an error if the arguments
are not numbers or markers. However, it is a good idea to use = if you can, even for comparing
integers, just in case we change the representation of integers in a future XEmacs version.

There is another wrinkle: because floating point arithmetic is not exact, it is often a bad idea
to check for equality of two floating point values. Usually it is better to test for approximate
equality. Here’s a function to do this:

(defconst fuzz-factor 1.0e-6)
(defun approx-equal (x y)
(or (and (= x 0) (=y 0))
(< (/ (abs (- x y))
(max (abs x) (abs y)))
fuzz-factor)))

Common Lisp note: Comparing numbers in Common Lisp always requires = because
Common Lisp implements multi-word integers, and two distinct integer objects can
have the same numeric value. XEmacs Lisp can have just one integer object for any
given value because it has a limited range of integer values.

In addition to numbers, all of the following functions also accept characters and markers as
arguments, and treat them as their number equivalents.

= number &rest more-numbers Function
This function returns t if all of its arguments are numerically equal, nil otherwise.
(= 5)
= t
(=5 6)
= nil
(=5 5.0)
= t
(= 55 6)

= nil

44 XEmacs Lisp Reference Manual

/= number &rest more-numbers Function
This function returns t if no two arguments are numerically equal, nil otherwise.

(/=5 6)
=t

(/=55 6)
= nil

(/=56 1)
=t

< number &rest more-numbers Function
This function returns t if the sequence of its arguments is monotonically increasing, nil
otherwise.

(< 5 6)
= ¢
(< 56 6)
= nil
(< 567)
= ¢

<= number &rest more-numbers Function
This function returns t if the sequence of its arguments is monotonically nondecreasing,
nil otherwise.
(<= 5 6)
=t
(<= 56 6)
=t
(<= 5 6 5)
= nil

> number &rest more-numbers Function
This function returns t if the sequence of its arguments is monotonically decreasing, nil
otherwise.

>= number &rest more-numbers Function
This function returns t if the sequence of its arguments is monotonically nonincreasing,
nil otherwise.

max number &rest more-numbers Function
This function returns the largest of its arguments.

(max 20)
= 20
(max 1 2.5)
= 2.5
(max 1 3 2.5)
= 3

min number &rest more-numbers Function
This function returns the smallest of its arguments.
(min -4 1)
= -4

Chapter 3: Numbers 45

3.5 Numeric Conversions

To convert an integer to floating point, use the function float.

float number Function
This returns number converted to floating point. If number is already a floating point
number, float returns it unchanged.

There are four functions to convert floating point numbers to integers; they differ in how they
round. These functions accept integer arguments also, and return such arguments unchanged.

truncate number Function
This returns number, converted to an integer by rounding towards zero.

floor number &optional divisor Function
This returns number, converted to an integer by rounding downward (towards negative
infinity).

If divisor is specified, number is divided by divisor before the floor is taken; this is the
division operation that corresponds to mod. An arith-error results if divisor is 0.

ceiling number Function
This returns number, converted to an integer by rounding upward (towards positive in-
finity).

round number Function

This returns number, converted to an integer by rounding towards the nearest integer.
Rounding a value equidistant between two integers may choose the integer closer to zero,
or it may prefer an even integer, depending on your machine.

3.6 Arithmetic Operations

XEmacs Lisp provides the traditional four arithmetic operations: addition, subtraction, mul-
tiplication, and division. Remainder and modulus functions supplement the division functions.
The functions to add or subtract 1 are provided because they are traditional in Lisp and com-
monly used.

All of these functions except % return a floating point value if any argument is floating,.

It is important to note that in XEmacs Lisp, arithmetic functions do not check for overflow.
Thus (1+ 134217727) may evaluate to —134217728, depending on your hardware.

1+ number-or-marker Function
This function returns number-or-marker plus 1. For example,

(setq foo 4)
= 4
(1+ foo)
= 5

This function is not analogous to the C operator ++—it does not increment a variable. It
just computes a sum. Thus, if we continue,

46 XEmacs Lisp Reference Manual

foo
= 4

If you want to increment the variable, you must use setq, like this:

(setq foo (1+ foo))
= 5

Now that the c1 package is always available from lisp code, a more convenient and natural
way to increment a variable is (incf foo).

1- number-or-marker Function
This function returns number-or-marker minus 1.

abs number Function
This returns the absolute value of number.

+ &rest numbers-or-markers Function
This function adds its arguments together. When given no arguments, + returns 0.

(+)

= 0
+ 1)

= 1
(+1234)

= 10

- &optional number-or-marker &rest other-numbers-or-markers Function
The - function serves two purposes: negation and subtraction. When - has a single
argument, the value is the negative of the argument. When there are multiple arguments,

- subtracts each of the other-numbers-or-markers from number-or-marker, cumulatively.
If there are no arguments, the result is 0.

(- 1012 3 4)

= 0
(- 10)

= -10
=)

= 0

* &rest numbers-or-markers Function
This function multiplies its arguments together, and returns the product. When given no
arguments, * returns 1.

(%)

=1
(x 1)

=1
(* 123 4)

= 24

/ dividend divisor &rest divisors Function
This function divides dividend by divisor and returns the quotient. If there are additional
arguments divisors, then it divides dividend by each divisor in turn. Each argument may
be a number or a marker.

Chapter 3: Numbers 47

If all the arguments are integers, then the result is an integer too. This means the result has
to be rounded. On most machines, the result is rounded towards zero after each division,
but some machines may round differently with negative arguments. This is because the
Lisp function / is implemented using the C division operator, which also permits machine-
dependent rounding. As a practical matter, all known machines round in the standard
fashion.

If you divide by 0, an arith-error error is signaled. (See Section 9.5.3 [Errors|, page 124.)

(/ 6 2)
= 3
(/ 5 2)
= 2
(/ 25 3 2)
= 4
(/ -17 6)
= -2

The result of (/ =17 6) could in principle be -3 on some machines.

% dividend divisor Function
This function returns the integer remainder after division of dividend by divisor. The
arguments must be integers or markers.

For negative arguments, the remainder is in principle machine-dependent since the quo-
tient is; but in practice, all known machines behave alike.

An arith-error results if divisor is 0.

(h 9 4
=1
Ch -9 4)
= -1
(% 9 -4)
=1
Ch -9 -4)
= -1

For any two integers dividend and divisor,

(+ (% dividend divisor)
(x (/ dividend divisor) divisor))

always equals dividend.

mod dividend divisor Function
This function returns the value of dividend modulo divisor; in other words, the remainder
after division of dividend by divisor, but with the same sign as divisor. The arguments
must be numbers or markers.
Unlike %, mod returns a well-defined result for negative arguments. It also permits floating
point arguments; it rounds the quotient downward (towards minus infinity) to an integer,
and uses that quotient to compute the remainder.
An arith-error results if divisor is 0.
(mod 9 4)
=1
(mod -9 4)
= 3
(mod 9 -4)
= -3

48 XEmacs Lisp Reference Manual

(mod -9 -4)
= -1

(mod 5.5 2.5)
= .5

For any two numbers dividend and divisor,

(+ (mod dividend divisor)
(x (floor dividend divisor) divisor))

always equals dividend, subject to rounding error if either argument is floating point. For
floor, see Section 3.5 [Numeric Conversions|, page 45.

3.7 Rounding Operations

The functions ffloor, fceiling, fround and ftruncate take a floating point argument and
return a floating point result whose value is a nearby integer. ffloor returns the nearest integer
below; fceiling, the nearest integer above; ftruncate, the nearest integer in the direction
towards zero; fround, the nearest integer.

fHoor float Function
This function rounds float to the next lower integral value, and returns that value as a
floating point number.

fceiling float Function
This function rounds float to the next higher integral value, and returns that value as a
floating point number.

ftruncate float Function
This function rounds float towards zero to an integral value, and returns that value as a
floating point number.

fround float Function
This function rounds float to the nearest integral value, and returns that value as a floating
point number.

3.8 Bitwise Operations on Integers

In a computer, an integer is represented as a binary number, a sequence of bits (digits which
are either zero or one). A bitwise operation acts on the individual bits of such a sequence. For
example, shifting moves the whole sequence left or right one or more places, reproducing the
same pattern “moved over”.

The bitwise operations in XEmacs Lisp apply only to integers.

Ish integerl count Function
1sh, which is an abbreviation for logical shift, shifts the bits in integerl to the left count
places, or to the right if count is negative, bringing zeros into the vacated bits. If count
is negative, 1sh shifts zeros into the leftmost (most-significant) bit, producing a positive
result even if integerl is negative. Contrast this with ash, below.

Here are two examples of 1sh, shifting a pattern of bits one place to the left. We show
only the low-order eight bits of the binary pattern; the rest are all zero.

Chapter 3: Numbers 49

(1sh 5 1)

= 10
;3 Decimal 5 becomes decimal 10.
00000101 = 00001010

(1sh 7 1)
= 14
;3 Decimal 7 becomes decimal 14.
00000111 = 00001110
As the examples illustrate, shifting the pattern of bits one place to the left produces a
number that is twice the value of the previous number.
Shifting a pattern of bits two places to the left produces results like this (with 8-bit binary
numbers):
(1sh 3 2)
= 12
;3 Decimal 3 becomes decimal 12.
00000011 = 00001100

On the other hand, shifting one place to the right looks like this:
(1sh 6 -1)
= 3
;3 Decimal 6 becomes decimal 3.
00000110 = 00000011
(1sh 5 -1)
= 2
;3 Decimal 5 becomes decimal 2.
00000101 = 00000010
As the example illustrates, shifting one place to the right divides the value of a positive
integer by two, rounding downward.
The function 1sh, like all XEmacs Lisp arithmetic functions, does not check for overflow,
so shifting left can discard significant bits and change the sign of the number. For example,
left shifting 134,217,727 produces —2 on a 28-bit machine:

(1sh 134217727 1) ; left shift
= -2
In binary, in the 28-bit implementation, the argument looks like this:

;5 Decimal 134,217,727
0111 1111 1111 1111 1111 1111 1111

which becomes the following when left shifted:

; Decimal —2

AR

1111 1111 1111 1111 1111 1111 1110

ash integerl count Function
ash (arithmetic shift) shifts the bits in integerl to the left count places, or to the right if

count is negative.

ash gives the same results as 1sh except when integerl and count are both negative. In
that case, ash puts ones in the empty bit positions on the left, while 1sh puts zeros in
those bit positions.

Thus, with ash, shifting the pattern of bits one place to the right looks like this:

50 XEmacs Lisp Reference Manual

(ash -6 -1) = -3

;3 Decimal —6 becomes decimal —3.

1111 1111 1111 1111 1111 1111 1010
=

1111 1111 1111 1111 1111 1111 1101

In contrast, shifting the pattern of bits one place to the right with 1sh looks like this:

(1sh -6 -1) = 134217725

;35 Decimal —6 becomes decimal 134,217,725.

1111 1111 1111 1111 1111 1111 1010
=

o111 1111 1111 1111 1111 1111 1101

Here are other examples:

; 28-bit binary values
(1sh 5 2) ; 5 = 0000 0000 0000 0000 0000 0000 0101
= 20 ; = 0000 0000 0000 0000 0000 0001 0100
(ash 5 2)
= 20
(1sh -5 2) ; -5 = 1111 1111 1111 1111 1111 1111 1011
= -20 ; = 1111 11111111 1111 1111 1110 1100
(ash -5 2)
= -20
(1sh 5 -2) ; 5 = 0000 0000 0000 0000 0000 0000 0101
=1 ; = (0000 0000 0000 0000 0000 0000 0001
(ash 5 -2)
= 1
(1sh -5 -2) ; -5 = 1111 1111 1111 1111 1111 1111 1011
= 4194302 ; = 0011 1111 1111 1111 1111 1111 1110
(ash -5 -2) ; -5 = 1111 1111 1111 1111 1111 1111 1011
= -2 ; = 1111 1111 1111 1111 1111 1111 1110
logand &rest ints-or-markers Function

This function returns the “logical and” of the arguments: the nth bit is set in the result
if, and only if, the nth bit is set in all the arguments. (“Set” means that the value of the
bit is 1 rather than 0.)

For example, using 4-bit binary numbers, the “logical and” of 13 and 12 is 12: 1101
combined with 1100 produces 1100. In both the binary numbers, the leftmost two bits
are set (i.e., they are 1’s), so the leftmost two bits of the returned value are set. However,
for the rightmost two bits, each is zero in at least one of the arguments, so the rightmost
two bits of the returned value are 0’s.

Therefore,

(logand 13 12)
= 12

If 1ogand is not passed any argument, it returns a value of —1. This number is an identity
element for logand because its binary representation consists entirely of ones. If logand
is passed just one argument, it returns that argument.

Chapter 3: Numbers

(logand 14 13)

= 12
(logand 14 13 4)

= 4

(logand)
= -1

logior &rest ints-or-markers

28-bit binary values

0000
0000
0000

0000
0000
0000
0000

1111

0000 0000
0000 0000
0000 0000

0000 0000
0000 0000
0000 0000
0000 0000

1111 1111

0000 0000
0000 0000
0000 0000

0000 0000
0000 0000
0000 0000
0000 0000

1111 1111

o1

0000 1110
0000 1101
0000 1100

0000 1110
0000 1101
0000 0100
0000 0100

1111 1111

Function

This function returns the “inclusive or” of its arguments: the nth bit is set in the result if,
and only if, the nth bit is set in at least one of the arguments. If there are no arguments,
the result is zero, which is an identity element for this operation. If logior is passed just
one argument, it returns that argument.

(logior 12 5)

= 13
(logior 12 5 7)

= 15

logxor &rest ints-or-markers

s

12

13
12

15

28-bit binary values

0000
0000
0000

0000
0000
0000
0000

0000 0000
0000 0000
0000 0000

0000 0000
0000 0000
0000 0000
0000 0000

0000 0000
0000 0000
0000 0000

0000 0000
0000 0000
0000 0000
0000 0000

0000 1100
0000 0101
0000 1101

0000 1100
0000 0101
0000 0111
0000 1111

Function

This function returns the “exclusive or” of its arguments: the nth bit is set in the result
if, and only if, the nth bit is set in an odd number of the arguments. If there are no
arguments, the result is 0, which is an identity element for this operation. If logxor is
passed just one argument, it returns that argument.

(logxor 12 5)

= 9
(logxor 12 5 7)

= 14

lognot integer

This function returns the logical complement of its argument: the

3

b

28-bit binary values

0000
0000
0000

0000
0000
0000
0000

0000 0000
0000 0000
0000 0000

0000 0000
0000 0000
0000 0000
0000 0000

0000 0000
0000 0000
0000 0000

0000 0000
0000 0000
0000 0000
0000 0000

result if, and only if, the nth bit is zero in integer, and vice-versa.

(lognot 5)
= -6

;5 5 = 0000 0000 0000 0000 0000 0000 0101

;3 becomes

;3 -6 = 1111 1111 1111 1111 1111 1111 1010

0000 1100
0000 0101
0000 1001

0000 1100
0000 0101
0000 0111
0000 1110

Function
nth bit is one in the

52 XEmacs Lisp Reference Manual

3.9 Standard Mathematical Functions

These mathematical functions are available if floating point is supported (which is the normal
state of affairs). They allow integers as well as floating point numbers as arguments.

sin arg Function
Cos arg Function
tan arg Function

These are the ordinary trigonometric functions, with argument measured in radians.

asin arg Function
The value of (asin arg) is a number between —pi/2 and pi/2 (inclusive) whose sine is
arg; if, however, arg is out of range (outside [-1, 1]), then the result is a NaN.

acos arg Function
The value of (acos arg) is a number between 0 and pi (inclusive) whose cosine is arg; if,
however, arg is out of range (outside [-1, 1]), then the result is a NaN.

atan arg Function
The value of (atan arg) is a number between —pi/2 and pi/2 (exclusive) whose tangent
is arg.
sinh arg Function
cosh arg Function
tanh arg Function

These are the ordinary hyperbolic trigonometric functions.

asinh arg Function
acosh arg Function
atanh arg Function

These are the inverse hyperbolic trigonometric functions.

exp arg Function
This is the exponential function; it returns e to the power arg. e is a fundamental
mathematical constant also called the base of natural logarithms.

log arg &optional base Function
This function returns the logarithm of arg, with base base. If you don’t specify base, the
base e is used. If arg is negative, the result is a NaN.

logl10 arg Function
This function returns the logarithm of arg, with base 10. If arg is negative, the result is
a NaN. (1logl10 x) = (log x 10), at least approximately.

expt xy Function
This function returns x raised to power y. If both arguments are integers and y is positive,
the result is an integer; in this case, it is truncated to fit the range of possible integer values.

sqrt arg Function
This returns the square root of arg. If arg is negative, the value is a NaN.

cube-root arg Function
This returns the cube root of arg.

Chapter 3: Numbers 53

3.10 Random Numbers

A deterministic computer program cannot generate true random numbers. For most pur-
poses, pseudo-random numbers suffice. A series of pseudo-random numbers is generated in a
deterministic fashion. The numbers are not truly random, but they have certain properties that
mimic a random series. For example, all possible values occur equally often in a pseudo-random
series.

In XEmacs, pseudo-random numbers are generated from a “seed” number. Starting from
any given seed, the random function always generates the same sequence of numbers. XEmacs
always starts with the same seed value, so the sequence of values of random is actually the same
in each XEmacs run! For example, in one operating system, the first call to (random) after
you start XEmacs always returns -1457731, and the second one always returns -7692030. This
repeatability is helpful for debugging.

If you want truly unpredictable random numbers, execute (random t). This chooses a new
seed based on the current time of day and on XEmacs’s process ID number.

random &optional limit Function
This function returns a pseudo-random integer. Repeated calls return a series of pseudo-
random integers.

If Iimit is a positive integer, the value is chosen to be nonnegative and less than limit.

If limit is t, it means to choose a new seed based on the current time of day and on
XEmacs’s process ID number.

On some machines, any integer representable in Lisp may be the result of random. On
other machines, the result can never be larger than a certain maximum or less than a
certain (negative) minimum.

54

XEmacs Lisp Reference Manual

Chapter 4: Strings and Characters 55

4 Strings and Characters

A string in XEmacs Lisp is an array that contains an ordered sequence of characters. Strings
are used as names of symbols, buffers, and files, to send messages to users, to hold text being
copied between buffers, and for many other purposes. Because strings are so important, XEmacs
Lisp has many functions expressly for manipulating them. XEmacs Lisp programs use strings
more often than individual characters.

4.1 String and Character Basics

Strings in XEmacs Lisp are arrays that contain an ordered sequence of characters. Characters
are their own primitive object type in XEmacs 20. However, in XEmacs 19, characters are
represented in XEmacs Lisp as integers; whether an integer was intended as a character or not
is determined only by how it is used. See Section 2.4.3 [Character Typel, page 16.

The length of a string (like any array) is fixed and independent of the string contents, and
cannot be altered. Strings in Lisp are not terminated by a distinguished character code. (By
contrast, strings in C are terminated by a character with ASCII code 0.) This means that any
character, including the null character (ASCII code 0), is a valid element of a string.

Since strings are considered arrays, you can operate on them with the general array functions.
(See Chapter 6 [Sequences Arrays Vectors|, page 93.) For example, you can access or change
individual characters in a string using the functions aref and aset (see Section 6.3 [Array
Functions], page 96).

Strings use an efficient representation for storing the characters in them, and thus take up
much less memory than a vector of the same length.

Sometimes you will see strings used to hold key sequences. This exists for backward com-
patibility with Emacs 18, but should not be used in new code, since many key chords can’t
be represented at all and others (in particular meta key chords) are confused with accented
characters.

Strings are useful for holding regular expressions. You can also match regular expressions
against strings (see Section 37.3 [Regexp Search|, page 502). The functions match-string (see
Section 37.6.1 [Simple Match Datal, page 506) and replace-match (see Section 37.6.2 [Replacing
Match], page 508) are useful for decomposing and modifying strings based on regular expression
matching.

Like a buffer, a string can contain extents in it. These extents are created when a function
such as buffer-substring is called on a region with duplicable extents in it. When the string
is inserted into a buffer, the extents are inserted along with it. See Section 40.9 [Duplicable
Extents|, page 539.

See Chapter 36 [Text], page 463, for information about functions that display strings or copy
them into buffers. See Section 2.4.3 [Character Typel, page 16, and Section 2.4.8 [String Type],
page 22, for information about the syntax of characters and strings.

4.2 The Predicates for Strings

For more information about general sequence and array predicates, see Chapter 6 [Sequences
Arrays Vectors], page 93, and Section 6.2 [Arrays|, page 95.

stringp object Function
This function returns t if object is a string, nil otherwise.

56 XEmacs Lisp Reference Manual

char-or-string-p object Function
This function returns t if object is a string or a character, nil otherwise.
In XEmacs addition, this function also returns t if object is an integer that can be repre-
sented as a character. This is because of compatibility with previous XEmacs and should
not be depended on.

4.3 Creating Strings

The following functions create strings, either from scratch, or by putting strings together, or
by taking them apart.

string &rest characters Function
This function returns a new string made up of characters.
(string ?X 7E 7m 7a 7c 7s)
= "XEmacs"
(string)
: nn
Analogous functions operating on other data types include list, cons (see Section 5.5
[Building Lists|, page 76), vector (see Section 6.4 [Vectors|, page 97) and bit-vector
(see Section 6.6 [Bit Vectors|, page 99). This function has not been available in XEmacs
prior to 21.0 and FSF Emacs prior to 20.3.

make-string count character Function
This function returns a string made up of count repetitions of character. If count is
negative, an error is signaled.
(make-string 5 7x)
= "xxxxx"
(make-string 0 7x)
: nn
Other functions to compare with this one include char-to-string (see Section 4.7 [String
Conversion|, page 60), make-vector (see Section 6.4 [Vectors|, page 97), and make-list
(see Section 5.5 [Building Lists], page 76).

substring string start &optional end Function
This function returns a new string which consists of those characters from string in the
range from (and including) the character at the index start up to (but excluding) the
character at the index end. The first character is at index zero.

(substring "abcdefg" 0 3)
= "abc"

Here the index for ‘a’ is 0, the index for ‘b’ is 1, and the index for ‘c’ is 2. Thus, three
letters, ‘abc’, are copied from the string "abcdefg". The index 3 marks the character
position up to which the substring is copied. The character whose index is 3 is actually
the fourth character in the string.
A negative number counts from the end of the string, so that —1 signifies the index of the
last character of the string. For example:

(substring "abcdefg" -3 -1)

: n ef n

In this example, the index for ‘e’ is —3, the index for ‘f’ is —2, and the index for ‘g’ is
—1. Therefore, ‘e’ and ‘£’ are included, and ‘g’ is excluded.
When nil is used as an index, it stands for the length of the string. Thus,

Chapter 4: Strings and Characters 57

(substring "abcdefg" -3 nil)
:> llefg"
Omitting the argument end is equivalent to specifying nil. It follows that (substring
string 0) returns a copy of all of string.

(substring "abcdefg" 0)
= "abcdefg"

But we recommend copy-sequence for this purpose (see Section 6.1 [Sequence Functions],
page 93).

If the characters copied from string have duplicable extents or text properties, those are
copied into the new string also. See Section 40.9 [Duplicable Extents|, page 539.

A wrong-type-argument error is signaled if either start or end is not an integer or nil.
An args-out-of-range error is signaled if start indicates a character following end, or if
either integer is out of range for string.

Contrast this function with buffer-substring (see Section 36.2 [Buffer Contents|,
page 464), which returns a string containing a portion of the text in the current buffer.
The beginning of a string is at index 0, but the beginning of a buffer is at index 1.

concat &rest sequences Function
This function returns a new string consisting of the characters in the arguments passed
to it (along with their text properties, if any). The arguments may be strings, lists of
numbers, or vectors of numbers; they are not themselves changed. If concat receives no
arguments, it returns an empty string.

(concat "abc" "-def")
= "abc-def"

(concat "abc" (1list 120 (+ 256 121)) [122])
= "abcxyz"

;5 nil is an empty sequence.
(concat "abc" nil "-def")

= "abc-def"
(concat "The " "quick brown " "fox.")
= "The quick brown fox."
(concat)
:> nn

The second example above shows how characters stored in strings are taken modulo 256.
In other words, each character in the string is stored in one byte.

The concat function always constructs a new string that is not eq to any existing string.
When an argument is an integer (not a sequence of integers), it is converted to a string of
digits making up the decimal printed representation of the integer. Don’t use this feature;
we plan to eliminate it. If you already use this feature, change your programs now! The
proper way to convert an integer to a decimal number in this way is with format (see
Section 4.10 [Formatting Strings|, page 62) or number-to-string (see Section 4.7 [String
Conversion|, page 60).

(concat 137)

= "137"
(concat 54 321)
= "b4321"

For information about other concatenation functions, see the description of mapconcat in
Section 11.6 [Mapping Functions], page 154, vconcat in Section 6.4 [Vectors|, page 97,
bvconcat in Section 6.6 [Bit Vectors|, page 99, and append in Section 5.5 [Building Lists],
page 76.

58 XEmacs Lisp Reference Manual

4.4 The Predicates for Characters

characterp object Function
This function returns t if object is a character.

Some functions that work on integers (e.g. the comparison functions <, <=, =, /=, etc.
and the arithmetic functions +, -, *, etc.) accept characters and implicitly convert them
into integers. In general, functions that work on characters also accept char-ints and
implicitly convert them into characters. WARNING: Neither of these behaviors is very
desirable, and they are maintained for backward compatibility with old E-Lisp programs
that confounded characters and integers willy-nilly. These behaviors may change in the
future; therefore, do not rely on them. Instead, convert the characters explicitly using
char-int.

integer-or-char-p object Function
This function returns t if object is an integer or character.

4.5 Character Codes

char-int ch Function
This function converts a character into an equivalent integer. The resulting integer will
always be non-negative. The integers in the range 0 - 255 map to characters as follows:

0-31 Control set 0

32-127 ASCII

128 - 159 Control set 1

160 - 255 Right half of ISO-8859-1

If support for MULE does not exist, these are the only valid character values. When
MULE support exists, the values assigned to other characters may vary depending on the
particular version of XEmacs, the order in which character sets were loaded, etc., and you
should not depend on them.

int-char integer Function
This function converts an integer into the equivalent character. Not all integers correspond
to valid characters; use char-int-p to determine whether this is the case. If the integer
cannot be converted, nil is returned.

char-int-p object Function
This function returns t if object is an integer that can be converted into a character.

char-or-char-int-p object Function
This function returns t if object is a character or an integer that can be converted into
one.

Chapter 4: Strings and Characters 59

4.6 Comparison of Characters and Strings

char-equal characterl character2 Function
This function returns t if the arguments represent the same character, nil otherwise.
This function ignores differences in case if case-fold-search is non-nil.

(char-equal 7x 7x)
= t
(let ((case-fold-search t))
(char-equal ?7x 7X))
= t
(let ((case-fold-search nil))
(char-equal ?x ?7X))
= nil

char= characterl character2 Function
This function returns t if the arguments represent the same character, nil otherwise.
Case is significant.

(char= ?x 7x)
= t
(char= ?x 7X)
= nil
(let ((case-fold-search t))
(char-equal ?7x 7X))
= nil
(let ((case-fold-search nil))
(char-equal 7x 7X))
= nil

string= stringl string2 Function
This function returns t if the characters of the two strings match exactly; case is significant.

(string= "abc" "abc")
=t

(string= "abc" "ABC")
= nil

(string= "ab" "ABC")
= nil

string-equal stringl string2 Function
string-equal is another name for string=.

string< stringl string2 Function
This function compares two strings a character at a time. First it scans both the strings
at once to find the first pair of corresponding characters that do not match. If the lesser
character of those two is the character from stringl, then stringl is less, and this function
returns t. If the lesser character is the one from string2, then stringl is greater, and this
function returns nil. If the two strings match entirely, the value is nil.

60 XEmacs Lisp Reference Manual

Pairs of characters are compared by their ASCII codes. Keep in mind that lower case
letters have higher numeric values in the ASCII character set than their upper case
counterparts; numbers and many punctuation characters have a lower numeric value than
upper case letters.

(string< "abc" "abd")

=t

(string< "abd" "abc")
= nil

(string< "123" "abc")
=t

When the strings have different lengths, and they match up to the length of stringl, then
the result is t. If they match up to the length of string2, the result is nil. A string of no
characters is less than any other string.

(String< nn "abc")
=t

(string< "ab" "abc")
=t

(String< llabcll llll)
= nil

(string< "abc" "ab")
= nil

(String< nn nu)
= nil

string-lessp stringl string2 Function
string-lessp is another name for string<.

See also compare-buffer-substrings in Section 36.3 [Comparing Text|, page 465, for a way
to compare text in buffers. The function string-match, which matches a regular expression
against a string, can be used for a kind of string comparison; see Section 37.3 [Regexp Search],
page 502.

4.7 Conversion of Characters and Strings

This section describes functions for conversions between characters, strings and integers.
format and prinl-to-string (see Section 17.5 [Output Functions|, page 232) can also convert
Lisp objects into strings. read-from-string (see Section 17.3 [Input Functions|, page 229) can
“convert” a string representation of a Lisp object into an object.

See Chapter 27 [Documentation], page 345, for functions that produce textual descrip-
tions of text characters and general input events (single-key-description and text-char-
description). These functions are used primarily for making help messages.

char-to-string character Function
This function returns a new string with a length of one character. The value of character,
modulo 256, is used to initialize the element of the string.

This function is similar to make-string with an integer argument of 1. (See Section 4.3
(Creating Strings|, page 56.) This conversion can also be done with format using the ‘%c’
format specification. (See Section 4.10 [Formatting Strings|, page 62.)

Chapter 4: Strings and Characters 61

(char-to-string ?x)
:> llX"

(char-to-string (+ 256 ?7x))
: IlXII

(make-string 1 7x)
: llxll

string-to-char string Function
This function returns the first character in string. If the string is empty, the function
returns 0. (Under XEmacs 19, the value is also 0 when the first character of string is the
null character, ASCII code 0.)

(string-to-char "ABC")

= 7A ;3 Under XEmacs 20.

= 65 ;3 Under XEmacs 19.
(string-to-char "xyz")

= 7x ;3 Under XEmacs 20.

= 120 ;; Under XEmacs 19.
(string-to-char "")

= 0

(string-to-char "\000")
= 7\~ ;; Under XEmacs 20.
= 0 ;3 Under XEmacs 20.

This function may be eliminated in the future if it does not seem useful enough to retain.

number-to-string number Function
This function returns a string consisting of the printed representation of number, which
may be an integer or a floating point number. The value starts with a sign if the argument
is negative.

(number-to-string 256)

= 256"

(number-to-string -23)
= n_o3n

(number-to-string -23.5)
= "-23.5"

int-to-string is a semi-obsolete alias for this function.

See also the function format in Section 4.10 [Formatting Strings|, page 62.

string-to-number string &optional base Function
This function returns the numeric value of the characters in string, read in base. It skips
spaces and tabs at the beginning of string, then reads as much of string as it can interpret
as a number. (On some systems it ignores other whitespace at the beginning, not just
spaces and tabs.) If the first character after the ignored whitespace is not a digit or a
minus sign, this function returns 0.

If base is not specified, it defaults to ten. With base other than ten, only integers can be

read.
(string-to-number "256")
= 256
(string-to-number "25 is a perfect square.")
= 25

(string-to-number "X256")

62 XEmacs Lisp Reference Manual

= 0
(string-to-number "-4.5")
= -4.5
(string-to-number "ffff" 16)
= 65535

string-to-int is an obsolete alias for this function.

4.8 Modifying Strings

You can modify a string using the general array-modifying primitives. See Section 6.2 [Ar-
rays|, page 95. The function aset modifies a single character; the function fillarray sets all
characters in the string to a specified character.

Each string has a tick counter that starts out at zero (when the string is created) and is

incremented each time a change is made to that string.

string-modified-tick string Function
This function returns the tick counter for ‘string’.

4.9 String Properties

Similar to symbols, extents, faces, and glyphs, you can attach additional information to
strings in the form of string properties. These differ from text properties, which are logically
attached to particular characters in the string.

To attach a property to a string, use put. To retrieve a property from a string, use get. You
can also use remprop to remove a property from a string and object-props to retrieve a list of
all the properties in a string.

4.10 Formatting Strings

Formatting means constructing a string by substitution of computed values at various places
in a constant string. This string controls how the other values are printed as well as where they
appear; it is called a format string.

Formatting is often useful for computing messages to be displayed. In fact, the functions
message and error provide the same formatting feature described here; they differ from format
only in how they use the result of formatting.

format string &rest objects Function
This function returns a new string that is made by copying string and then replacing
any format specification in the copy with encodings of the corresponding objects. The
arguments objects are the computed values to be formatted.

A format specification is a sequence of characters beginning with a ‘%’. Thus, if there is a ‘%d’
in string, the format function replaces it with the printed representation of one of the values to
be formatted (one of the arguments objects). For example:

Chapter 4: Strings and Characters 63

(format "The value of fill-column is %d." fill-column)
= "The value of fill-column is 72."

If string contains more than one format specification, the format specifications correspond
with successive values from objects. Thus, the first format specification in string uses the first
such value, the second format specification uses the second such value, and so on. Any extra
format specifications (those for which there are no corresponding values) cause unpredictable
behavior. Any extra values to be formatted are ignored.

Certain format specifications require values of particular types. However, no error is signaled
if the value actually supplied fails to have the expected type. Instead, the output is likely to be
meaningless.

Here is a table of valid format specifications:

‘%hs’ Replace the specification with the printed representation of the object, made without
quoting. Thus, strings are represented by their contents alone, with no ‘"’ characters,
and symbols appear without ‘\’ characters. This is equivalent to printing the object
with princ.

If there is no corresponding object, the empty string is used.
A Replace the specification with the printed representation of the object, made with
quoting. Thus, strings are enclosed in ‘"’ characters, and ‘\’ characters appear where

necessary before special characters. This is equivalent to printing the object with
prinl.

If there is no corresponding object, the empty string is used.

‘%o’ Replace the specification with the base-eight representation of an integer.

‘%d’

hi’ Replace the specification with the base-ten representation of an integer.

hx’ Replace the specification with the base-sixteen representation of an integer, using

lowercase letters.

X Replace the specification with the base-sixteen representation of an integer, using
uppercase letters.

‘he’ Replace the specification with the character which is the value given.

‘he’ Replace the specification with the exponential notation for a floating point number
(e.g. “7. 85200e+03’).

hE’ Replace the specification with the decimal-point notation for a floating point num-
ber.
“he’ Replace the specification with notation for a floating point number, using a “pretty

format”. Either exponential notation or decimal-point notation will be used (usually
whichever is shorter), and trailing zeroes are removed from the fractional part.

A A single ‘%’ is placed in the string. This format specification is unusual in that it
does not use a value. For example, (format "%% %d" 30) returns "% 30".

Any other format character results in an ‘Invalid format operation’ error.

Here are several examples:

64 XEmacs Lisp Reference Manual

(format "The name of this buffer is Y%s." (buffer-name))
= "The name of this buffer is strings.texi."

(format "The buffer object prints as %s." (current-buffer))
= "The buffer object prints as #<buffer strings.texi>."

(format "The octal value of %d is %o,
and the hex value is %x." 18 18 18)
= "The octal value of 18 is 22,
and the hex value is 12."

There are many additional flags and specifications that can occur between the ‘%’ and the
format character, in the following order:

1. An optional repositioning specification, which is a positive integer followed by a ‘$’.
2. Zero or more of the optional flag characters ‘=7, ‘+’, ¢’ ‘0", and ‘#’.

3. An asterisk (‘*¥’, meaning that the field width is now assumed to have been specified as an
argument.

4. An optional minimum field width.
5. An optional precision, preceded by a ‘.’ character.

A repositioning specification changes which argument to format is used by the current and
all following format specifications. Normally the first specification uses the first argument, the
second specification uses the second argument, etc. Using a repositioning specification, you can
change this. By placing a number N followed by a ‘$’ between the ‘%’ and the format character,
you cause the specification to use the Nth argument. The next specification will use the N+1’th
argument, etc.

For example:

(format "Can’t find file ‘Js’ in directory ‘%s’."
"ignatius.c" "loyola/")
= "Can’t find file ‘ignatius.c’ in directory ‘loyola/’."

(format "In directory ‘%2$s’, the file ‘%1$s’ was not found."
"ignatius.c" "loyola/")
= "In directory ‘loyola/’, the file ‘ignatius.c’ was not found."

(format
"The numbers %d and %d are %1$x and %x in hex and %1$o0 and %o in octal."
37 12)

= "The numbers 37 and 12 are 25 and c¢ in hex and 45 and 14 in octal."

As you can see, this lets you reprocess arguments more than once or reword a format spec-
ification (thereby moving the arguments around) without having to actually reorder the argu-
ments. This is especially useful in translating messages from one language to another: Different
languages use different word orders, and this sometimes entails changing the order of the argu-
ments. By using repositioning specifications, this can be accomplished without having to embed
knowledge of particular languages into the location in the program’s code where the message is
displayed.

All the specification characters allow an optional numeric prefix between the ‘%’ and the
character, and following any repositioning specification or flag. The optional numeric prefix
defines the minimum width for the object. If the printed representation of the object contains
fewer characters than this, then it is padded. The padding is normally on the left, but will be
on the right if the ‘-’ flag character is given. The padding character is normally a space, but if
the ‘0’ flag character is given, zeros are used for padding.

Chapter 4: Strings and Characters 65

(format "%06d is padded on the left with zeros" 123)
= "000123 is padded on the left with zeros"

(format "%-6d is padded on the right" 123)
= "123 is padded on the right"

format never truncates an object’s printed representation, no matter what width you specify.
Thus, you can use a numeric prefix to specify a minimum spacing between columns with no risk
of losing information.

In the following three examples, ‘%7s’ specifies a minimum width of 7. In the first case, the
string inserted in place of ‘%7s’ has only 3 letters, so 4 blank spaces are inserted for padding.
In the second case, the string "specification" is 13 letters wide but is not truncated. In the
third case, the padding is on the right.

(format "The word ‘%7s’ actually has %d letters in it."
"foo" (length "foo"))
= "The word ° foo’ actually has 3 letters in it."

(format "The word ‘%7s’ actually has ’%d letters in it."
"specification" (length "specification"))
= "The word ‘specification’ actually has 13 letters in it."

(format "The word ‘%-7s’ actually has %d letters in it."
"foo" (length "foo"))
= "The word ‘foo > actually has 3 letters in it."

After any minimum field width, a precision may be specified by preceding it with a
character. The precision specifies the minimum number of digits to appear in ‘%d’, ‘%i’, ‘%o’,
‘%x’, and ‘%X’ conversions (the number is padded on the left with zeroes as necessary); the
number of digits printed after the decimal point for ‘%f’, ‘%e’, and ‘%E’ conversions; the number
of significant digits printed in ‘%g’ and ‘%G’ conversions; and the maximum number of non-
padding characters printed in ‘%s’ and ‘%S’ conversions. The default precision for floating-point
conversions is six.

(S

The other flag characters have the following meanings:

e The ‘' flag means prefix non-negative numbers with a space.

e The ‘+’ flag means prefix non-negative numbers with a plus sign.

e The ‘#’ flag means print numbers in an alternate, more verbose format: octal numbers begin
with zero; hex numbers begin with a ‘0x’ or ‘0X’; a decimal point is printed in ‘%f’, ‘%e’, and
‘%E’ conversions even if no numbers are printed after it; and trailing zeroes are not omitted
in ‘%g’ and ‘%G’ conversions.

4.11 Character Case

The character case functions change the case of single characters or of the contents of strings.
The functions convert only alphabetic characters (the letters ‘A’ through ‘Z’ and ‘a’ through ‘z’);
other characters are not altered. The functions do not modify the strings that are passed to
them as arguments.

The examples below use the characters ‘X’ and ‘x’ which have ASCII codes 88 and 120
respectively.

downcase string-or-char Function
This function converts a character or a string to lower case.

When the argument to downcase is a string, the function creates and returns a new string
in which each letter in the argument that is upper case is converted to lower case. When

66 XEmacs Lisp Reference Manual

the argument to downcase is a character, downcase returns the corresponding lower case
character. (This value is actually an integer under XEmacs 19.) If the original character
is lower case, or is not a letter, then the value equals the original character.

(downcase "The cat in the hat")
= "the cat in the hat"

(downcase 7X)

= 7x ;3 Under XEmacs 20.
= 120 ;; Under XEmacs 19.
upcase string-or-char Function

This function converts a character or a string to upper case.

When the argument to upcase is a string, the function creates and returns a new string
in which each letter in the argument that is lower case is converted to upper case.

When the argument to upcase is a character, upcase returns the corresponding upper case
character. (This value is actually an integer under XEmacs 19.) If the original character
is upper case, or is not a letter, then the value equals the original character.

(upcase "The cat in the hat")
= "THE CAT IN THE HAT"

(upcase 7x)

= 7X ;3 Under XEmacs 20.
= 88 ;3 Under XEmacs 19.
capitalize string-or-char Function

This function capitalizes strings or characters. If string-or-char is a string, the function
creates and returns a new string, whose contents are a copy of string-or-char in which each
word has been capitalized. This means that the first character of each word is converted
to upper case, and the rest are converted to lower case.

The definition of a word is any sequence of consecutive characters that are assigned to
the word constituent syntax class in the current syntax table (see Section 38.2.1 [Syntax
Class Table], page 514).

When the argument to capitalize is a character, capitalize has the same result as
upcase.

(capitalize "The cat in the hat")
= "The Cat In The Hat"

(capitalize "THE 77TH-HATTED CAT")
= "The 77th-Hatted Cat"

(capitalize 7x)

= 7X ;3 Under XEmacs 20.
= 88 ;3 Under XEmacs 19.

4.12 The Case Table

You can customize case conversion by installing a special case table. A case table specifies
the mapping between upper case and lower case letters. It affects both the string and character

Chapter 4: Strings and Characters 67

case conversion functions (see the previous section) and those that apply to text in the buffer
(see Section 36.17 [Case Changes|, page 486). You need a case table if you are using a language
which has letters other than the standard ASCII letters.
A case table is a list of this form:
(downcase upcase canonicalize equivalences)

where each element is either nil or a string of length 256. The element downcase says how to
map each character to its lower-case equivalent. The element upcase maps each character to its
upper-case equivalent. If lower and upper case characters are in one-to-one correspondence, use
nil for upcase; then XEmacs deduces the upcase table from downcase.

For some languages, upper and lower case letters are not in one-to-one correspondence. There
may be two different lower case letters with the same upper case equivalent. In these cases, you
need to specify the maps for both directions.

The element canonicalize maps each character to a canonical equivalent; any two characters
that are related by case-conversion have the same canonical equivalent character.

The element equivalences is a map that cyclicly permutes each equivalence class (of characters
with the same canonical equivalent). (For ordinary ASCII, this would map ‘a’ into ‘A’ and ‘A’
into ‘a’, and likewise for each set of equivalent characters.)

When you construct a case table, you can provide nil for canonicalize; then Emacs fills in
this string from upcase and downcase. You can also provide nil for equivalences; then Emacs
fills in this string from canonicalize. In a case table that is actually in use, those components
are non-nil. Do not try to specify equivalences without also specifying canonicalize.

Each buffer has a case table. XEmacs also has a standard case table which is copied into
each buffer when you create the buffer. Changing the standard case table doesn’t affect any
existing buffers.

Here are the functions for working with case tables:

case-table-p object Function
This predicate returns non-nil if object is a valid case table.

set-standard-case-table table Function
This function makes table the standard case table, so that it will apply to any buffers
created subsequently.

standard-case-table Function
This returns the standard case table.

current-case-table Function
This function returns the current buffer’s case table.

set-case-table table Function
This sets the current buffer’s case table to table.

The following three functions are convenient subroutines for packages that define non-ASCII
character sets. They modify a string downcase-table provided as an argument; this should be a
string to be used as the downcase part of a case table. They also modify the standard syntax
table. See Chapter 38 [Syntax Tables|, page 513.

set-case-syntax-pair uc Ic downcase-table Function
This function specifies a pair of corresponding letters, one upper case and one lower case.

68 XEmacs Lisp Reference Manual

set-case-syntax-delims I r downcase-table Function
This function makes characters I and r a matching pair of case-invariant delimiters.

set-case-syntax char syntax downcase-table Function
This function makes char case-invariant, with syntax syntax.

describe-buffer-case-table Command
This command displays a description of the contents of the current buffer’s case table.

You can load the library ‘iso-syntax’ to set up the standard syntax table and define a case
table for the 8-bit ISO Latin 1 character set.

4.13 The Char Table

A char table is a table that maps characters (or ranges of characters) to values. Char tables
are specialized for characters, only allowing particular sorts of ranges to be assigned values.
Although this loses in generality, it makes for extremely fast (constant-time) lookups, and thus
is feasible for applications that do an extremely large number of lookups (e.g. scanning a buffer
for a character in a particular syntax, where a lookup in the syntax table must occur once per
character).

Note that char tables as a primitive type, and all of the functions in this section, exist only
in XEmacs 20. In XEmacs 19, char tables are generally implemented using a vector of 256
elements.

When MULE support exists, the types of ranges that can be assigned values are
all characters
an entire charset

a single row in a two-octet charset

a single character

When MULE support is not present, the types of ranges that can be assigned values are
e all characters
e a single character

char-table-p object Function
This function returns non-nil if object is a char table.

4.13.1 Char Table Types

Each char table type is used for a different purpose and allows different sorts of values. The
different char table types are

category Used for category tables, which specify the regexp categories that a character is in.
The valid values are nil or a bit vector of 95 elements. Higher-level Lisp functions
are provided for working with category tables. Currently categories and category
tables only exist when MULE support is present.

char A generalized char table, for mapping from one character to another. Used for case
tables, syntax matching tables, keyboard-translate-table, etc. The valid values
are characters.

Chapter 4: Strings and Characters 69

generic An even more generalized char table, for mapping from a character to anything.

display Used for display tables, which specify how a particular character is to appear when
displayed. #### Not yet implemented.

syntax Used for syntax tables, which specify the syntax of a particular character. Higher-
level Lisp functions are provided for working with syntax tables. The valid values
are integers.

char-table-type table Function
This function returns the type of char table table.

char-table-type-list Function
This function returns a list of the recognized char table types.

valid-char-table-type-p type Function
This function returns t if type if a recognized char table type.

4.13.2 Working With Char Tables

make-char-table type Function
This function makes a new, empty char table of type type. type should be a symbol, one
of char, category, display, generic, or syntax.

put-char-table range val table Function
This function sets the value for chars in range to be val in table.

range specifies one or more characters to be affected and should be one of the following:
e t (all characters are affected)
e A charset (only allowed when MULE support is present)

e A vector of two elements: a two-octet charset and a row number (only allowed when
MULE support is present)

e A single character

val must be a value appropriate for the type of table.

get-char-table ch table Function
This function finds the value for char ch in table.

get-range-char-table range table &optional multi Function
This function finds the value for a range in table. If there is more than one value, multi
is returned (defaults to nil).

reset-char-table table Function
This function resets a char table to its default state.

map-char-table function table &optional range Function
This function maps function over entries in table, calling it with two args, each key and
value in the table.

range specifies a subrange to map over and is in the same format as the range argument
to put-range-table. If omitted or t, it defaults to the entire table.

70 XEmacs Lisp Reference Manual

valid-char-table-value-p value char-table-type Function
This function returns non-nil if value is a valid value for char-table-type.

check-valid-char-table-value value char-table-type Function
This function signals an error if value is not a valid value for char-table-type.

Chapter 5: Lists 71

5 Lists

A list represents a sequence of zero or more elements (which may be any Lisp objects). The
important difference between lists and vectors is that two or more lists can share part of their
structure; in addition, you can insert or delete elements in a list without copying the whole list.

5.1 Lists and Cons Cells

Lists in Lisp are not a primitive data type; they are built up from cons cells. A cons cell is
a data object that represents an ordered pair. It records two Lisp objects, one labeled as the
CAR, and the other labeled as the CDR. These names are traditional; see Section 2.4.6 [Cons
Cell Type|, page 20. CDR is pronounced “could-er.”

A list is a series of cons cells chained together, one cons cell per element of the list. By
convention, the CARs of the cons cells are the elements of the list, and the CDRs are used to
chain the list: the CDR of each cons cell is the following cons cell. The CDR of the last cons cell
is nil. This asymmetry between the CAR and the CDR is entirely a matter of convention; at the
level of cons cells, the CAR and CDR slots have the same characteristics.

Because most cons cells are used as part of lists, the phrase list structure has come to mean
any structure made out of cons cells.

The symbol nil is considered a list as well as a symbol; it is the list with no elements. For
convenience, the symbol nil is considered to have nil as its CDR (and also as its CAR).

The CDR of any nonempty list I is a list containing all the elements of I except the first.

5.2 Lists as Linked Pairs of Boxes

A cons cell can be illustrated as a pair of boxes. The first box represents the CAR and the
second box represents the CDR. Here is an illustration of the two-element list, (tulip 1ily),
made from two cons cells:

Each pair of boxes represents a cons cell. Each box “refers to”, “points to” or “contains” a
Lisp object. (These terms are synonymous.) The first box, which is the CAR of the first cons
cell, contains the symbol tulip. The arrow from the CDR of the first cons cell to the second
cons cell indicates that the CDR of the first cons cell points to the second cons cell.

The same list can be illustrated in a different sort of box notation like this:

--> tulip --> 1lily

Here is a more complex illustration, showing the three-element list, ((pine needles) oak
maple), the first element of which is a two-element list:

72 XEmacs Lisp Reference Manual

[l l==> | ___l___I-=> |___l___l--> nil
| | [
| | [
| --> oak --> maple
|
| - ___ . ___
==> |___|l___I-=> |___l___l-->nil
| |
| |
--> pine -—> needles

The same list represented in the first box notation looks like this:

car	cdr		car	cdr		car	cdr	
o	o-=———- >	oak	o-——-——- >	maple	nil			
e | mmmmmmmem

|

|

| e

| | car | cdr | | car | cdr |

______ >| pine | o-----—-->| needles | nil |

See Section 2.4.6 [Cons Cell Typel, page 20, for the read and print syntax of cons cells and
lists, and for more “box and arrow” illustrations of lists.

5.3 Predicates on Lists

The following predicates test whether a Lisp object is an atom, is a cons cell or is a list, or
whether it is the distinguished object nil. (Many of these predicates can be defined in terms of
the others, but they are used so often that it is worth having all of them.)

consp object Function
This function returns t if object is a cons cell, nil otherwise. nil is not a cons cell,
although it is a list.

atom object Function
This function returns t if object is an atom, nil otherwise. All objects except cons cells
are atoms. The symbol nil is an atom and is also a list; it is the only Lisp object that is
both.

(atom object) = (not (consp object))

listp object Function
This function returns t if object is a cons cell or nil. Otherwise, it returns nil.
(1istp *(1))
=t
(listp Q)
=t

Chapter 5: Lists 73

nlistp object Function
This function is the opposite of listp: it returns t if object is not a list. Otherwise, it
returns nil.

(listp object) = (not (nlistp object))

null object Function
This function returns t if object is nil, and returns nil otherwise. This function is
identical to not, but as a matter of clarity we use null when object is considered a list
and not when it is considered a truth value (see not in Section 9.3 [Combining Conditions,
page 119).
(null ° (1))
= nil
(null > (O))
=t

5.4 Accessing Elements of Lists

car cons-cell Function
This function returns the value pointed to by the first pointer of the cons cell cons-cell.
Expressed another way, this function returns the CAR of cons-cell.
As a special case, if cons-cell is nil, then car is defined to return nil; therefore, any list
is a valid argument for car. An error is signaled if the argument is not a cons cell or nil.

(car ’(a b ¢))

= a
(car ()
= nil
cdr cons-cell Function

This function returns the value pointed to by the second pointer of the cons cell cons-cell.
Expressed another way, this function returns the CDR of cons-cell.

As a special case, if cons-cell is nil, then cdr is defined to return nil; therefore, any list
is a valid argument for cdr. An error is signaled if the argument is not a cons cell or nil.

(cdr ’(a b ¢))
= (b c)
(cdr 7))
= nil

car-safe object Function
This function lets you take the CAR of a cons cell while avoiding errors for other data
types. It returns the CAR of object if object is a cons cell, nil otherwise. This is in
contrast to car, which signals an error if object is not a list.

(car-safe object)

(let ((x object))
(if (comnsp x)
(car x)
nil))

74 XEmacs Lisp Reference Manual

cdr-safe object Function
This function lets you take the CDR of a cons cell while avoiding errors for other data
types. It returns the CDR of object if object is a cons cell, nil otherwise. This is in
contrast to cdr, which signals an error if object is not a list.

(cdr-safe object)
(_let ((x object))
(if (consp x)

(cdr x)
nil))

nth n list Function
This function returns the nth element of list. Elements are numbered starting with zero,
so the CAR of list is element number zero. If the length of list is n or less, the value is nil.

If n is negative, nth returns the first element of list.

(nth 2 ’(1 2 3 4))

= 3
(nth 10 (1 2 3 4))
= nil
(nth -3 (1 2 3 4))
= 1
(nth n x) = (car (nthcdr n x))
nthedr n list Function

This function returns the nth CDR of list. In other words, it removes the first n links of
list and returns what follows.

If n is zero or negative, nthcdr returns all of list. If the length of list is n or less, nthcdr
returns nil.

(nthedr 1 (1 2 3 4))
= (2 3 4)

(nthcdr 10 °(1 2 3 4))
= nil

(nthedr -3 (1 2 3 4))
= (1 23 4)

Many convenience functions are provided to make it easier for you to access particular ele-
ments in a nested list. All of these can be rewritten in terms of the functions just described.

Chapter 5: Lists

caar cons-cell
cadr cons-cell
cdar cons-cell
cddr cons-cell
caaar cons-cell
caadr cons-cell
cadar cons-cell
caddr cons-cell
cdaar cons-cell
cdadr cons-cell
cddar cons-cell
cdddr cons-cell
caaaar cons-cell
caaadr cons-cell
caadar cons-cell
caaddr cons-cell
cadaar cons-cell
cadadr cons-cell
caddar cons-cell
cadddr cons-cell
cdaaar cons-cell
cdaadr cons-cell
cdadar cons-cell
cdaddr cons-cell
cddaar cons-cell
cddadr cons-cell
cdddar cons-cell
cddddr cons-cell

75

Function
Function
Function
Function
Function
Function
Function
Function
Function
Function
Function
Function
Function
Function
Function
Function
Function
Function
Function
Function
Function
Function
Function
Function
Function
Function
Function
Function

Each of these functions is equivalent to one or more applications of car and/or cdr. For

example,
(cadr x)
is equivalent to
(car (cdr x))
and
(cdaddr x)
is equivalent to

(cdr (car (cdr (cdr x))))

That is to say, read the a’s and d’s from right to left and apply a car or cdr for each a or

d found, respectively.

first list

Function

This is equivalent to (nth 0 list), i.e. the first element of list. (Note that this is also

equivalent to car.)

second list
This is equivalent to (nth 1 list), i.e. the second element of list.

Function

76 XEmacs Lisp Reference Manual

third Iist Function
fourth Iist Function
fifth Iist Function
sixth Iist Function
seventh Iist Function
eighth list Function
ninth Iist Function
tenth Iist Function

These are equivalent to (nth 2 list) through (nth 9 list) respectively, i.e. the third
through tenth elements of list.

5.5 Building Cons Cells and Lists

Many functions build lists, as lists reside at the very heart of Lisp. cons is the fundamental
list-building function; however, it is interesting to note that list is used more times in the
source code for Emacs than cons.

cons objectl object2 Function
This function is the fundamental function used to build new list structure. It creates a
new cons cell, making objectl the CAR, and object2 the CDR. It then returns the new
cons cell. The arguments object] and object2 may be any Lisp objects, but most often
object2 is a list.

(cons 1 ’(2))
= (1 2)
(cons 1 °(0))
= (1)
(cons 1 2)
= (1.2

cons is often used to add a single element to the front of a list. This is called consing the
element onto the list. For example:

(setq list (cons newelt list))

Note that there is no conflict between the variable named list used in this example and
the function named list described below; any symbol can serve both purposes.

list &rest objects Function
This function creates a list with objects as its elements. The resulting list is always
nil-terminated. If no objects are given, the empty list is returned.

(list 1 2 3 4 5)
= (1 2345)
(list 1 2 °(3 4 5) ’foo)
= (1 2 (34 5) foo)
(1ist)
= nil

make-list length object Function
This function creates a list of length length, in which all the elements have the identical
value object. Compare make-list with make-string (see Section 4.3 [Creating Strings|,
page 56).

Chapter 5: Lists 7

(make-list 3 ’pigs)

= (pigs pigs pigs)
(make-list 0 ’pigs)

= nil

append &rest sequences Function
This function returns a list containing all the elements of sequences. The sequences may
be lists, vectors, or strings, but the last one should be a list. All arguments except the
last one are copied, so none of them are altered.

More generally, the final argument to append may be any Lisp object. The final argument
is not copied or converted; it becomes the CDR of the last cons cell in the new list. If the
final argument is itself a list, then its elements become in effect elements of the result list.
If the final element is not a list, the result is a “dotted list” since its final CDR is not nil
as required in a true list.

See nconc in Section 5.6.3 [Rearrangement|, page 81, for a way to join lists with no copying.
Here is an example of using append:

(setq trees ’(pine oak))
= (pine oak)

(setq more-trees (append ’(maple birch) trees))
= (maple birch pine oak)

trees
= (pine oak)
more-trees
= (maple birch pine oak)
(eq trees (cdr (cdr more-trees)))
=t

You can see how append works by looking at a box diagram. The variable trees is set
to the list (pine oak) and then the variable more-trees is set to the list (maple birch
pine oak). However, the variable trees continues to refer to the original list:

more-trees trees

--> maple -->birch --> pine -=> oak
An empty sequence contributes nothing to the value returned by append. As a consequence
of this, a final nil argument forces a copy of the previous argument.
trees
= (pine oak)
(setq wood (append trees ()))
= (pine oak)
wood
= (pine oak)
(eq wood trees)
= nil
This once was the usual way to copy a list, before the function copy-sequence was
invented. See Chapter 6 [Sequences Arrays Vectors|, page 93.
With the help of apply, we can append all the lists in a list of lists:

78 XEmacs Lisp Reference Manual

(apply ’append ’((a b ¢) nil (x y z) nil))
= (abcxy =z

If no sequences are given, nil is returned:

(append)
= nil

Here are some examples where the final argument is not a list:

(append ’(x y) ’z)
= (xy . 2)

(append ’(x y) [z])
= (xy . [z])

The second example shows that when the final argument is a sequence but not a list, the
sequence’s elements do not become elements of the resulting list. Instead, the sequence
becomes the final CDR, like any other non-list final argument.

The append function also allows integers as arguments. It converts them to strings of
digits, making up the decimal print representation of the integer, and then uses the strings
instead of the original integers. Don’t use this feature; we plan to eliminate it. If you
already use this feature, change your programs now! The proper way to convert an integer
to a decimal number in this way is with format (see Section 4.10 [Formatting Strings|,
page 62) or number-to-string (see Section 4.7 [String Conversion], page 60).

reverse list Function
This function creates a new list whose elements are the elements of list, but in reverse
order. The original argument list is not altered.

(setq x (1 2 3 4))

= (1 2 3 4)
(reverse x)

= (4321)
x

= (1 23 4)

5.6 Modifying Existing List Structure

You can modify the CAR and CDR contents of a cons cell with the primitives setcar and
setcdr.

Common Lisp note: Common Lisp uses functions rplaca and rplacd to alter list
structure; they change structure the same way as setcar and setcdr, but the
Common Lisp functions return the cons cell while setcar and setcdr return the
new CAR or CDR.

5.6.1 Altering List Elements with setcar

Changing the CAR of a cons cell is done with setcar. When used on a list, setcar replaces
one element of a list with a different element.

setcar cons object Function
This function stores object as the new CAR of cons, replacing its previous CAR. It returns
the value object. For example:

Chapter 5: Lists 79

(setq x ’(1 2))

= (1 2)
(setcar x 4)
= 4
X
= (4 2)

When a cons cell is part of the shared structure of several lists, storing a new CAR into the
cons changes one element of each of these lists. Here is an example:

;5 Create two lists that are partly shared.
(setq x1 ’(a b c))

= (a b o)
(setq x2 (cons ’z (cdr x1)))

= (z b c)

;; Replace the CAR of a shared link.

(setcar (cdr x1) ’foo)
= foo

x1 ; Both lists are changed.
= (a foo c)

X2
= (z foo ¢)

;; Replace the CAR of a link that is not shared.

(setcar x1 ’baz)

= baz
x1 ; Only one list is changed.
= (baz foo c)
x2

= (z foo ¢)

Here is a graphical depiction of the shared structure of the two lists in the variables x1 and
x2, showing why replacing b changes them both:

Here is an alternative form of box diagram, showing the same relationship:

80 XEmacs Lisp Reference Manual

x1
car	cdr		car	cdr		car	cdr
a	o-—————- >l b	o= > ¢	mil				
	I —=>						
______________	——— S						
x2:							

car	cdr						
Iz	o-—-						
5.6.2 Altering the CDR of a List
The lowest-level primitive for modifying a CDR is setcdr:
setcdr cons object Function

This function stores object as the new CDR of cons, replacing its previous CDR. It returns
the value object.

Here is an example of replacing the CDR of a list with a different list. All but the first
element of the list are removed in favor of a different sequence of elements. The first element is
unchanged, because it resides in the CAR of the list, and is not reached via the CDR.

(setq x ’(1 2 3))

= (123
(setcdr x ’(4))
= (4)

b'e
= (14

You can delete elements from the middle of a list by altering the CDRs of the cons cells in
the list. For example, here we delete the second element, b, from the list (a b ¢), by changing
the CDR of the first cell:

(setq x1 ’(a b c))
= (a b c)

(setcdr x1 (cdr (cdr x1)))
= (c)

x1
= (a c)

Chapter 5: Lists 81

Here is the result in box notation:

| a | o-——mv | b | o-—————- >| c | nil |

The second cons cell, which previously held the element b, still exists and its CAR is still b, but
it no longer forms part of this list.
It is equally easy to insert a new element by changing CDRs:

(setq x1 ’(a b c))

= (a b c)

(setcdr x1 (cons ’d (cdr x1)))
= (d b c)

x1
= (adbc)

Here is this result in box notation:

car	cdr		car	cdr		car	cdr
a	o	-—> b	o= >	¢	mnil		
		[
_________	-	e S					

|

|

| | car | cdr | |

> 4 | o-----

5.6.3 Functions that Rearrange Lists

Here are some functions that rearrange lists “destructively” by modifying the CDRs of their
component cons cells. We call these functions “destructive” because they chew up the original
lists passed to them as arguments, to produce a new list that is the returned value.

The function delq in the following section is another example of destructive list manipulation.

nconc &rest lists Function
This function returns a list containing all the elements of lists. Unlike append (see Sec-

tion 5.5 [Building Lists|, page 76), the lists are not copied. Instead, the last CDR of each
of the lists is changed to refer to the following list. The last of the lists is not altered. For
example:
(setqg x ’(1 2 3))
= (12 3)

(nconc x ’(4 5))
= (1 23 4 5)

82 XEmacs Lisp Reference Manual

= (1 2345)

Since the last argument of nconc is not itself modified, it is reasonable to use a constant
list, such as ’ (4 5), as in the above example. For the same reason, the last argument need
not be a list:

(setqg x ’(1 2 3))
= (12 3)
(nconc x ’z)
= (123 . z)

= (123. 2)

A common pitfall is to use a quoted constant list as a non-last argument to nconc. If you
do this, your program will change each time you run it! Here is what happens:

(defun add-foo (x) ;. We want this function to add
(nconc ’(foo) x)) ; foo to the front of its arg.

(symbol-function ’add-foo)
= (lambda (x) (nconc (quote (foo)) x))

(setq xx (add-foo (1 2))) ; It seems to work.
= (foo 1 2)

(setq xy (add-foo ’(3 4))) ; What happened?
= (foo 1 2 3 4)

(eq xx xy)
=t

(symbol-function ’add-foo)
= (lambda (x) (nconc (quote (foo 1 2 3 4) x)))

nreverse list Function
This function reverses the order of the elements of list. Unlike reverse, nreverse alters
its argument by reversing the CDRs in the cons cells forming the list. The cons cell that
used to be the last one in list becomes the first cell of the value.

For example:

(setq x (1 2 3 4))

= (123 4)
x
= (1 23 4)
(nreverse x)
= (4321)
;3 The cell that was first is now last.
x

= (1)

To avoid confusion, we usually store the result of nreverse back in the same variable
which held the original list:

(setq x (nreverse x))

Here is the nreverse of our favorite example, (a b c¢), presented graphically:

Chapter 5: Lists 83

Original list head: Reversed list:
| car | cdr | | car | cdr | | car | cdr |
| a | nill<—- | Db | o I<—= | ¢l o |
| | | (. | (. (. | (.
————————————— | —————— | - | —————— | -
| | | |
sort list predicate Function

This function sorts list stably, though destructively, and returns the sorted list. It com-
pares elements using predicate. A stable sort is one in which elements with equal sort
keys maintain their relative order before and after the sort. Stability is important when
successive sorts are used to order elements according to different criteria.

The argument predicate must be a function that accepts two arguments. It is called with
two elements of list. To get an increasing order sort, the predicate should return t if the
first element is “less than” the second, or nil if not.

The destructive aspect of sort is that it rearranges the cons cells forming list by changing
CDRs. A nondestructive sort function would create new cons cells to store the elements
in their sorted order. If you wish to make a sorted copy without destroying the original,
copy it first with copy-sequence and then sort.

Sorting does not change the CARs of the cons cells in list; the cons cell that originally
contained the element a in list still has a in its CAR after sorting, but it now appears in a
different position in the list due to the change of CDRs. For example:

(setq nums (1 3 2 6 5 4 0))

= (1326540
(sort nums ’<)

= (01 23456)
nums

= (12345 6)

Note that the list in nums no longer contains 0; this is the same cons cell that it was before,
but it is no longer the first one in the list. Don’t assume a variable that formerly held the
argument now holds the entire sorted list! Instead, save the result of sort and use that.
Most often we store the result back into the variable that held the original list:

(setq nums (sort nums ’<))

See Section 36.14 [Sorting|, page 479, for more functions that perform sorting. See
documentation in Section 27.2 [Accessing Documentation], page 346, for a useful example
of sort.

5.7 Using Lists as Sets

A list can represent an unordered mathematical set—simply consider a value an element of
a set if it appears in the list, and ignore the order of the list. To form the union of two sets, use
append (as long as you don’t mind having duplicate elements). Other useful functions for sets
include memq and delq, and their equal versions, member and delete.

Common Lisp note: Common Lisp has functions union (which avoids duplicate
elements) and intersection for set operations, but XEmacs Lisp does not have
them. You can write them in Lisp if you wish.

84 XEmacs Lisp Reference Manual

memgq object list Function
This function tests to see whether object is a member of list. If it is, memq returns a list
starting with the first occurrence of object. Otherwise, it returns nil. The letter ‘q’ in
memq says that it uses eq to compare object against the elements of the list. For example:

(memg ’b ’(a b c b a))

= (b cba
(memg °(2) °((1) (2))) ; (2) and (2) are not eq.
= nil
delq object list Function

This function destructively removes all elements eq to object from list. The letter ‘q” in
delq says that it uses eq to compare object against the elements of the list, like memq.

When delq deletes elements from the front of the list, it does so simply by advancing down
the list and returning a sublist that starts after those elements:

(delq ’a ’(a b c)) = (cdr ’(a b c))
When an element to be deleted appears in the middle of the list, removing it involves changing
the CDRs (see Section 5.6.2 [Setedr], page 80).
(setq sample-list ’(a b ¢ (4)))
= (abc (4)
(delq ’a sample-list)
= (b c (4)
sample-list
= (abc (4)
(delq ’c sample-list)
= (ab ()
sample-list
= (ab (D)

Note that (delq ’c sample-list) modifies sample-1ist to splice out the third element, but
(delq ’a sample-list) does not splice anything—it just returns a shorter list. Don’t assume
that a variable which formerly held the argument list now has fewer elements, or that it still
holds the original list! Instead, save the result of delq and use that. Most often we store the
result back into the variable that held the original list:

(setq flowers (delq ’rose flowers))

In the following example, the (4) that delq attempts to match and the (4) in the sample-
list are not eq:
(delq ’(4) sample-list)
= (ac (D)

The following two functions are like memq and delq but use equal rather than eq to compare
elements. They are new in Emacs 19.

member object list Function
The function member tests to see whether object is a member of list, comparing members
with object using equal. If object is a member, member returns a list starting with its
first occurrence in list. Otherwise, it returns nil.
Compare this with memq:

(member °(2) >((1) (2))) ; (2) and (2) are equal.
= ((2))

(memg ’(2) ’((1) (2))) ; (2) and (2) are not eq.
= nil

Chapter 5: Lists 85

;5 Two strings with the same contents are equal.
(member "foo" ’("foo" "bar"))
= ("fOO" "bar")

delete object list Function
This function destructively removes all elements equal to object from list. It is to delq
as member is to memq: it uses equal to compare elements with object, like member; when it
finds an element that matches, it removes the element just as delq would. For example:

(delete ’(2) ’((2) (1) (2)))
= (1))

Common Lisp note: The functions member and delete in XEmacs Lisp are derived
from Maclisp, not Common Lisp. The Common Lisp versions do not use equal to
compare elements.

See also the function add-to-1list, in Section 10.7 [Setting Variables|, page 137, for another
way to add an element to a list stored in a variable.

5.8 Association Lists

An association list, or alist for short, records a mapping from keys to values. It is a list of
cons cells called associations: the CAR of each cell is the key, and the CDR is the associated
value.!

Here is an example of an alist. The key pine is associated with the value cones; the key oak
is associated with acorns; and the key maple is associated with seeds.

> ((pine . conmes)
(oak . acorns)
(maple . seeds))

The associated values in an alist may be any Lisp objects; so may the keys. For example, in
the following alist, the symbol a is associated with the number 1, and the string "b" is associated
with the list (2 3), which is the CDR of the alist element:

((a . 1) ("p" 2 3))

Sometimes it is better to design an alist to store the associated value in the CAR of the CDR
of the element. Here is an example:

>((rose red) (lily white) (buttercup yellow))

Here we regard red as the value associated with rose. One advantage of this method is that
you can store other related information—even a list of other items—in the CDR of the CDR. One
disadvantage is that you cannot use rassq (see below) to find the element containing a given
value. When neither of these considerations is important, the choice is a matter of taste, as long
as you are consistent about it for any given alist.

Note that the same alist shown above could be regarded as having the associated value in
the CDR of the element; the value associated with rose would be the list (red).

Association lists are often used to record information that you might otherwise keep on a
stack, since new associations may be added easily to the front of the list. When searching an
association list for an association with a given key, the first one found is returned, if there is
more than one.

1 This usage of “key” is not related to the term “key sequence”; it means a value used to look
up an item in a table. In this case, the table is the alist, and the alist associations are the
items.

86 XEmacs Lisp Reference Manual

In XEmacs Lisp, it is not an error if an element of an association list is not a cons cell. The
alist search functions simply ignore such elements. Many other versions of Lisp signal errors in
such cases.

Note that property lists are similar to association lists in several respects. A property list
behaves like an association list in which each key can occur only once. See Section 5.9 [Property
Lists|, page 88, for a comparison of property lists and association lists.

assoc key alist Function
This function returns the first association for key in alist. It compares key against the
alist elements using equal (see Section 2.8 [Equality Predicates|, page 37). It returns nil
if no association in alist has a CAR equal to key. For example:
(setq trees ’((pine . cones) (oak . acorns) (maple . seeds)))
= ((pine . cones) (oak . acorns) (maple . seeds))
(assoc ’oak trees)
= (oak . acorns)
(cdr (assoc ’oak trees))
= acorns
(assoc ’birch trees)
= nil
Here is another example, in which the keys and values are not symbols:

(setq needles-per-cluster
>((2 "Austrian Pine" "Red Pine")
(3 "Pitch Pine")
(6 "White Pine")))

(cdr (assoc 3 needles-per-cluster))
= ("Pitch Pine")

(cdr (assoc 2 needles-per-cluster))
= ("Austrian Pine" "Red Pine")

rassoc value alist Function
This function returns the first association with value value in alist. It returns nil if no
association in alist has a CDR equal to value.

rassoc is like assoc except that it compares the CDR of each alist association instead of
the CAR. You can think of this as “reverse assoc”, finding the key for a given value.

assq key alist Function
This function is like assoc in that it returns the first association for key in alist, but it
makes the comparison using eq instead of equal. assq returns nil if no association in
alist has a CAR eq to key. This function is used more often than assoc, since eq is faster
than equal and most alists use symbols as keys. See Section 2.8 [Equality Predicates]
page 37.

(setq trees ’((pine . cones) (oak . acorns) (maple . seeds)))
= ((pine . cones) (oak . acorns) (maple . seeds))
(assq ’pine trees)
= (pine . comnes)

On the other hand, assq is not usually useful in alists where the keys may not be symbols:

(setq leaves
>(("simple leaves" . oak)
("compound leaves" . horsechestnut)))

Chapter 5: Lists 87

(assq "simple leaves" leaves)

= nil
(assoc "simple leaves" leaves)
= ("simple leaves" . oak)
rassq value alist Function

This function returns the first association with value value in alist. It returns nil if no
association in alist has a CDR eq to value.

rassq is like assq except that it compares the CDR of each alist association instead of the
CAR. You can think of this as “reverse assq”, finding the key for a given value.

For example:

(setq trees ’((pine . cones) (oak . acorns) (maple . seeds)))

(rassq ’acorns trees)
= (oak . acorns)
(rassq ’spores trees)
= nil
Note that rassq cannot search for a value stored in the CAR of the CDR of an element:
(setq colors ’((rose red) (lily white) (buttercup yellow)))

(rassq ’white colors)
= nil
In this case, the CDR of the association (1ily white) is not the symbol white, but rather
the list (white). This becomes clearer if the association is written in dotted pair notation:

(1ily white) = (1ily . (white))

remassoc key alist Function
This function deletes by side effect any associations with key key in alist — i.e. it removes
any elements from alist whose car is equal to key. The modified alist is returned.

If the first member of alist has a car that is equal to key, there is no way to remove it by
side effect; therefore, write (setq foo (remassoc key foo)) to be sure of changing the
value of foo.

remassq key alist Function
This function deletes by side effect any associations with key key in alist — i.e. it removes
any elements from alist whose car is eq to key. The modified alist is returned.

This function is exactly like remassoc, but comparisons between key and keys in alist are
done using eq instead of equal.

remrassoc value alist Function
This function deletes by side effect any associations with value value in alist — i.e. it
removes any elements from alist whose cdr is equal to value. The modified alist is
returned.

If the first member of alist has a car that is equal to value, there is no way to remove it
by side effect; therefore, write (setq foo (remassoc value foo)) to be sure of changing
the value of foo.

remrassoc is like remassoc except that it compares the CDR of each alist association
instead of the CAR. You can think of this as “reverse remassoc”, removing an association
based on its value instead of its key.

88 XEmacs Lisp Reference Manual

remrassq value alist Function
This function deletes by side effect any associations with value value in alist — i.e. it
removes any elements from alist whose cdr is eq to value. The modified alist is returned.

This function is exactly like remrassoc, but comparisons between value and values in alist
are done using eq instead of equal.

copy-alist alist Function
This function returns a two-level deep copy of alist: it creates a new copy of each asso-
ciation, so that you can alter the associations of the new alist without changing the old
one.

(setq needles-per-cluster
>((2 . ("Austrian Pine" "Red Pine"))
(83 . ("Pitch Pine"))
(5 . ("White Pine"))))
=
((2 "Austrian Pine" "Red Pine")
(3 "Pitch Pine")
(5 "White Pine"))

(setq copy (copy-alist needles-per-cluster))
=

((2 "Austrian Pine" "Red Pine")

(3 "Pitch Pine")

(6 "White Pine"))

(eq needles-per-cluster copy)
= nil

(equal needles-per-cluster copy)
=t

(eq (car needles-per-cluster) (car copy))
= nil

(cdr (car (cdr needles-per-cluster)))
= ("Pitch Pine")

(eq (cdr (car (cdr needles-per-cluster)))
(cdr (car (cdr copy))))
=t

This example shows how copy-alist makes it possible to change the associations of one
copy without affecting the other:

(setcdr (assq 3 copy) ’("Martian Vacuum Pine"))
(cdr (assq 3 needles-per-cluster))
= ("Pitch Pine")

5.9 Property Lists

A property list (or plist) is another way of representing a mapping from keys to values.
Instead of the list consisting of conses of a key and a value, the keys and values alternate as
successive entries in the list. Thus, the association list

(a. 1) (. 2) (c . 3

has the equivalent property list form

Chapter 5: Lists 89

(a1b2c3)

Property lists are used to represent the properties associated with various sorts of objects,
such as symbols, strings, frames, etc. The convention is that property lists can be modified
in-place, while association lists generally are not.

Plists come in two varieties: normal plists, whose keys are compared with eq, and lax plists,
whose keys are compared with equal,

valid-plist-p plist Function
Given a plist, this function returns non-nil if its format is correct. If it returns nil, check-
valid-plist will signal an error when given the plist; that means it’s a malformed or
circular plist or has non-symbols as keywords.

check-valid-plist plist Function
Given a plist, this function signals an error if there is anything wrong with it. This means
that it’s a malformed or circular plist.

5.9.1 Working With Normal Plists

plist-get plist prop &optional default Function
This function extracts a value from a property list. The function returns the value corre-
sponding to the given prop, or default if prop is not one of the properties on the list.

plist-put plist prop val Function
This function changes the value in plist of prop to val. If prop is already a property on
the list, its value is set to val, otherwise the new prop val pair is added. The new plist
is returned; use (setq x (plist-put x prop val)) to be sure to use the new value. The
plist is modified by side effects.

plist-remprop plist prop Function
This function removes from plist the property prop and its value. The new plist is returned;
use (setq x (plist-remprop x prop val)) to be sure to use the new value. The plist is
modified by side effects.

plist-member plist prop Function
This function returns t if prop has a value specified in plist.

In the following functions, if optional arg nil-means-not-present is non-nil, then a property
with a nil value is ignored or removed. This feature is a virus that has infected old Lisp
implementations (and thus E-Lisp, due to RMS’s enamorment with old Lisps), but should not
be used except for backward compatibility.

plists-eq a b &optional nil-means-not-present Function
This function returns non-nil if property lists A and B are eq (i.e. their values are eq).

plists-equal a b &optional nil-means-not-present Function
This function returns non-nil if property lists A and B are equal (i.e. their values are
equal; their keys are still compared using eq).

canonicalize-plist plist &optional nil-means-not-present Function
This function destructively removes any duplicate entries from a plist. In such cases, the
first entry applies.
The new plist is returned. If nil-means-not-present is given, the return value may not be
eq to the passed-in value, so make sure to setq the value back into where it came from.

90 XEmacs Lisp Reference Manual

5.9.2 Working With Lax Plists

Recall that a lax plist is a property list whose keys are compared using equal instead of eq.

lax-plist-get lax-plist prop &optional default Function
This function extracts a value from a lax property list. The function returns the value
corresponding to the given prop, or default if prop is not one of the properties on the list.

lax-plist-put lax-plist prop val Function
This function changes the value in lax-plist of prop to val.

lax-plist-remprop lax-plist prop Function
This function removes from lax-plist the property prop and its value. The new plist is
returned; use (setq x (lax-plist-remprop x prop val)) to be sure to use the new value.
The lax-plist is modified by side effects.

lax-plist-member lax-plist prop Function
This function returns t if prop has a value specified in lax-plist.

In the following functions, if optional arg nil-means-not-present is non-nil, then a property
with a nil value is ignored or removed. This feature is a virus that has infected old Lisp
implementations (and thus E-Lisp, due to RMS’s enamorment with old Lisps), but should not
be used except for backward compatibility.

lax-plists-eq a b &optional nil-means-not-present Function
This function returns non-nil if lax property lists A and B are eq (i.e. their values are
eq; their keys are still compared using equal).

lax-plists-equal a b &optional nil-means-not-present Function
This function returns non-nil if lax property lists A and B are equal (i.e. their values
are equal).

canonicalize-lax-plist lax-plist &optional nil-means-not-present Function

This function destructively removes any duplicate entries from a lax plist. In such cases,
the first entry applies.

The new plist is returned. If nil-means-not-present is given, the return value may not be
eq to the passed-in value, so make sure to setq the value back into where it came from.

5.9.3 Converting Plists To/From Alists

alist-to-plist alist Function
This function converts association list alist into the equivalent property-list form. The
plist is returned. This converts from

((a. 1) (b.2) (c.3)N
into

(a1b2c3)
The original alist is not modified.

Chapter 5: Lists 91

plist-to-alist plist Function
This function converts property list plist into the equivalent association-list form. The
alist is returned. This converts from

(a1b2c3)
into

(a. 1) .2 (¢ . 3N
The original plist is not modified.

The following two functions are equivalent to the preceding two except that they destructively
modify their arguments, using cons cells from the original list to form the new list rather than
allocating new cons cells.

destructive-alist-to-plist alist Function
This function destructively converts association list alist into the equivalent property-list
form. The plist is returned.

destructive-plist-to-alist plist Function
This function destructively converts property list plist into the equivalent association-list
form. The alist is returned.

5.10 Weak Lists

A weak list is a special sort of list whose members are not counted as references for the purpose
of garbage collection. This means that, for any object in the list, if there are no references to
the object anywhere outside of the list (or other weak list or weak hash table), that object will
disappear the next time a garbage collection happens. Weak lists can be useful for keeping track
of things such as unobtrusive lists of another function’s buffers or markers. When that function
is done with the elements, they will automatically disappear from the list.

Weak lists are used internally, for example, to manage the list holding the children of an
extent — an extent that is unused but has a parent will still be reclaimed, and will automatically
be removed from its parent’s list of children.

Weak lists are similar to weak hash tables (see Section 46.3 [Weak Hash Tables|, page 602).

weak-list-p object Function
This function returns non-nil if object is a weak list.

Weak lists come in one of four types:
simple Objects in the list disappear if not referenced outside of the list.

assoc Objects in the list disappear if they are conses and either the car or the cdr of the
cons is not referenced outside of the list.

key-assoc
Objects in the list disappear if they are conses and the car is not referenced outside
of the list.

value-assoc
Objects in the list disappear if they are conses and the cdr is not referenced outside
of the list.

make-weak-list &optional type Function
This function creates a new weak list of type type. type is a symbol (one of simple,
assoc, key-assoc, or value-assoc, as described above) and defaults to simple.

92 XEmacs Lisp Reference Manual

weak-list-type weak Function
This function returns the type of the given weak-list object.

weak-list-list weak Function
This function returns the list contained in a weak-list object.

set-weak-list-list weak new-list Function
This function changes the list contained in a weak-list object.

Chapter 6: Sequences, Arrays, and Vectors 93

6 Sequences, Arrays, and Vectors

Recall that the sequence type is the union of four other Lisp types: lists, vectors, bit vectors,
and strings. In other words, any list is a sequence, any vector is a sequence, any bit vector is a
sequence, and any string is a sequence. The common property that all sequences have is that
each is an ordered collection of elements.

An array is a single primitive object that has a slot for each elements. All the elements are
accessible in constant time, but the length of an existing array cannot be changed. Strings,
vectors, and bit vectors are the three types of arrays.

A list is a sequence of elements, but it is not a single primitive object; it is made of cons cells,
one cell per element. Finding the nth element requires looking through n cons cells, so elements
farther from the beginning of the list take longer to access. But it is possible to add elements
to the list, or remove elements.

The following diagram shows the relationship between these types:

The elements of vectors and lists may be any Lisp objects. The elements of strings are all
characters. The elements of bit vectors are the numbers 0 and 1.

6.1 Sequences

In XEmacs Lisp, a sequence is either a list, a vector, a bit vector, or a string. The common
property that all sequences have is that each is an ordered collection of elements. This section
describes functions that accept any kind of sequence.

sequencep object Function
Returns t if object is a list, vector, bit vector, or string, nil otherwise.

copy-sequence sequence Function
Returns a copy of sequence. The copy is the same type of object as the original sequence,
and it has the same elements in the same order.

Storing a new element into the copy does not affect the original sequence, and vice versa.
However, the elements of the new sequence are not copies; they are identical (eq) to the

94 XEmacs Lisp Reference Manual

elements of the original. Therefore, changes made within these elements, as found via the
copied sequence, are also visible in the original sequence.

If the sequence is a string with extents or text properties, the extents and text properties
in the copy are also copied, not shared with the original. (This means that modifying the
extents or text properties of the original will not affect the copy.) However, the actual
values of the properties are shared. See Chapter 40 [Extents|, page 529, See Section 36.18
[Text Properties|, page 488.

See also append in Section 5.5 [Building Lists|, page 76, concat in Section 4.3 [Creating
Strings|, page 56, vconcat in Section 6.4 [Vectors|, page 97, and bvconcat in Section 6.6

Bit Vectors|, page 99, for other ways to copy sequences.

(setq bar ’(1 2))
= (12)

(setq x (vector ’foo bar))
= [foo (1 2)]

(setq y (copy-sequence x))
= [foo (1 2)]

(eq x y)
= nil

(equal x y)
=t

(eq (elt x 1) (elt y 1))
=t

;5 Replacing an element of one sequence.
(aset x 0 ’quux)
x = [quux (1 2)]
y = [foo (1 2)]

;5 Modifying the inside of a shared element.
(setcar (aref x 1) 69)

x = [quux (69 2)]

y = [foo (69 2)]

;5 Creating a bit vector.
(bit-vector 1 01 1 01 0 0)
= #x%x10110100

length sequence Function
Returns the number of elements in sequence. If sequence is a cons cell that is not a list
(because the final CDR is not nil), a wrong-type-argument error is signaled.
(length ’(1 2 3))
= 3
(length ()
= 0
(length "foobar")
= 6
(length [1 2 3]1)
= 3
(length #x01101)
= 5

Chapter 6: Sequences, Arrays, and Vectors 95

elt sequence index Function
This function returns the element of sequence indexed by index. Legitimate values of
index are integers ranging from 0 up to one less than the length of sequence. If sequence
is a list, then out-of-range values of index return nil; otherwise, they trigger an args-
out-of-range error.
(elt [1 2 3 4] 2)
= 3
(elt °(1 2 3 4) 2)
= 3
(char-to-string (elt "1234" 2))
: ||3ll
(elt #x00010000 3)
=1
(elt [1 2 3 4] 4)
Args out of range: [1 2 3 4], 4
(elt [1 2 3 4] -1)

Args out of range: [1 2 3 4], -1

This function generalizes aref (see Section 6.3 [Array Functions|, page 96) and nth (see
Section 5.4 [List Elements|, page 73).

6.2 Arrays

An array object has slots that hold a number of other Lisp objects, called the elements of
the array. Any element of an array may be accessed in constant time. In contrast, an element
of a list requires access time that is proportional to the position of the element in the list.

When you create an array, you must specify how many elements it has. The amount of space
allocated depends on the number of elements. Therefore, it is impossible to change the size of
an array once it is created; you cannot add or remove elements. However, you can replace an
element with a different value.

XFEmacs defines three types of array, all of which are one-dimensional: strings, vectors, and
bit vectors. A vector is a general array; its elements can be any Lisp objects. A string is a
specialized array; its elements must be characters. A bit vector is another specialized array; its
elements must be bits (an integer, either 0 or 1). Each type of array has its own read syntax.
See Section 2.4.8 [String Type], page 22, Section 2.4.9 [Vector Type], page 23, and Section 2.4.10
[Bit Vector Type|, page 23.

All kinds of array share these characteristics:

e The first element of an array has index zero, the second element has index 1, and so on.

This is called zero-origin indexing. For example, an array of four elements has indices 0, 1,
2, and 3.

e The elements of an array may be referenced or changed with the functions aref and aset,
respectively (see Section 6.3 [Array Functions], page 96).

In principle, if you wish to have an array of text characters, you could use either a string or
a vector. In practice, we always choose strings for such applications, for four reasons:

e They usually occupy one-fourth the space of a vector of the same elements. (This is one-
eighth the space for 64-bit machines such as the DEC Alpha, and may also be different
when MULE support is compiled into XEmacs.)

e Strings are printed in a way that shows the contents more clearly as characters.

e Strings can hold extent and text properties. See Chapter 40 [Extents|, page 529, See
Section 36.18 [Text Properties|, page 488.

96 XEmacs Lisp Reference Manual

e Many of the specialized editing and I/O facilities of XEmacs accept only strings. For
example, you cannot insert a vector of characters into a buffer the way you can insert a
string. See Chapter 4 [Strings and Characters]|, page 55.

By contrast, for an array of keyboard input characters (such as a key sequence), a vector may
be necessary, because many keyboard input characters are non-printable and are represented
with symbols rather than with characters. See Section 19.6.1 [Key Sequence Input|, page 273.

Similarly, when representing an array of bits, a bit vector has the following advantages over
a regular vector:

e They occupy 1/32nd the space of a vector of the same elements. (1/64th on 64-bit machines
such as the DEC Alpha.)

e Bit vectors are printed in a way that shows the contents more clearly as bits.

6.3 Functions that Operate on Arrays

In this section, we describe the functions that accept strings, vectors, and bit vectors.

arrayp object Function
This function returns t if object is an array (i.e., a string, vector, or bit vector).
(arrayp "asdf")
=t
(arrayp [al)
= t
(arrayp #x%101)
= t
Function

aref array index
This function returns the indexth element of array. The first element is at index zero.
(setq primes [2 3 5 7 11 13])
= [2 357 11 13]
(aref primes 4)
= 11
(elt primes 4)
= 11

(aref "abcdefg" 1)
= 7b

(aref #¥1101 2)
= 0
See also the function elt, in Section 6.1 [Sequence Functions|, page 93.

aset array index object Function

This function sets the indexth element of array to be object. It returns object.
(setq w [foo bar baz])
= [foo bar baz]
(aset w 0 ’fu)
= fu

= [fu bar baz]

Chapter 6: Sequences, Arrays, and Vectors 97

(setq x "asdfasfd")
= "asdfasfd"
(aset x 3 72)
= 77

= "asdZasfd"
(setq bv #x1111)

= #x1111
(aset bv 2 0)
= 0
bv
= #x1101

If array is a string and object is not a character, a wrong-type-argument error results.

fillarray array object Function
This function fills the array array with object, so that each element of array is object. It
returns array.

(setga [abcdef gl

= [abcdef gl
(fillarray a 0)

= [0 00000 0]
a

= [00 0000 0]

(setq s "When in the course")
= "When in the course"
(fillarray s ?7-)

(setq bv #*x1101)
= #x1101

(fillarray bv 0)
= #x0000

If array is a string and object is not a character, a wrong-type-argument error results.

The general sequence functions copy-sequence and length are often useful for objects known
to be arrays. See Section 6.1 [Sequence Functions], page 93.

6.4 Vectors

Arrays in Lisp, like arrays in most languages, are blocks of memory whose elements can
be accessed in constant time. A vector is a general-purpose array; its elements can be any
Lisp objects. (The other kind of array in XEmacs Lisp is the string, whose elements must
be characters.) Vectors in XEmacs serve as obarrays (vectors of symbols), although this is a
shortcoming that should be fixed. They are also used internally as part of the representation of
a byte-compiled function; if you print such a function, you will see a vector in it.

In XEmacs Lisp, the indices of the elements of a vector start from zero and count up from
there.

Vectors are printed with square brackets surrounding the elements. Thus, a vector whose
elements are the symbols a, b and a is printed as [a b a]. You can write vectors in the same
way in Lisp input.

98 XEmacs Lisp Reference Manual

A vector, like a string or a number, is considered a constant for evaluation: the result of
evaluating it is the same vector. This does not evaluate or even examine the elements of the
vector. See Section 8.2.1 [Self-Evaluating Forms|, page 111.

Here are examples of these principles:

(setq avector [1 two ’(three) "four" [fivel])

= [1 two (quote (three)) "four" [five]]
(eval avector)

= [1 two (quote (three)) "four" [five]]
(eq avector (eval avector))

=t

6.5 Functions That Operate on Vectors

Here are some functions that relate to vectors:

vectorp object Function
This function returns t if object is a vector.

(vectorp [al)
=t

(vectorp "asdf")
= nil

vector &rest objects Function
This function creates and returns a vector whose elements are the arguments, objects.

(vector ’foo 23 [bar baz] "rats")
= [foo 23 [bar baz] "rats"]
(vector)
= [

make-vector length object Function
This function returns a new vector consisting of length elements, each initialized to object.

(setq sleepy (make-vector 9 ’Z))
= 2227227727727 7]

vconcat &rest sequences Function
This function returns a new vector containing all the elements of the sequences. The
arguments sequences may be lists, vectors, or strings. If no sequences are given, an empty
vector is returned.

The value is a newly constructed vector that is not eq to any existing vector.

(setq a (vconcat (A B C) (D E F)))
= [ABCDEF]

(eq a (vconcat a))
= nil

(vconcat)
= [

(vconcat [A B C] "aa" ’(foo (6 7)))
= [A B C 97 97 foo (6 7)]

The vconcat function also allows integers as arguments. It converts them to strings of
digits, making up the decimal print representation of the integer, and then uses the strings

Chapter 6: Sequences, Arrays, and Vectors 99

instead of the original integers. Don’t use this feature; we plan to eliminate it. If you
already use this feature, change your programs now! The proper way to convert an integer
to a decimal number in this way is with format (see Section 4.10 [Formatting Strings]
page 62) or number-to-string (see Section 4.7 [String Conversion|, page 60).

For other concatenation functions, see mapconcat in Section 11.6 [Mapping Functions,
page 154, concat in Section 4.3 [Creating Strings|, page 56, append in Section 5.5 [Building
Lists|, page 76, and bvconcat in Section 6.7 [Bit Vector Functions|, page 99.

The append function provides a way to convert a vector into a list with the same elements
(see Section 5.5 [Building Lists|, page 76):

(setq avector [1 two (quote (three)) "four" [five]l)
= [1 two (quote (three)) "four" [fivell]
(append avector nil)
= (1 two (quote (three)) "four" [five])

6.6 Bit Vectors

Bit vectors are specialized vectors that can only represent arrays of 1’s and 0’s. Bit vectors
have a very efficient representation and are useful for representing sets of boolean (true or false)
values.

There is no limit on the size of a bit vector. You could, for example, create a bit vector with
100,000 elements if you really wanted to.

Bit vectors have a special printed representation consisting of ‘#*’ followed by the bits of the
vector. For example, a bit vector whose elements are 0, 1, 1, 0, and 1, respectively, is printed as

#%01101

Bit vectors are considered constants for evaluation, like vectors, strings, and numbers. See
Section 8.2.1 [Self-Evaluating Forms|, page 111.

6.7 Functions That Operate on Bit Vectors

Here are some functions that relate to bit vectors:

bit-vector-p object Function
This function returns t if object is a bit vector.

(bit-vector-p #*01)

=t
(bit-vector-p [0 11)
= nil
(bit-vector-p "01")
= nil
bitp object Function

This function returns t if object is either 0 or 1.

bit-vector &rest objects Function
This function creates and returns a bit vector whose elements are the arguments objects.
The elements must be either of the two integers 0 or 1.

100 XEmacs Lisp Reference Manual

(bit-vector 0 001 000 0 1 0)
= #*x0001000010
(bit-vector)

= #*
make-bit-vector length object Function
This function creates and returns a bit vector consisting of length elements, each initialized

to object.

(setq picket-fence (make-bit-vector 9 1))
= #x111111111

bvconcat &rest sequences Function
This function returns a new bit vector containing all the elements of the sequences. The
arguments sequences may be lists, vectors, or bit vectors, all of whose elements are the
integers 0 or 1. If no sequences are given, an empty bit vector is returned.
The value is a newly constructed bit vector that is not eq to any existing bit vector.

(setq a (bvconcat ’(1 1 0) >(0 0 1)))
= #x110001
(eq a (bvconcat a))
= nil
(bvconcat)
= #*
(bvconcat [1 0 0 O O] #x111 (0 0 0 0 1))
= #x1000011100001

For other concatenation functions, see mapconcat in Section 11.6 [Mapping Functions],
page 154, concat in Section 4.3 [Creating Strings], page 56, vconcat in Section 6.5 [Vector
Functions|, page 98, and append in Section 5.5 [Building Lists], page 76.

The append function provides a way to convert a bit vector into a list with the same elements
(see Section 5.5 [Building Lists], page 76):
(setq bv #x00001110)
= #x00001110
(append bv nil)
= (00001110

Chapter 7: Symbols 101

7 Symbols

A symbol is an object with a unique name. This chapter describes symbols, their components,
their property lists, and how they are created and interned. Separate chapters describe the use of
symbols as variables and as function names; see Chapter 10 [Variables|, page 131, and Chapter 11
[Functions], page 147. For the precise read syntax for symbols, see Section 2.4.4 [Symbol Type],
page 18.

You can test whether an arbitrary Lisp object is a symbol with symbolp:

symbolp object Function
This function returns t if object is a symbol, nil otherwise.

7.1 Symbol Components

Each symbol has four components (or “cells”), each of which references another object:

Print name
The print name cell holds a string that names the symbol for reading and printing.
See symbol-name in Section 7.3 [Creating Symbols|, page 103.

Value The value cell holds the current value of the symbol as a variable. When a symbol
is used as a form, the value of the form is the contents of the symbol’s value cell.
See symbol-value in Section 10.6 [Accessing Variables|, page 137.

Function The function cell holds the function definition of the symbol. When a symbol is
used as a function, its function definition is used in its place. This cell is also used
to make a symbol stand for a keymap or a keyboard macro, for editor command
execution. Because each symbol has separate value and function cells, variables and
function names do not conflict. See symbol-function in Section 11.8 [Function
Cells], page 156.

Property list
The property list cell holds the property list of the symbol. See symbol-plist in
Section 7.4 [Symbol Properties|, page 105.

The print name cell always holds a string, and cannot be changed. The other three cells can
be set individually to any specified Lisp object.

The print name cell holds the string that is the name of the symbol. Since symbols are
represented textually by their names, it is important not to have two symbols with the same
name. The Lisp reader ensures this: every time it reads a symbol, it looks for an existing symbol
with the specified name before it creates a new one. (In XEmacs Lisp, this lookup uses a hashing
algorithm and an obarray; see Section 7.3 [Creating Symbols|, page 103.)

In normal usage, the function cell usually contains a function or macro, as that is what the
Lisp interpreter expects to see there (see Chapter 8 [Evaluation], page 109). Keyboard macros
(see Section 19.13 [Keyboard Macros], page 283), keymaps (see Chapter 20 [Keymaps]|, page 285)
and autoload objects (see Section 8.2.8 [Autoloading], page 116) are also sometimes stored in the
function cell of symbols. We often refer to “the function foo” when we really mean the function
stored in the function cell of the symbol foo. We make the distinction only when necessary.

The property list cell normally should hold a correctly formatted property list (see Section 5.9
[Property Lists|, page 88), as a number of functions expect to see a property list there.

The function cell or the value cell may be void, which means that the cell does not reference
any object. (This is not the same thing as holding the symbol void, nor the same as holding

102 XEmacs Lisp Reference Manual

the symbol nil.) Examining a cell that is void results in an error, such as ‘Symbol’s value as
variable is void’.

The four functions symbol-name, symbol-value, symbol-plist, and symbol-function re-
turn the contents of the four cells of a symbol. Here as an example we show the contents of the
four cells of the symbol buffer-file-name:

(symbol-name ’buffer-file-name)

= "buffer-file-name"
(symbol-value ’buffer-file-name)

= "/gnu/elisp/symbols.texi"
(symbol-plist ’buffer-file-name)

= (variable-documentation 29529)
(symbol-function ’buffer-file-name)

= #<subr buffer-file-name>

Because this symbol is the variable which holds the name of the file being visited in the current
buffer, the value cell contents we see are the name of the source file of this chapter of the
XEmacs Lisp Manual. The property list cell contains the list (variable-documentation 29529)
which tells the documentation functions where to find the documentation string for the variable
buffer-file-name in the ‘DOC’ file. (29529 is the offset from the beginning of the ‘DOC’ file to
where that documentation string begins.) The function cell contains the function for returning
the name of the file. buffer-file-name names a primitive function, which has no read syntax
and prints in hash notation (see Section 2.4.13 [Primitive Function Type|, page 24). A symbol
naming a function written in Lisp would have a lambda expression (or a byte-code object) in
this cell.

7.2 Defining Symbols

A definition in Lisp is a special form that announces your intention to use a certain symbol
in a particular way. In XEmacs Lisp, you can define a symbol as a variable, or define it as a
function (or macro), or both independently.

A definition construct typically specifies a value or meaning for the symbol for one kind
of use, plus documentation for its meaning when used in this way. Thus, when you define a
symbol as a variable, you can supply an initial value for the variable, plus documentation for
the variable.

defvar and defconst are special forms that define a symbol as a global variable. They are
documented in detail in Section 10.5 [Defining Variables|, page 134.

defun defines a symbol as a function, creating a lambda expression and storing it in the
function cell of the symbol. This lambda expression thus becomes the function definition of the
symbol. (The term “function definition”, meaning the contents of the function cell, is derived
from the idea that defun gives the symbol its definition as a function.) defsubst, define-
function and defalias are other ways of defining a function. See Chapter 11 [Functions]
page 147.

defmacro defines a symbol as a macro. It creates a macro object and stores it in the function
cell of the symbol. Note that a given symbol can be a macro or a function, but not both at
once, because both macro and function definitions are kept in the function cell, and that cell
can hold only one Lisp object at any given time. See Chapter 12 [Macros|, page 161.

In XEmacs Lisp, a definition is not required in order to use a symbol as a variable or function.
Thus, you can make a symbol a global variable with setq, whether you define it first or not.
The real purpose of definitions is to guide programmers and programming tools. They inform
programmers who read the code that certain symbols are intended to be used as variables, or
as functions. In addition, utilities such as ‘etags’ and ‘make-docfile’ recognize definitions,

Chapter 7: Symbols 103

and add appropriate information to tag tables and the ‘DOC’ file. See Section 27.2 [Accessing
Documentation], page 346.

7.3 Creating and Interning Symbols

To understand how symbols are created in XEmacs Lisp, you must know how Lisp reads
them. Lisp must ensure that it finds the same symbol every time it reads the same set of
characters. Failure to do so would cause complete confusion.

When the Lisp reader encounters a symbol, it reads all the characters of the name. Then it
“hashes” those characters to find an index in a table called an obarray. Hashing is an efficient
method of looking something up. For example, instead of searching a telephone book cover to
cover when looking up Jan Jones, you start with the J’s and go from there. That is a simple
version of hashing. Each element of the obarray is a bucket which holds all the symbols with a
given hash code; to look for a given name, it is sufficient to look through all the symbols in the
bucket for that name’s hash code.

If a symbol with the desired name is found, the reader uses that symbol. If the obarray
does not contain a symbol with that name, the reader makes a new symbol and adds it to the
obarray. Finding or adding a symbol with a certain name is called interning it, and the symbol
is then called an interned symbol.

Interning ensures that each obarray has just one symbol with any particular name. Other
like-named symbols may exist, but not in the same obarray. Thus, the reader gets the same
symbols for the same names, as long as you keep reading with the same obarray.

No obarray contains all symbols; in fact, some symbols are not in any obarray. They are
called uninterned symbols. An uninterned symbol has the same four cells as other symbols;
however, the only way to gain access to it is by finding it in some other object or as the value
of a variable.

In XEmacs Lisp, an obarray is actually a vector. Each element of the vector is a bucket;
its value is either an interned symbol whose name hashes to that bucket, or 0 if the bucket is
empty. Each interned symbol has an internal link (invisible to the user) to the next symbol
in the bucket. Because these links are invisible, there is no way to find all the symbols in an
obarray except using mapatoms (below). The order of symbols in a bucket is not significant.

In an empty obarray, every element is 0, and you can create an obarray with (make-vector
length 0). This is the only valid way to create an obarray. Prime numbers as lengths tend to
result in good hashing; lengths one less than a power of two are also good.

Do not try to put symbols in an obarray yourself. This does not work—only intern can
enter a symbol in an obarray properly. Do not try to intern one symbol in two obarrays. This
would garble both obarrays, because a symbol has just one slot to hold the following symbol in
the obarray bucket. The results would be unpredictable.

It is possible for two different symbols to have the same name in different obarrays; these
symbols are not eq or equal. However, this normally happens only as part of the abbrev
mechanism (see Chapter 39 [Abbrevs|, page 523).

Common Lisp note: In Common Lisp, a single symbol may be interned in several
obarrays.

Most of the functions below take a name and sometimes an obarray as arguments. A wrong-
type-argument error is signaled if the name is not a string, or if the obarray is not a vector.

symbol-name symbol Function
This function returns the string that is symbol’s name. For example:

104 XEmacs Lisp Reference Manual

(symbol-name ’foo)
= "foo"

Changing the string by substituting characters, etc, does change the name of the symbol,
but fails to update the obarray, so don’t do it!

make-symbol name Function
This function returns a newly-allocated, uninterned symbol whose name is name (which
must be a string). Its value and function definition are void, and its property list is nil.
In the example below, the value of sym is not eq to foo because it is a distinct uninterned
symbol whose name is also ‘foo’.

(setq sym (make-symbol "foo"))
= foo

(eq sym ’foo)
= nil

intern name &optional obarray Function
This function returns the interned symbol whose name is name. If there is no such symbol
in the obarray obarray, intern creates a new one, adds it to the obarray, and returns it.
If obarray is omitted, the value of the global variable obarray is used.

(setq sym (intern "foo"))
= foo

(eq sym ’foo)
=t

(setq syml (intern "foo" other-obarray))
= foo

(eq sym ’foo)
= nil

intern-soft name &optional obarray Function
This function returns the symbol in obarray whose name is name, or nil if obarray has
no symbol with that name. Therefore, you can use intern-soft to test whether a symbol
with a given name is already interned. If obarray is omitted, the value of the global
variable obarray is used.

(intern-soft "frazzle") ; No such symbol exists.
= nil

(make-symbol "frazzle") ; Create an uninterned one.
= frazzle

(intern-soft "frazzle") ; That one cannot be found.
= nil

(setq sym (intern "frazzle")) ; Create an interned one.
= frazzle

(intern-soft "frazzle") ; That one can be found!
= frazzle

(eq sym ’frazzle) ; And it is the same one.
=t

obarray Variable

This variable is the standard obarray for use by intern and read.

Chapter 7: Symbols 105

mapatoms function &optional obarray Function
This function calls function for each symbol in the obarray obarray. It returns nil. If
obarray is omitted, it defaults to the value of obarray, the standard obarray for ordinary
symbols.

(setq count 0)
= 0
(defun count-syms (s)
(setq count (1+ count)))
= count-syms
(mapatoms ’count-syms)
= nil
count
= 1871

See documentation in Section 27.2 [Accessing Documentation], page 346, for another
example using mapatoms.

unintern symbol &optional obarray Function
This function deletes symbol from the obarray obarray. If symbol is not actually in the
obarray, unintern does nothing. If obarray is nil, the current obarray is used.

If you provide a string instead of a symbol as symbol, it stands for a symbol name. Then
unintern deletes the symbol (if any) in the obarray which has that name. If there is no
such symbol, unintern does nothing.

If unintern does delete a symbol, it returns t. Otherwise it returns nil.

7.4 Symbol Properties

A property list (plist for short) is a list of paired elements stored in the property list cell
of a symbol. Each of the pairs associates a property name (usually a symbol) with a property
or value. Property lists are generally used to record information about a symbol, such as its
documentation as a variable, the name of the file where it was defined, or perhaps even the
grammatical class of the symbol (representing a word) in a language-understanding system.

Many objects other than symbols can have property lists associated with them, and XEmacs
provides a full complement of functions for working with property lists. See Section 5.9 [Property
Lists|, page 88.

The property names and values in a property list can be any Lisp objects, but the names are
usually symbols. They are compared using eq. Here is an example of a property list, found on
the symbol progn when the compiler is loaded:

(1isp-indent-function O byte-compile byte-compile-progn)
Here lisp-indent-function and byte-compile are property names, and the other two ele-
ments are the corresponding values.

7.4.1 Property Lists and Association Lists

Association lists (see Section 5.8 [Association Lists|, page 85) are very similar to property
lists. In contrast to association lists, the order of the pairs in the property list is not significant
since the property names must be distinct.

Property lists are better than association lists for attaching information to various Lisp
function names or variables. If all the associations are recorded in one association list, the

106 XEmacs Lisp Reference Manual

program will need to search that entire list each time a function or variable is to be operated
on. By contrast, if the information is recorded in the property lists of the function names or
variables themselves, each search will scan only the length of one property list, which is usually
short. This is why the documentation for a variable is recorded in a property named variable-
documentation. The byte compiler likewise uses properties to record those functions needing
special treatment.

However, association lists have their own advantages. Depending on your application, it may
be faster to add an association to the front of an association list than to update a property. All
properties for a symbol are stored in the same property list, so there is a possibility of a conflict
between different uses of a property name. (For this reason, it is a good idea to choose property
names that are probably unique, such as by including the name of the library in the property
name.) An association list may be used like a stack where associations are pushed on the front
of the list and later discarded; this is not possible with a property list.

7.4.2 Property List Functions for Symbols

symbol-plist symbol Function

This function returns the property list of symbol.

setplist symbol plist Function

This function sets symbol’s property list to plist. Normally, plist should be a well-formed
property list, but this is not enforced.

(setplist ’foo ’(a 1 b (2 3) ¢ nil))
= (a1b (2 3) ¢ nil)
(symbol-plist ’foo)
= (a1 b (2 3) c nil)
For symbols in special obarrays, which are not used for ordinary purposes, it may make
sense to use the property list cell in a nonstandard fashion; in fact, the abbrev mechanism
does so (see Chapter 39 [Abbrevs|, page 523).

get symbol property Function

This function finds the value of the property named property in symbol’s property list. If
there is no such property, nil is returned. Thus, there is no distinction between a value
of nil and the absence of the property.

The name property is compared with the existing property names using eq, so any object
is a legitimate property.

See put for an example.

put symbol property value Function

This function puts value onto symbol’s property list under the property name property,
replacing any previous property value. The put function returns value.
(put ’fly ’verb ’transitive)
=’transitive
(put ’fly ’noun ’(a buzzing little bug))
= (a buzzing little bug)
(get ’fly ’verb)
= transitive
(symbol-plist ’fly)
= (verb transitive noun (a buzzing little bug))

Chapter 7: Symbols 107

7.4.3 Property Lists Outside Symbols

These functions are useful for manipulating property lists that are stored in places other than
symbols:

getf plist property &optional default Function
This returns the value of the property property stored in the property list plist. For
example,
(getf ’(foo 4) ’foo)
= 4
putf plist property value Function

This stores value as the value of the property property in the property list plist. It may
modify plist destructively, or it may construct a new list structure without altering the
old. The function returns the modified property list, so you can store that back in the
place where you got plist. For example,

(setq my-plist ’(bar t foo 4))
= (bar t foo 4)

(setq my-plist (putf my-plist ’foo 69))
= (bar t foo 69)

(setq my-plist (putf my-plist ’quux ’(a)))
= (quux (a) bar t foo 5)

plists-eq a b Function
This function returns non-nil if property lists a and b are eq. This means that the
property lists have the same values for all the same properties, where comparison between
values is done using eq.

plists-equal a b Function
This function returns non-nil if property lists a and b are equal.

Both of the above functions do order-insensitive comparisons.
(plists-eq (a1 b 2 ¢ nil) (b 2 a 1))
=t
(plists-eq ’(foo "hello" bar "goodbye") ’(bar "goodbye" foo "hello"))
= nil
(plists-equal ’(foo "hello" bar "goodbye") ’(bar "goodbye" foo "hello"))
=t

108 XEmacs Lisp Reference Manual

Chapter 8: Evaluation 109

8 Evaluation

The evaluation of expressions in XEmacs Lisp is performed by the Lisp interpreter—a pro-
gram that receives a Lisp object as input and computes its value as an expression. How it
does this depends on the data type of the object, according to rules described in this chapter.
The interpreter runs automatically to evaluate portions of your program, but can also be called
explicitly via the Lisp primitive function eval.

A Lisp object that is intended for evaluation is called an expression or a form. The fact that
expressions are data objects and not merely text is one of the fundamental differences between
Lisp-like languages and typical programming languages. Any object can be evaluated, but in
practice only numbers, symbols, lists and strings are evaluated very often.

It is very common to read a Lisp expression and then evaluate the expression, but reading
and evaluation are separate activities, and either can be performed alone. Reading per se does
not evaluate anything; it converts the printed representation of a Lisp object to the object itself.
It is up to the caller of read whether this object is a form to be evaluated, or serves some entirely
different purpose. See Section 17.3 [Input Functions|, page 229.

Do not confuse evaluation with command key interpretation. The editor command loop
translates keyboard input into a command (an interactively callable function) using the active
keymaps, and then uses call-interactively to invoke the command. The execution of the
command itself involves evaluation if the command is written in Lisp, but that is not a part of
command key interpretation itself. See Chapter 19 [Command Loop|, page 255.

Evaluation is a recursive process. That is, evaluation of a form may call eval to evaluate
parts of the form. For example, evaluation of a function call first evaluates each argument of
the function call, and then evaluates each form in the function body. Consider evaluation of the
form (car x): the subform x must first be evaluated recursively, so that its value can be passed
as an argument to the function car.

Evaluation of a function call ultimately calls the function specified in it. See Chapter 11
[Functions|, page 147. The execution of the function may itself work by evaluating the function
definition; or the function may be a Lisp primitive implemented in C, or it may be a byte-
compiled function (see Chapter 15 [Byte Compilation|, page 187).

The evaluation of forms takes place in a context called the environment, which consists of
the current values and bindings of all Lisp variables.! Whenever the form refers to a variable
without creating a new binding for it, the value of the binding in the current environment is
used. See Chapter 10 [Variables], page 131.

Evaluation of a form may create new environments for recursive evaluation by binding vari-
ables (see Section 10.3 [Local Variables|, page 132). These environments are temporary and
vanish by the time evaluation of the form is complete. The form may also make changes that
persist; these changes are called side effects. An example of a form that produces side effects is
(setq foo 1).

The details of what evaluation means for each kind of form are described below (see Section 8.2
[Forms], page 111).

8.1 Eval

Most often, forms are evaluated automatically, by virtue of their occurrence in a program
being run. On rare occasions, you may need to write code that evaluates a form that is computed

! This definition of “environment” is specifically not intended to include all the data that can
affect the result of a program.

110 XEmacs Lisp Reference Manual

at run time, such as after reading a form from text being edited or getting one from a property
list. On these occasions, use the eval function.

Please note: it is generally cleaner and more flexible to call functions that are stored in
data structures, rather than to evaluate expressions stored in data structures. Using functions
provides the ability to pass information to them as arguments.

The functions and variables described in this section evaluate forms, specify limits to the
evaluation process, or record recently returned values. Loading a file also does evaluation (see
Chapter 14 [Loading], page 177).

eval form Function
This is the basic function for performing evaluation. It evaluates form in the current
environment and returns the result. How the evaluation proceeds depends on the type of
the object (see Section 8.2 [Forms], page 111).
Since eval is a function, the argument expression that appears in a call to eval is evaluated

twice: once as preparation before eval is called, and again by the eval function itself.
Here is an example:

(setq foo ’bar)
= bar
(setq bar ’baz)
= baz
;3 eval receives argument bar, which is the value of foo
(eval foo)

= baz
(eval ’foo)
= bar
The number of currently active calls to eval is limited to max-lisp-eval-depth (see
below).
eval-region start end &optional stream Command

This function evaluates the forms in the current buffer in the region defined by the positions
start and end. It reads forms from the region and calls eval on them until the end of the
region is reached, or until an error is signaled and not handled.

If stream is supplied, standard-output is bound to it during the evaluation.

You can use the variable load-read-function to specify a function for eval-region to
use instead of read for reading expressions. See Section 14.1 [How Programs Do Loading],
page 177.

eval-region always returns nil.

eval-buffer buffer &optional stream Command
This is like eval-region except that it operates on the whole contents of buffer.

max-lisp-eval-depth Variable
This variable defines the maximum depth allowed in calls to eval, apply, and funcall
before an error is signaled (with error message "Lisp nesting exceeds max-lisp-eval-
depth"). This counts internal uses of those functions, such as for calling the functions
mentioned in Lisp expressions, and recursive evaluation of function call arguments and
function body forms.

This limit, with the associated error when it is exceeded, is one way that Lisp avoids
infinite recursion on an ill-defined function.

Chapter 8: Evaluation 111

The default value of this variable is 500. If you set it to a value less than 100, Lisp will
reset it to 100 if the given value is reached.

max-specpdl-size provides another limit on nesting. See Section 10.3 [Local Variables|
page 132.

values Variable
The value of this variable is a list of the values returned by all the expressions that were
read from buffers (including the minibuffer), evaluated, and printed. The elements are
ordered most recent first.

(setq x 1)
= 1

(list ’A (1+ 2) auto-save-default)
= (A 3 t)

values
= (A31t)1...)

This variable is useful for referring back to values of forms recently evaluated. It is
generally a bad idea to print the value of values itself, since this may be very long.
Instead, examine particular elements, like this:

;; Refer to the most recent evaluation result.
(nth 0 values)
= (A 3 t)
;5 That put a new element on,
3 so all elements move back one.
(nth 1 values)
= (A 3 t)
;35 This gets the element that was next-to-most-recent
s before this example.
(nth 3 values)
=1

8.2 Kinds of Forms

A Lisp object that is intended to be evaluated is called a form. How XEmacs evaluates a
form depends on its data type. XEmacs has three different kinds of form that are evaluated
differently: symbols, lists, and “all other types”. This section describes all three kinds, starting
with “all other types” which are self-evaluating forms.

8.2.1 Self-Evaluating Forms

A self-evaluating form is any form that is not a list or symbol. Self-evaluating forms evaluate
to themselves: the result of evaluation is the same object that was evaluated. Thus, the number
25 evaluates to 25, and the string "foo" evaluates to the string "foo". Likewise, evaluation of a
vector does not cause evaluation of the elements of the vector—it returns the same vector with
its contents unchanged.

7123 ; An object, shown without evaluation.
= 123

123 ; Evaluated as usual—result is the same.
= 123

112 XEmacs Lisp Reference Manual

(eval ’123) ; Evaluated “by hand”—result is the same.
= 123

(eval (eval ’123)) ; Evaluating twice changes nothing.
= 123

It is common to write numbers, characters, strings, and even vectors in Lisp code, taking
advantage of the fact that they self-evaluate. However, it is quite unusual to do this for types
that lack a read syntax, because there’s no way to write them textually. It is possible to construct
Lisp expressions containing these types by means of a Lisp program. Here is an example:

;3 Build an expression containing a buffer object.
(setq buffer (list ’print (current-buffer)))
= (print #<buffer eval.texi>)
;3 Evaluate it.
(eval buffer)
- #<buffer eval.texi>
= #<buffer eval.texi>

8.2.2 Symbol Forms

When a symbol is evaluated, it is treated as a variable. The result is the variable’s value, if
it has one. If it has none (if its value cell is void), an error is signaled. For more information on
the use of variables, see Chapter 10 [Variables|, page 131.

In the following example, we set the value of a symbol with setq. Then we evaluate the
symbol, and get back the value that setq stored.

(setq a 123)

= 123
(eval ’a)

= 123
a

= 123

The symbols nil and t are treated specially, so that the value of nil is always nil, and the
value of t is always t; you cannot set or bind them to any other values. Thus, these two symbols
act like self-evaluating forms, even though eval treats them like any other symbol.

8.2.3 Classification of List Forms

A form that is a nonempty list is either a function call, a macro call, or a special form, ac-
cording to its first element. These three kinds of forms are evaluated in different ways, described

below. The remaining list elements constitute the arguments for the function, macro, or special
form.

The first step in evaluating a nonempty list is to examine its first element. This element
alone determines what kind of form the list is and how the rest of the list is to be processed.
The first element is not evaluated, as it would be in some Lisp dialects such as Scheme.

8.2.4 Symbol Function Indirection
If the first element of the list is a symbol then evaluation examines the symbol’s function

cell, and uses its contents instead of the original symbol. If the contents are another symbol,
this process, called symbol function indirection, is repeated until it obtains a non-symbol. See

Chapter 8: Evaluation 113

Section 11.3 [Function Names|, page 151, for more information about using a symbol as a name

for a function stored in the function cell of the symbol.

One possible consequence of this process is an infinite loop, in the event that a symbol’s
function cell refers to the same symbol. Or a symbol may have a void function cell, in which
case the subroutine symbol-function signals a void-function error. But if neither of these
things happens, we eventually obtain a non-symbol, which ought to be a function or other
suitable object.

More precisely, we should now have a Lisp function (a lambda expression), a byte-code
function, a primitive function, a Lisp macro, a special form, or an autoload object. Each of
these types is a case described in one of the following sections. If the object is not one of these
types, the error invalid-function is signaled.

The following example illustrates the symbol indirection process. We use fset to set the
function cell of a symbol and symbol-function to get the function cell contents (see Section 11.8
[Function Cells|, page 156). Specifically, we store the symbol car into the function cell of first,
and the symbol first into the function cell of erste.

PN
;3 | #<subr car> | <—— | car | <-—- | first | <-- | erste |
5y ~—TTO——-—-——"T7TO—TCT -/ TTTs s TTTTTTT
(symbol-function ’car)

= #<subr car>

(fset ’first ’car)

= car

(fset ’erste ’first)
= first

(erste ’(1 2 3)) ; Call the function referenced by erste.
=1

By contrast, the following example calls a function without any symbol function indirection,
because the first element is an anonymous Lisp function, not a symbol.

((lambda (arg) (erste arg))
(1 2 3))
= 1

Executing the function itself evaluates its body; this does involve symbol function indirection
when calling erste.

The built-in function indirect-function provides an easy way to perform symbol function
indirection explicitly.

indirect-function function Function
This function returns the meaning of function as a function. If function is a symbol, then
it finds function’s function definition and starts over with that value. If function is not a
symbol, then it returns function itself.

Here is how you could define indirect-function in Lisp:

(defun indirect-function (function)
(if (symbolp function)
(indirect-function (symbol-function function))
function))

114 XEmacs Lisp Reference Manual

8.2.5 Evaluation of Function Forms

If the first element of a list being evaluated is a Lisp function object, byte-code object or
primitive function object, then that list is a function call. For example, here is a call to the
function +:

(+1x)

The first step in evaluating a function call is to evaluate the remaining elements of the list
from left to right. The results are the actual argument values, one value for each list element.
The next step is to call the function with this list of arguments, effectively using the function
apply (see Section 11.5 [Calling Functions|, page 153). If the function is written in Lisp, the
arguments are used to bind the argument variables of the function (see Section 11.2 [Lambda
Expressions|, page 148); then the forms in the function body are evaluated in order, and the

value of the last body form becomes the value of the function call.

8.2.6 Lisp Macro Evaluation

If the first element of a list being evaluated is a macro object, then the list is a macro call.
When a macro call is evaluated, the elements of the rest of the list are not initially evaluated.
Instead, these elements themselves are used as the arguments of the macro. The macro definition
computes a replacement form, called the expansion of the macro, to be evaluated in place of the
original form. The expansion may be any sort of form: a self-evaluating constant, a symbol, or
a list. If the expansion is itself a macro call, this process of expansion repeats until some other
sort, of form results.

Ordinary evaluation of a macro call finishes by evaluating the expansion. However, the macro
expansion is not necessarily evaluated right away, or at all, because other programs also expand
macro calls, and they may or may not evaluate the expansions.

Normally, the argument expressions are not evaluated as part of computing the macro ex-
pansion, but instead appear as part of the expansion, so they are computed when the expansion
is computed.

For example, given a macro defined as follows:

(defmacro cadr (x)
(list ’car (list ’cdr x)))

an expression such as (cadr (assq ’handler list)) is a macro call, and its expansion is:
(car (cdr (assq ’handler list)))
Note that the argument (assq ’handler 1list) appears in the expansion.
See Chapter 12 [Macros|, page 161, for a complete description of XEmacs Lisp macros.

8.2.7 Special Forms

A special form is a primitive function specially marked so that its arguments are not all
evaluated. Most special forms define control structures or perform variable bindings—things
which functions cannot do.

Each special form has its own rules for which arguments are evaluated and which are used
without evaluation. Whether a particular argument is evaluated may depend on the results of
evaluating other arguments.

Here is a list, in alphabetical order, of all of the special forms in XEmacs Lisp with a reference
to where each is described.

Chapter 8: Evaluation 115

and see Section 9.3 [Combining Conditions|, page 119
catch see Section 9.5.1 [Catch and Throw], page 121
cond see Section 9.2 [Conditionals], page 118

condition-case

see Section 9.5.3.3 [Handling Errors], page 125
defconst see Section 10.5 [Defining Variables], page 134
defmacro see Section 12.4 [Defining Macros]|, page 163

)

[

[

defun see Section 11.4 [Defining Functions]|, page 151
defvar see Section 10.5 [Defining Variables|, page 134
function see Section 11.7 [Anonymous Functions], page 155
if see Section 9.2 [Conditionals|, page 118

interactive
see Section 19.3 [Interactive Call], page 260

let

let* see Section 10.3 [Local Variables], page 132

or see Section 9.3 [Combining Conditions|, page 119
progl

prog2

progn see Section 9.1 [Sequencing], page 117

quote see Section 8.3 [Quoting], page 116

save-current-buffer

see Section 34.3 [Excursions|, page 448
save—excursion

see Section 34.3 [Excursions|, page 448

save-restriction

see Section 34.4 [Narrowing|, page 449
save-selected-window

see Section 34.3 [Excursions|, page 448

save-window-excursion
see Section 31.16 [Window Configurations|, page 423

setq see Section 10.7 [Setting Variables], page 137

setq-default

see Section 10.9.2 [Creating Buffer-Local|, page 142
unwind-protect

see Section 9.5 [Nonlocal Exits|, page 121

while see Section 9.4 [Iteration|, page 121

with-output-to-temp-buffer
see Section 45.8 [Temporary Displays]|, page 593

Common Lisp note: here are some comparisons of special forms in XEmacs Lisp
and Common Lisp. setq, if, and catch are special forms in both XEmacs Lisp
and Common Lisp. defun is a special form in XEmacs Lisp, but a macro in Com-
mon Lisp. save-excursion is a special form in XEmacs Lisp, but doesn’t exist in
Common Lisp. throw is a special form in Common Lisp (because it must be able
to throw multiple values), but it is a function in XEmacs Lisp (which doesn’t have
multiple values).

116 XEmacs Lisp Reference Manual

8.2.8 Autoloading

The autoload feature allows you to call a function or macro whose function definition has not
yet been loaded into XEmacs. It specifies which file contains the definition. When an autoload
object appears as a symbol’s function definition, calling that symbol as a function automatically
loads the specified file; then it calls the real definition loaded from that file. See Section 14.2
[Autoload], page 180.

8.3 Quoting

The special form quote returns its single argument, as written, without evaluating it. This
provides a way to include constant symbols and lists, which are not self-evaluating objects, in
a program. (It is not necessary to quote self-evaluating objects such as numbers, strings, and
vectors.)

quote object Special Form
This special form returns object, without evaluating it.

Because quote is used so often in programs, Lisp provides a convenient read syntax for it.
An apostrophe character (‘*”) followed by a Lisp object (in read syntax) expands to a list whose
first element is quote, and whose second element is the object. Thus, the read syntax ’x is an
abbreviation for (quote x).

Here are some examples of expressions that use quote:

(quote (+ 1 2))

= (+12)
(quote foo)

= foo
’foo

= foo
>2foo

= (quote foo)
> (quote foo)

= (quote foo)
[’foo]

= [(quote foo0)]

Other quoting constructs include function (see Section 11.7 [Anonymous Functions|,
page 155), which causes an anonymous lambda expression written in Lisp to be compiled, and
£ (see Section 12.5 [Backquotel|, page 163), which is used to quote only part of a list, while
computing and substituting other parts.

Chapter 9: Control Structures 117

9 Control Structures

A Lisp program consists of expressions or forms (see Section 8.2 [Forms|, page 111). We
control the order of execution of the forms by enclosing them in control structures. Control
structures are special forms which control when, whether, or how many times to execute the
forms they contain.

The simplest order of execution is sequential execution: first form a, then form b, and so
on. This is what happens when you write several forms in succession in the body of a function,
or at top level in a file of Lisp code—the forms are executed in the order written. We call this
textual order. For example, if a function body consists of two forms a and b, evaluation of the
function evaluates first a and then b, and the function’s value is the value of b.

Explicit control structures make possible an order of execution other than sequential.

XEmacs Lisp provides several kinds of control structure, including other varieties of sequenc-
ing, conditionals, iteration, and (controlled) jumps—all discussed below. The built-in control
structures are special forms since their subforms are not necessarily evaluated or not evaluated
sequentially. You can use macros to define your own control structure constructs (see Chapter 12
[Macros|, page 161).

9.1 Sequencing

Evaluating forms in the order they appear is the most common way control passes from one
form to another. In some contexts, such as in a function body, this happens automatically.
Elsewhere you must use a control structure construct to do this: progn, the simplest control
construct of Lisp.

A progn special form looks like this:
(progn a b ¢ ...)

and it says to execute the forms a, b, ¢ and so on, in that order. These forms are called the
body of the progn form. The value of the last form in the body becomes the value of the entire
progun.

In the early days of Lisp, progn was the only way to execute two or more forms in succession
and use the value of the last of them. But programmers found they often needed to use a progn
in the body of a function, where (at that time) only one form was allowed. So the body of
a function was made into an “implicit progn”: several forms are allowed just as in the body
of an actual progn. Many other control structures likewise contain an implicit progn. As a
result, progn is not used as often as it used to be. It is needed now most often inside an
unwind-protect, and, or, or in the then-part of an if.

progn forms. . . Special Form
This special form evaluates all of the forms, in textual order, returning the result of the
final form.

(progn (print "The first form")
(print "The second form")
(print "The third form"))
- "The first form"
- "The second form"
- "The third form"
= "The third form"

Two other control constructs likewise evaluate a series of forms but return a different value:

118 XEmacs Lisp Reference Manual

progl forml forms. . . Special Form
This special form evaluates forml and all of the forms, in textual order, returning the
result of forml.

(progl (print "The first form")
(print "The second form")
(print "The third form"))
- "The first form"
- "The second form"
- "The third form"
= "The first form"

Here is a way to remove the first element from a list in the variable x, then return the
value of that former element:

(progl (car x) (setq x (cdr x)))

prog2 forml form?2 forms. . . Special Form
This special form evaluates forml, form2, and all of the following forms, in textual order,
returning the result of form?2.

(prog2 (print "The first form")
(print "The second form")
(print "The third form"))
-+ "The first form"
- "The second form"
- "The third form"
= "The second form"

9.2 Conditionals

Conditional control structures choose among alternatives. XEmacs Lisp has two conditional
forms: if, which is much the same as in other languages, and cond, which is a generalized case
statement.

if condition then-form else-forms. . . Special Form
if chooses between the then-form and the else-forms based on the value of condition.
If the evaluated condition is non-nil, then-form is evaluated and the result returned.
Otherwise, the else-forms are evaluated in textual order, and the value of the last one
is returned. (The else part of if is an example of an implicit progn. See Section 9.1
[Sequencing], page 117.)
If condition has the value nil, and no else-forms are given, if returns nil.

if is a special form because the branch that is not selected is never evaluated—it is
ignored. Thus, in the example below, true is not printed because print is never called.
(if nil
(print ’true)
’very-false)
= very-false

cond clause. . . Special Form
cond chooses among an arbitrary number of alternatives. Each clause in the cond must be
a list. The CAR of this list is the condition; the remaining elements, if any, the body-forms.
Thus, a clause looks like this:

Chapter 9: Control Structures 119

(condition body-forms. . .)

cond tries the clauses in textual order, by evaluating the condition of each clause. If the
value of condition is non-nil, the clause “succeeds”; then cond evaluates its body-forms,
and the value of the last of body-forms becomes the value of the cond. The remaining
clauses are ignored.

If the value of condition is nil, the clause “fails”, so the cond moves on to the following
clause, trying its condition.

If every condition evaluates to nil, so that every clause fails, cond returns nil.
A clause may also look like this:
(condition)

Then, if condition is non-nil when tested, the value of condition becomes the value of the
cond form.

The following example has four clauses, which test for the cases where the value of x is a
number, string, buffer and symbol, respectively:

(cond ((numberp x) x)
((stringp x) x)
((bufferp x)
(setq temporary-hack x) ; multiple body-forms
(buffer-name x)) ; in one clause
((symbolp x) (symbol-value x)))

Often we want to execute the last clause whenever none of the previous clauses was
successful. To do this, we use t as the condition of the last clause, like this: (t body-
forms). The form t evaluates to t, which is never nil, so this clause never fails, provided
the cond gets to it at all.

For example,

(cond ((eq a ’hack) ’foo)
(t "default"))
= "default"

This expression is a cond which returns foo if the value of a is 1, and returns the string
"default" otherwise.

Any conditional construct can be expressed with cond or with if. Therefore, the choice
between them is a matter of style. For example:

(if a b ¢)

(cond (a b) (t)

9.3 Constructs for Combining Conditions

This section describes three constructs that are often used together with if and cond to
express complicated conditions. The constructs and and or can also be used individually as
kinds of multiple conditional constructs.

not condition Function
This function tests for the falsehood of condition. It returns t if condition is nil, and
nil otherwise. The function not is identical to null, and we recommend using the name
null if you are testing for an empty list.

120 XEmacs Lisp Reference Manual

and conditions. . . Special Form
The and special form tests whether all the conditions are true. It works by evaluating the
conditions one by one in the order written.

If any of the conditions evaluates to nil, then the result of the and must be nil regardless
of the remaining conditions; so and returns right away, ignoring the remaining conditions.

If all the conditions turn out non-nil, then the value of the last of them becomes the
value of the and form.

Here is an example. The first condition returns the integer 1, which is not nil. Similarly,
the second condition returns the integer 2, which is not nil. The third condition is nil,
so the remaining condition is never evaluated.

(and (print 1) (print 2) nil (print 3))
41
-4 2
= nil
Here is a more realistic example of using and:

(if (and (consp foo) (eq (car foo) ’x))
(message "foo is a list starting with x"))

Note that (car foo) is not executed if (consp foo) returns nil, thus avoiding an error.
and can be expressed in terms of either if or cond. For example:

(and argl arg? arg3)

(if argl (if arg2 arg3))

(:cond (argl (cond C(arg2 arg3))))

or conditions. . . Special Form
The or special form tests whether at least one of the conditions is true. It works by
evaluating all the conditions one by one in the order written.

If any of the conditions evaluates to a non-nil value, then the result of the or must be
non-nil; so or returns right away, ignoring the remaining conditions. The value it returns
is the non-nil value of the condition just evaluated.

If all the conditions turn out nil, then the or expression returns nil.
For example, this expression tests whether x is either 0 or nil:

(or (eq x nil) (eq x 0))
Like the and construct, or can be written in terms of cond. For example:

(or argl arg2 arg3)
(cond (argl)
(arg2)
(arg3))
You could almost write or in terms of if, but not quite:
(if argl argl
(if arg2 arg2
arg3))

This is not completely equivalent because it can evaluate argl or arg2 twice. By contrast,
(or argl arg2 arg3) never evaluates any argument more than once.

Chapter 9: Control Structures 121

9.4 Iteration

Iteration means executing part of a program repetitively. For example, you might want to
repeat some computation once for each element of a list, or once for each integer from 0 to n.
You can do this in XEmacs Lisp with the special form while:

while condition forms. . . Special Form
while first evaluates condition. If the result is non-nil, it evaluates forms in textual order.
Then it reevaluates condition, and if the result is non-nil, it evaluates forms again. This
process repeats until condition evaluates to nil.

There is no limit on the number of iterations that may occur. The loop will continue until
either condition evaluates to nil or until an error or throw jumps out of it (see Section 9.5
[Nonlocal Exits|, page 121).

The value of a while form is always nil.

(setq num 0)
= 0
(while (< num 4)
(princ (format "Iteration %d." num))
(setq num (1+ num)))
- Iteration O.
- Iteration 1.
- Iteration 2.
- Iteration 3.
= nil
If you would like to execute something on each iteration before the end-test, put it together
with the end-test in a progn as the first argument of while, as shown here:

(while (progn
(forward-line 1)
(not (looking-at "~$"))))

This moves forward one line and continues moving by lines until it reaches an empty. It
is unusual in that the while has no body, just the end test (which also does the real work
of moving point).

9.5 Nonlocal Exits

A nonlocal exit is a transfer of control from one point in a program to another remote
point. Nonlocal exits can occur in XEmacs Lisp as a result of errors; you can also use them
under explicit control. Nonlocal exits unbind all variable bindings made by the constructs being
exited.

9.5.1 Explicit Nonlocal Exits: catch and throw

Most control constructs affect only the flow of control within the construct itself. The function
throw is the exception to this rule of normal program execution: it performs a nonlocal exit on
request. (There are other exceptions, but they are for error handling only.) throw is used inside
a catch, and jumps back to that catch. For example:

122 XEmacs Lisp Reference Manual

(catch ’foo
(progn

.({:I.lrow ’foo t)
o))

The throw transfers control straight back to the corresponding catch, which returns immedi-
ately. The code following the throw is not executed. The second argument of throw is used as
the return value of the catch.

The throw and the catch are matched through the first argument: throw searches for a
catch whose first argument is eq to the one specified. Thus, in the above example, the throw
specifies foo, and the catch specifies the same symbol, so that catch is applicable. If there is
more than one applicable catch, the innermost one takes precedence.

Executing throw exits all Lisp constructs up to the matching catch, including function calls.
When binding constructs such as let or function calls are exited in this way, the bindings are
unbound, just as they are when these constructs exit normally (see Section 10.3 [Local Vari-
ables|, page 132). Likewise, throw restores the buffer and position saved by save-excursion
(see Section 34.3 [Excursions|, page 448), and the narrowing status saved by save-restriction
and the window selection saved by save-window-excursion (see Section 31.16 [Window Con-
figurations|, page 423). It also runs any cleanups established with the unwind-protect special
form when it exits that form (see Section 9.5.4 [Cleanups|, page 128).

The throw need not appear lexically within the catch that it jumps to. It can equally well
be called from another function called within the catch. As long as the throw takes place
chronologically after entry to the catch, and chronologically before exit from it, it has access to
that catch. This is why throw can be used in commands such as exit-recursive-edit that
throw back to the editor command loop (see Section 19.10 [Recursive Editing], page 281).

Common Lisp note: Most other versions of Lisp, including Common Lisp, have
several ways of transferring control nonsequentially: return, return-from, and go,
for example. XEmacs Lisp has only throw.

catch tag body. .. Special Form

catch establishes a return point for the throw function. The return point is distinguished
from other such return points by tag, which may be any Lisp object. The argument tag
is evaluated normally before the return point is established.

With the return point in effect, catch evaluates the forms of the body in textual order.
If the forms execute normally, without error or nonlocal exit, the value of the last body
form is returned from the catch.

If a throw is done within body specifying the same value tag, the catch exits immediately;
the value it returns is whatever was specified as the second argument of throw.

throw tag value Function

The purpose of throw is to return from a return point previously established with catch.
The argument tag is used to choose among the various existing return points; it must be
eq to the value specified in the catch. If multiple return points match tag, the innermost
one is used.

The argument value is used as the value to return from that catch.

If no return point is in effect with tag tag, then a no-catch error is signaled with data
(tag value).

Chapter 9: Control Structures 123

9.5.2 Examples of catch and throw

One way to use catch and throw is to exit from a doubly nested loop. (In most languages,
this would be done with a “go to”.) Here we compute (foo i j) for i and j varying from 0 to 9:

(defun search-foo ()
(catch ’loop
(let ((i 0))
(while (< i 10)
(et ((G 0))
(while (< j 10)
(if (foo i j)
(throw ’loop (list i j)))
(setq j (1+ 3))))
(setq i (1+ i))))))

If foo ever returns non-nil, we stop immediately and return a list of i and j. If foo always
returns nil, the catch returns normally, and the value is nil, since that is the result of the
while.

Here are two tricky examples, slightly different, showing two return points at once. First,
two return points with the same tag, hack:

(defun catch2 (tag)
(catch tag
(throw ’hack ’yes)))
= catch2

(catch ’hack
(print (catch2 ’hack))
’no)

- yes

= no

Since both return points have tags that match the throw, it goes to the inner one, the one
established in catch2. Therefore, catch2 returns normally with value yes, and this value is
printed. Finally the second body form in the outer catch, which is ’no, is evaluated and
returned from the outer catch.

Now let’s change the argument given to catch2:

(defun catch2 (tag)
(catch tag
(throw ’hack ’yes)))
= catch2

(catch ’hack
(print (catch2 ’quux))
’no)

= yes

We still have two return points, but this time only the outer one has the tag hack; the inner one
has the tag quux instead. Therefore, throw makes the outer catch return the value yes. The
function print is never called, and the body-form ’no is never evaluated.

9.5.3 Errors

124 XEmacs Lisp Reference Manual

When XEmacs Lisp attempts to evaluate a form that, for some reason, cannot be evaluated,
it signals an error.

When an error is signaled, XEmacs’s default reaction is to print an error message and ter-
minate execution of the current command. This is the right thing to do in most cases, such as
if you type C-f at the end of the buffer.

In complicated programs, simple termination may not be what you want. For example, the
program may have made temporary changes in data structures, or created temporary buffers
that should be deleted before the program is finished. In such cases, you would use unwind-
protect to establish cleanup expressions to be evaluated in case of error. (See Section 9.5.4
(Cleanups|, page 128.) Occasionally, you may wish the program to continue execution despite an
error in a subroutine. In these cases, you would use condition-case to establish error handlers
to recover control in case of error.

Resist the temptation to use error handling to transfer control from one part of the program
to another; use catch and throw instead. See Section 9.5.1 [Catch and Throw|, page 121.

9.5.3.1 How to Signal an Error

Most errors are signaled “automatically” within Lisp primitives which you call for other
purposes, such as if you try to take the CAR of an integer or move forward a character at the
end of the buffer; you can also signal errors explicitly with the functions error and signal.

Quitting, which happens when the user types C-g, is not considered an error, but it is handled
almost like an error. See Section 19.8 [Quitting], page 278.

error format-string &rest args Function

This function signals an error with an error message constructed by applying format (see
Section 4.7 [String Conversion|, page 60) to format-string and args.
These examples show typical uses of error:

(error "You have committed an error.
Try something else.")
You have committed an error.
Try something else.

(error "You have committed %d errors." 10)
You have committed 10 errors.

error works by calling signal with two arguments: the error symbol error, and a list
containing the string returned by format.

If you want to use your own string as an error message verbatim, don’t just write (error
string) . If string contains ‘%’, it will be interpreted as a format specifier, with undesirable
results. Instead, use (error "¥%s" string).

signal error-symbol data Function

This function signals an error named by error-symbol. The argument data is a list of
additional Lisp objects relevant to the circumstances of the error.

The argument error-symbol must be an error symbol—a symbol bearing a property error-
conditions whose value is a list of condition names. This is how XEmacs Lisp classifies
different sorts of errors.

The number and significance of the objects in data depends on error-symbol. For example,
with a wrong-type-arg error, there are two objects in the list: a predicate that describes

Chapter 9: Control Structures 125

the type that was expected, and the object that failed to fit that type. See Section 9.5.3.4
Error Symbols|, page 127, for a description of error symbols.

Both error-symbol and data are available to any error handlers that handle the error:
condition-case binds a local variable to a list of the form (error-symbol . data) (see
Section 9.5.3.3 [Handling Errors|, page 125). If the error is not handled, these two values
are used in printing the error message.

The function signal never returns (though in older Emacs versions it could sometimes
return).

(signal ’wrong-number-of-arguments ’(x y))
Wrong number of arguments: x, y

(signal ’no-such-error ’("My unknown error condition."))
error| peculiar error: "My unknown error condition."

Common Lisp note: XEmacs Lisp has nothing like the Common Lisp concept of
continuable errors.

9.5.3.2 How XEmacs Processes Errors

When an error is signaled, signal searches for an active handler for the error. A handler is
a sequence of Lisp expressions designated to be executed if an error happens in part of the Lisp
program. If the error has an applicable handler, the handler is executed, and control resumes
following the handler. The handler executes in the environment of the condition-case that
established it; all functions called within that condition-case have already been exited, and
the handler cannot return to them.

If there is no applicable handler for the error, the current command is terminated and control
returns to the editor command loop, because the command loop has an implicit handler for all
kinds of errors. The command loop’s handler uses the error symbol and associated data to print
an error message.

An error that has no explicit handler may call the Lisp debugger. The debugger is enabled if
the variable debug-on-error (see Section 16.1.1 [Error Debugging|, page 197) is non-nil. Unlike
error handlers, the debugger runs in the environment of the error, so that you can examine values
of variables precisely as they were at the time of the error.

9.5.3.3 Writing Code to Handle Errors

The usual effect of signaling an error is to terminate the command that is running and return
immediately to the XEmacs editor command loop. You can arrange to trap errors occurring in
a part of your program by establishing an error handler, with the special form condition-case.
A simple example looks like this:

(condition-case nil
(delete-file filename)
(error nil))

This deletes the file named filename, catching any error and returning nil if an error occurs.

The second argument of condition-case is called the protected form. (In the example
above, the protected form is a call to delete-file.) The error handlers go into effect when this
form begins execution and are deactivated when this form returns. They remain in effect for all
the intervening time. In particular, they are in effect during the execution of functions called by
this form, in their subroutines, and so on. This is a good thing, since, strictly speaking, errors

126 XEmacs Lisp Reference Manual

can be signaled only by Lisp primitives (including signal and error) called by the protected
form, not by the protected form itself.

The arguments after the protected form are handlers. Each handler lists one or more condition
names (which are symbols) to specify which errors it will handle. The error symbol specified
when an error is signaled also defines a list of condition names. A handler applies to an error if
they have any condition names in common. In the example above, there is one handler, and it
specifies one condition name, error, which covers all errors.

The search for an applicable handler checks all the established handlers starting with the
most recently established one. Thus, if two nested condition-case forms offer to handle the
same error, the inner of the two will actually handle it.

When an error is handled, control returns to the handler. Before this happens, XEmacs
unbinds all variable bindings made by binding constructs that are being exited and executes the
cleanups of all unwind-protect forms that are exited. Once control arrives at the handler, the
body of the handler is executed.

After execution of the handler body, execution continues by returning from the condition-
case form. Because the protected form is exited completely before execution of the handler, the
handler cannot resume execution at the point of the error, nor can it examine variable bindings
that were made within the protected form. All it can do is clean up and proceed.

condition-case is often used to trap errors that are predictable, such as failure to open a file
in a call to insert-file-contents. It is also used to trap errors that are totally unpredictable,
such as when the program evaluates an expression read from the user.

Error signaling and handling have some resemblance to throw and catch, but they are entirely
separate facilities. An error cannot be caught by a catch, and a throw cannot be handled by
an error handler (though using throw when there is no suitable catch signals an error that can
be handled).

condition-case var protected-form handlers. . . Special Form
This special form establishes the error handlers handlers around the execution of
protected-form. If protected-form executes without error, the value it returns becomes
the value of the condition-case form; in this case, the condition-case has no effect.
The condition-case form makes a difference when an error occurs during protected-form.

Each of the handlers is a list of the form (conditions body...). Here conditions is an
error condition name to be handled, or a list of condition names; body is one or more
Lisp expressions to be executed when this handler handles an error. Here are examples of
handlers:

(error nil)
(arith-error (message "Division by zero"))

((arith-error file-error)
(message
"Either division by zero or failure to open a file"))

Each error that occurs has an error symbol that describes what kind of error it is. The
error-conditions property of this symbol is a list of condition names (see Section 9.5.3.4
Error Symbols|, page 127). Emacs searches all the active condition-case forms for a
handler that specifies one or more of these condition names; the innermost matching
condition-case handles the error. Within this condition-case, the first applicable
handler handles the error.

After executing the body of the handler, the condition-case returns normally, using the
value of the last form in the handler body as the overall value.

Chapter 9: Control Structures 127

The argument var is a variable. condition-case does not bind this variable when execut-
ing the protected-form, only when it handles an error. At that time, it binds var locally to
a list of the form (error-symbol . data), giving the particulars of the error. The handler
can refer to this list to decide what to do. For example, if the error is for failure opening
a file, the file name is the second element of data—the third element of var.

If var is nil, that means no variable is bound. Then the error symbol and associated data
are not available to the handler.

Here is an example of using condition-case to handle the error that results from dividing
by zero. The handler prints out a warning message and returns a very large number.

(defun safe-divide (dividend divisor)
(condition-case err
;; Protected form.
(/ dividend divisor)
;3 The handler.

(arith-error ; Condition.
(princ (format "Arithmetic error: %s" err))
1000000)))

= safe-divide

(safe-divide 5 0)
-4 Arithmetic error: (arith-error)
= 1000000

The handler specifies condition name arith-error so that it will handle only division-by-zero
errors. Other kinds of errors will not be handled, at least not by this condition-case. Thus,

(safe-divide nil 3)
Wrong type argument: integer-or-marker-p, nil
Here is a condition-case that catches all kinds of errors, including those signaled with
error:

(setq baz 34)
= 34

(condition-case err
(if (eq baz 35)
t
;3 This is a call to the function error.
(error "Rats! The variable %s was %s, not 35" ’baz baz))
;3 This is the handler; it is not a form.
(error (princ (format "The error was: %s" err))
2))
-4 The error was: (error "Rats! The variable baz was 34, not 35")
= 2

9.5.3.4 Error Symbols and Condition Names

When you signal an error, you specify an error symbol to specify the kind of error you have
in mind. Each error has one and only one error symbol to categorize it. This is the finest
classification of errors defined by the XEmacs Lisp language.

These narrow classifications are grouped into a hierarchy of wider classes called error con-
ditions, identified by condition names. The narrowest such classes belong to the error symbols
themselves: each error symbol is also a condition name. There are also condition names for

128 XEmacs Lisp Reference Manual

more extensive classes, up to the condition name error which takes in all kinds of errors. Thus,
each error has one or more condition names: error, the error symbol if that is distinct from
error, and perhaps some intermediate classifications.

In order for a symbol to be an error symbol, it must have an error-conditions property
which gives a list of condition names. This list defines the conditions that this kind of error
belongs to. (The error symbol itself, and the symbol error, should always be members of this
list.) Thus, the hierarchy of condition names is defined by the error-conditions properties of
the error symbols.

In addition to the error-conditions list, the error symbol should have an error-message
property whose value is a string to be printed when that error is signaled but not handled. If
the error-message property exists, but is not a string, the error message ‘peculiar error’ is
used.

Here is how we define a new error symbol, new-error:

(put ’new-error
’error-conditions
> (error my-own-errors new-error))
= (error my-own-errors new-error)
(put ’new-error ’error-message "A new error")
= "A new error"

This error has three condition names: new-error, the narrowest classification; my-own-errors,
which we imagine is a wider classification; and error, which is the widest of all.

The error string should start with a capital letter but it should not end with a period. This
is for consistency with the rest of Emacs.

Naturally, XEmacs will never signal new-error on its own; only an explicit call to signal
(see Section 9.5.3.1 [Signaling Errors|, page 124) in your code can do this:

(signal ’new-error ’(x y))
A new error: x, y

This error can be handled through any of the three condition names. This example handles
new-error and any other errors in the class my-own-errors:

(condition-case foo
(bar nil t)
(my-own-errors nil))

The significant way that errors are classified is by their condition names—the names used
to match errors with handlers. An error symbol serves only as a convenient way to specify the
intended error message and list of condition names. It would be cumbersome to give signal a
list of condition names rather than one error symbol.

By contrast, using only error symbols without condition names would seriously decrease the
power of condition-case. Condition names make it possible to categorize errors at various
levels of generality when you write an error handler. Using error symbols alone would eliminate
all but the narrowest level of classification.

See Appendix C [Standard Errors|, page 701, for a list of all the standard error symbols and
their conditions.

9.5.4 Cleaning Up from Nonlocal Exits

The unwind-protect construct is essential whenever you temporarily put a data structure
in an inconsistent state; it permits you to ensure the data are consistent in the event of an error
or throw.

Chapter 9: Control Structures 129

unwind-protect body cleanup-forms. . . Special Form
unwind-protect executes the body with a guarantee that the cleanup-forms will be eval-
uated if control leaves body, no matter how that happens. The body may complete
normally, or execute a throw out of the unwind-protect, or cause an error; in all cases,
the cleanup-forms will be evaluated.

If the body forms finish normally, unwind-protect returns the value of the last body form,
after it evaluates the cleanup-forms. If the body forms do not finish, unwind-protect
does not return any value in the normal sense.

Only the body is actually protected by the unwind-protect. If any of the cleanup-
forms themselves exits nonlocally (e.g., via a throw or an error), unwind-protect is not
guaranteed to evaluate the rest of them. If the failure of one of the cleanup-forms has
the potential to cause trouble, then protect it with another unwind-protect around that
form.

The number of currently active unwind-protect forms counts, together with the number
of local variable bindings, against the limit max-specpdl-size (see Section 10.3 [Local
Variables|, page 132).

For example, here we make an invisible buffer for temporary use, and make sure to kill it
before finishing:

(save-excursion
(let ((buffer (get-buffer-create " *tempx")))
(set-buffer buffer)
(unwind-protect
body
(kill-buffer buffer))))

You might think that we could just as well write (kill-buffer (current-buffer)) and dis-
pense with the variable buffer. However, the way shown above is safer, if body happens to
get an error after switching to a different buffer! (Alternatively, you could write another save-
excursion around the body, to ensure that the temporary buffer becomes current in time to
kill it.)

Here is an actual example taken from the file ‘ftp.el’. It creates a process (see Chapter 49
Processes|, page 607) to try to establish a connection to a remote machine. As the function
ftp-login is highly susceptible to numerous problems that the writer of the function cannot
anticipate, it is protected with a form that guarantees deletion of the process in the event of
failure. Otherwise, XEmacs might fill up with useless subprocesses.

(let ((win nil))
(unwind-protect
(progn
(setq process (ftp-setup-buffer host file))
(if (setq win (ftp-login process host user password))
(message "Logged in")
(error "Ftp login failed")))
(or win (and process (delete-process process)))))

This example actually has a small bug: if the user types C-g to quit, and the quit happens
immediately after the function ftp-setup-buffer returns but before the variable process is
set, the process will not be killed. There is no easy way to fix this bug, but at least it is very
unlikely.

Here is another example which uses unwind-protect to make sure to kill a temporary buffer.
In this example, the value returned by unwind-protect is used.

(defun shell-command-string (cmd)
"Return the output of the shell command CMD, as a string."

130 XEmacs Lisp Reference Manual

(save-excursion
(set-buffer (generate-new-buffer " 0S*cmd"))
(shell-command cmd t)
(unwind-protect
(buffer-string)
(kill-buffer (current-buffer)))))

Chapter 10: Variables 131

10 Variables

A variable is a name used in a program to stand for a value. Nearly all programming
languages have variables of some sort. In the text of a Lisp program, variables are written using
the syntax for symbols.

In Lisp, unlike most programming languages, programs are represented primarily as Lisp
objects and only secondarily as text. The Lisp objects used for variables are symbols: the
symbol name is the variable name, and the variable’s value is stored in the value cell of the
symbol. The use of a symbol as a variable is independent of its use as a function name. See
Section 7.1 [Symbol Components|, page 101.

The Lisp objects that constitute a Lisp program determine the textual form of the program—
it is simply the read syntax for those Lisp objects. This is why, for example, a variable in a
textual Lisp program is written using the read syntax for the symbol that represents the variable.

10.1 Global Variables

The simplest way to use a variable is globally. This means that the variable has just one
value at a time, and this value is in effect (at least for the moment) throughout the Lisp system.
The value remains in effect until you specify a new one. When a new value replaces the old one,
no trace of the old value remains in the variable.

You specify a value for a symbol with setq. For example,
(setq x ’(a b))

gives the variable x the value (a b). Note that setq does not evaluate its first argument, the
name of the variable, but it does evaluate the second argument, the new value.

Once the variable has a value, you can refer to it by using the symbol by itself as an expression.
Thus,

x = (a b)
assuming the setq form shown above has already been executed.
If you do another setq, the new value replaces the old one:

X
= (a b)
(setq x 4)
= 4
X
= 4

10.2 Variables That Never Change

In XEmacs Lisp, some symbols always evaluate to themselves: the two special symbols nil
and t, as well as keyword symbols, that is, symbols whose name begins with the character *:’.
These symbols cannot be rebound, nor can their value cells be changed. An attempt to change
the value of nil or t signals a setting-constant error.

nil = ’nil
= nil
(setq nil 500)
Attempt to set constant symbol: nil

132 XEmacs Lisp Reference Manual

10.3 Local Variables

Global variables have values that last until explicitly superseded with new values. Sometimes
it is useful to create variable values that exist temporarily—only while within a certain part of
the program. These values are called local, and the variables so used are called local variables.

For example, when a function is called, its argument variables receive new local values that
last until the function exits. The let special form explicitly establishes new local values for
specified variables; these last until exit from the let form.

Establishing a local value saves away the previous value (or lack of one) of the variable.
When the life span of the local value is over, the previous value is restored. In the mean time,
we say that the previous value is shadowed and not visible. Both global and local values may
be shadowed (see Section 10.8.1 [Scope], page 139).

If you set a variable (such as with setq) while it is local, this replaces the local value; it does
not alter the global value, or previous local values that are shadowed. To model this behavior,
we speak of a local binding of the variable as well as a local value.

The local binding is a conceptual place that holds a local value. Entry to a function, or
a special form such as let, creates the local binding; exit from the function or from the let
removes the local binding. As long as the local binding lasts, the variable’s value is stored within
it. Use of setq or set while there is a local binding stores a different value into the local binding;
it does not create a new binding.

We also speak of the global binding, which is where (conceptually) the global value is kept.

A variable can have more than one local binding at a time (for example, if there are nested
let forms that bind it). In such a case, the most recently created local binding that still exists is
the current binding of the variable. (This is called dynamic scoping; see Section 10.8 [Variable
Scoping], page 139.) If there are no local bindings, the variable’s global binding is its current
binding. We also call the current binding the most-local existing binding, for emphasis. Ordinary
evaluation of a symbol always returns the value of its current binding.

The special forms let and let* exist to create local bindings.

let (bindings. ..) forms. .. Special Form
This special form binds variables according to bindings and then evaluates all of the forms
in textual order. The let-form returns the value of the last form in forms.

Each of the bindings is either (i) a symbol, in which case that symbol is bound to nil; or
(ii) a list of the form (symbol value-form), in which case symbol is bound to the result of
evaluating value-form. If value-form is omitted, nil is used.

All of the value-forms in bindings are evaluated in the order they appear and before any
of the symbols are bound. Here is an example of this: Z is bound to the old value of Y,
which is 2, not the new value, 1.

(setq Y 2)
= 2
(let ((Y 1)
(z Y))
(list Y 2))
= (1 2)

let* (bindings. . .) forms. .. Special Form
This special form is like let, but it binds each variable right after computing its local
value, before computing the local value for the next variable. Therefore, an expression in
bindings can reasonably refer to the preceding symbols bound in this 1et* form. Compare
the following example with the example above for let.

Chapter 10: Variables 133

(setq Y 2)
= 2
(Qetx ((Y 1)
(Z Y)) ; Use the just-established value of Y.
(list Y 2))
= (11

Here is a complete list of the other facilities that create local bindings:
e Function calls (see Chapter 11 [Functions|, page 147).
e Macro calls (see Chapter 12 [Macros|, page 161).
e condition-case (see Section 9.5.3 [Errors|, page 124).
Variables can also have buffer-local bindings (see Section 10.9 [Buffer-Local Variables|,

page 141). These kinds of bindings work somewhat like ordinary local bindings, but they are
localized depending on “where” you are in Emacs, rather than localized in time.

max-specpdl-size Variable
This variable defines the limit on the total number of local variable bindings and unwind-
protect cleanups (see Section 9.5 [Nonlocal Exits|, page 121) that are allowed before
signaling an error (with data "Variable binding depth exceeds max-specpdl-size").

This limit, with the associated error when it is exceeded, is one way that Lisp avoids
infinite recursion on an ill-defined function.

The default value is 600.

max-lisp-eval-depth provides another limit on depth of nesting. See Section 8.1 [FEvall,
page 109.

10.4 When a Variable is “Void”

If you have never given a symbol any value as a global variable, we say that that symbol’s
global value is void. In other words, the symbol’s value cell does not have any Lisp object in it.
If you try to evaluate the symbol, you get a void-variable error rather than a value.

Note that a value of nil is not the same as void. The symbol nil is a Lisp object and can
be the value of a variable just as any other object can be; but it is a value. A void variable does
not have any value.

After you have given a variable a value, you can make it void once more using makunbound.

makunbound symbol Function
This function makes the current binding of symbol void. Subsequent attempts to use this
symbol’s value as a variable will signal the error void-variable, unless or until you set

it again.
makunbound returns symbol.
(makunbound ’x) ; Make the global value
; of x void.
= X

X
Symbol’s value as variable is void: x

If symbol is locally bound, makunbound affects the most local existing binding. This is
the only way a symbol can have a void local binding, since all the constructs that create
local bindings create them with values. In this case, the voidness lasts at most as long as

134 XEmacs Lisp Reference Manual

the binding does; when the binding is removed due to exit from the construct that made
it, the previous or global binding is reexposed as usual, and the variable is no longer void
unless the newly reexposed binding was void all along.

(setq x 1) ; Put a value in the global binding.
=1
(let ((x 2)) ; Locally bind it.
(makunbound ’x) ; Void the local binding.
x)
Symbol’s value as variable is void: x
X ; The global binding is unchanged.
=1
(let ((x 2)) ; Locally bind it.
(let ((x 3)) ; And again.
(makunbound ’x) ; Void the innermost-local binding.
x)) ; And refer: it’s void.

error] Symbol’s value as variable is void: x

(let ((x 2))
(let ((x 3))
(makunbound ’x)) ; Void inner binding, then remove it.
x) ; Now outer let binding is visible.
= 2

A variable that has been made void with makunbound is indistinguishable from one that has
never received a value and has always been void.

You can use the function boundp to test whether a variable is currently void.

boundp variable Function
boundp returns t if variable (a symbol) is not void; more precisely, if its current binding
is not void. It returns nil otherwise.
(boundp ’abracadabra) ; Starts out void.
= nil
(let ((abracadabra 5)) ; Locally bind it.
(boundp ’abracadabra))
=t
(boundp ’abracadabra) ; Still globally void.
= nil
(setq abracadabra 5) ; Make it globally nonvoid.
= 5
(boundp ’abracadabra)
=t

10.5 Defining Global Variables

You may announce your intention to use a symbol as a global variable with a variable defi-
nition: a special form, either defconst or defvar.

In XEmacs Lisp, definitions serve three purposes. First, they inform people who read the
code that certain symbols are intended to be used a certain way (as variables). Second, they
inform the Lisp system of these things, supplying a value and documentation. Third, they

Chapter 10: Variables 135

provide information to utilities such as etags and make-docfile, which create data bases of
the functions and variables in a program.

The difference between defconst and defvar is primarily a matter of intent, serving to
inform human readers of whether programs will change the variable. XEmacs Lisp does not
restrict the ways in which a variable can be used based on defconst or defvar declarations.
However, it does make a difference for initialization: defconst unconditionally initializes the
variable, while defvar initializes it only if it is void.

One would expect user option variables to be defined with defconst, since programs do not
change them. Unfortunately, this has bad results if the definition is in a library that is not
preloaded: defconst would override any prior value when the library is loaded. Users would
like to be able to set user options in their init files, and override the default values given in the
definitions. For this reason, user options must be defined with defvar.

defvar symbol [value [doc-string]] Special Form
This special form defines symbol as a value and initializes it. The definition informs a
person reading your code that symbol is used as a variable that programs are likely to
set or change. It is also used for all user option variables except in the preloaded parts
of XEmacs. Note that symbol is not evaluated; the symbol to be defined must appear
explicitly in the defvar.

If symbol already has a value (i.e., it is not void), value is not even evaluated, and symbol’s
value remains unchanged. If symbol is void and value is specified, defvar evaluates it and
sets symbol to the result. (If value is omitted, the value of symbol is not changed in any
case.)

When you evaluate a top-level defvar form with C-M-x in Emacs Lisp mode (eval-defun),

a special feature of eval-defun evaluates it as a defconst. The purpose of this is to make
sure the variable’s value is reinitialized, when you ask for it specifically.

If symbol has a buffer-local binding in the current buffer, defvar sets the default value,
not the local value. See Section 10.9 [Buffer-Local Variables], page 141.

If the doc-string argument appears, it specifies the documentation for the variable. (This
opportunity to specify documentation is one of the main benefits of defining the variable.)
The documentation is stored in the symbol’s variable-documentation property. The
XEmacs help functions (see Chapter 27 [Documentation|, page 345) look for this property.
If the first character of doc-string is ‘*’, it means that this variable is considered a user
option. This lets users set the variable conveniently using the commands set-variable
and edit-options.

For example, this form defines foo but does not set its value:

(defvar foo)
= foo

The following example sets the value of bar to 23, and gives it a documentation string:

(defvar bar 23
"The normal weight of a bar.")
= bar
The following form changes the documentation string for bar, making it a user option,
but does not change the value, since bar already has a value. (The addition (1+ 23) is
not even performed.)
(defvar bar (1+ 23)
"*The normal weight of a bar.")
= bar
bar
= 23

136 XEmacs Lisp Reference Manual

Here is an equivalent expression for the defvar special form:

(defvar symbol value doc-string)

(progn
(if (not (boundp ’symbol))
(setq symbol value))
(put ’symbol ’variable-documentation ’doc-string)
>symbol)

The defvar form returns symbol, but it is normally used at top level in a file where its
value does not matter.

defconst symbol [value [doc-string]] Special Form
This special form defines symbol as a value and initializes it. It informs a person reading
your code that symbol has a global value, established here, that will not normally be
changed or locally bound by the execution of the program. The user, however, may be
welcome to change it. Note that symbol is not evaluated; the symbol to be defined must
appear explicitly in the defconst.

defconst always evaluates value and sets the global value of symbol to the result, provided
value is given. If symbol has a buffer-local binding in the current buffer, defconst sets
the default value, not the local value.

Please note: Don’t use defconst for user option variables in libraries that are not stan-
dardly preloaded. The user should be able to specify a value for such a variable in the
‘.emacs’ file, so that it will be in effect if and when the library is loaded later.

Here, pi is a constant that presumably ought not to be changed by anyone (attempts by
the Indiana State Legislature notwithstanding). As the second form illustrates, however,
this is only advisory.

(defconst pi 3.1415 "Pi to five places.")
= pi

(setq pi 3)
= pi

pi
= 3

user-variable-p variable Function
This function returns t if variable is a user option—a variable intended to be set by the
user for customization—and nil otherwise. (Variables other than user options exist for
the internal purposes of Lisp programs, and users need not know about them.)

User option variables are distinguished from other variables by the first character of the
variable-documentation property. If the property exists and is a string, and its first
character is ‘*’, then the variable is a user option.

If a user option variable has a variable-interactive property, the set-variable command
uses that value to control reading the new value for the variable. The property’s value is used
as if it were the argument to interactive.

Warning: If the defconst and defvar special forms are used while the variable has a local
binding, they set the local binding’s value; the global binding is not changed. This is not what
we really want. To prevent it, use these special forms at top level in a file, where normally no
local binding is in effect, and make sure to load the file before making a local binding for the
variable.

Chapter 10: Variables 137

10.6 Accessing Variable Values

The usual way to reference a variable is to write the symbol which names it (see Section 8.2.2
[Symbol Forms|, page 112). This requires you to specify the variable name when you write the
program. Usually that is exactly what you want to do. Occasionally you need to choose at run
time which variable to reference; then you can use symbol-value.

symbol-value symbol Function
This function returns the value of symbol. This is the value in the innermost local binding
of the symbol, or its global value if it has no local bindings.
(setq abracadabra 5)
= 5
(setq foo 9)
= 9

;5 Here the symbol abracadabra
3 is the symbol whose value is examined.
(let ((abracadabra ’foo))
(symbol-value ’abracadabra))
= foo

;; Here the value of abracadabra,
H which is foo,
i is the symbol whose value is examined.
(let ((abracadabra ’foo))
(symbol-value abracadabra))
= 9

(symbol-value ’abracadabra)
= 5
A void-variable error is signaled if symbol has neither a local binding nor a global value.

10.7 How to Alter a Variable Value

The usual way to change the value of a variable is with the special form setq. When you
need to compute the choice of variable at run time, use the function set.

setq [symbol form)]. . . Special Form
This special form is the most common method of changing a variable’s value. Each symbol
is given a new value, which is the result of evaluating the corresponding form. The most-
local existing binding of the symbol is changed.
setq does not evaluate symbol; it sets the symbol that you write. We say that this
argument is automatically quoted. The ‘q’ in setq stands for “quoted.”
The value of the setq form is the value of the last form.

(setq x (1+ 2))

= 3
X ; X now has a global value.
= 3
(let ((x 5))
(setq x 6) ; The local binding of x is set.

x)
= 6

138 XEmacs Lisp Reference Manual

X ; The global value is unchanged.
= 3

Note that the first form is evaluated, then the first symbol is set, then the second form is
evaluated, then the second symbol is set, and so on:

(setq x 10 ; Notice that x is set before
y (1+ %)) ; the value of y is computed.
= 11
set symbol value Function

This function sets symbol’s value to value, then returns value. Since set is a function,
the expression written for symbol is evaluated to obtain the symbol to set.

The most-local existing binding of the variable is the binding that is set; shadowed bindings
are not affected.

(set one 1)
Symbol’s value as variable is void: one
(set ’one 1)
=1
(set ’two ’one)
= one
(set two 2) ; two evaluates to symbol one.
= 2
one ; So it is one that was set.
= 2
(let ((one 1)) ; This binding of one is set,
(set ’one 3) ; not the global value.
one)
= 3
one
= 2
If symbol is not actually a symbol, a wrong-type-argument error is signaled.
(set > (x y) ’z)
Wrong type argument: symbolp, (x y)
Logically speaking, set is a more fundamental primitive than setq. Any use of setq
can be trivially rewritten to use set; setq could even be defined as a macro, given the
availability of set. However, set itself is rarely used; beginners hardly need to know
about it. It is useful only for choosing at run time which variable to set. For example, the
command set-variable, which reads a variable name from the user and then sets the
variable, needs to use set.

Common Lisp note: In Common Lisp, set always changes the symbol’s special
value, ignoring any lexical bindings. In XEmacs Lisp, all variables and all
bindings are (in effect) special, so set always affects the most local existing
binding.

One other function for setting a variable is designed to add an element to a list if it is not
already present in the list.

add-to-list symbol element Function
This function sets the variable symbol by consing element onto the old value, if element
is not already a member of that value. It returns the resulting list, whether updated or
not. The value of symbol had better be a list already before the call.

Chapter 10: Variables 139

The argument symbol is not implicitly quoted; add-to-1list is an ordinary function, like
set and unlike setq. Quote the argument yourself if that is what you want.

Here’s a scenario showing how to use add-to-1list:
(setq foo ’(a b))

= (a b)
(add-to-list ’foo ’c) ;3 Add c.
= (c a b)
(add-to-1list ’foo ’b) ;3 No effect.
= (c a b)
foo ;; foo was changed.
= (c a b)

An equivalent expression for (add-to-list ’var value) is this:

(or (member value var)
(setq var (cons value var)))

10.8 Scoping Rules for Variable Bindings

A given symbol foo may have several local variable bindings, established at different places
in the Lisp program, as well as a global binding. The most recently established binding takes
precedence over the others.

Local bindings in XEmacs Lisp have indefinite scope and dynamic extent. Scope refers to
where textually in the source code the binding can be accessed. Indefinite scope means that any
part of the program can potentially access the variable binding. Extent refers to when, as the
program is executing, the binding exists. Dynamic extent means that the binding lasts as long
as the activation of the construct that established it.

The combination of dynamic extent and indefinite scope is called dynamic scoping. By
contrast, most programming languages use lexical scoping, in which references to a local variable
must be located textually within the function or block that binds the variable.

Common Lisp note: Variables declared “special” in Common Lisp are dynamically
scoped, like variables in XEmacs Lisp.

10.8.1 Scope

XEmacs Lisp uses indefinite scope for local variable bindings. This means that any function
anywhere in the program text might access a given binding of a variable. Consider the following
function definitions:

(defun binder (x) ; x 1s bound in binder.
(foo 5)) ; foo is some other function.
(defun user () ; x is used in user.
(list x))

In a lexically scoped language, the binding of x in binder would never be accessible in user,
because user is not textually contained within the function binder. However, in dynamically
scoped XEmacs Lisp, user may or may not refer to the binding of x established in binder,
depending on circumstances:

140 XEmacs Lisp Reference Manual

e If we call user directly without calling binder at all, then whatever binding of x is found,
it cannot come from binder.

e If we define foo as follows and call binder, then the binding made in binder will be seen
in user:

(defun foo (lose)
(user))
e If we define foo as follows and call binder, then the binding made in binder will not be
seen in user:

(defun foo (x)
(user))
Here, when foo is called by binder, it binds x. (The binding in foo is said to shadow the
one made in binder.) Therefore, user will access the x bound by foo instead of the one
bound by binder.

10.8.2 Extent

Extent refers to the time during program execution that a variable name is valid. In XEmacs
Lisp, a variable is valid only while the form that bound it is executing. This is called dynamic
extent. “Local” or “automatic” variables in most languages, including C and Pascal, have
dynamic extent.

One alternative to dynamic extent is indefinite extent. This means that a variable binding
can live on past the exit from the form that made the binding. Common Lisp and Scheme, for
example, support this, but XEmacs Lisp does not.

To illustrate this, the function below, make-add, returns a function that purports to add n
to its own argument m. This would work in Common Lisp, but it does not work as intended in
XEmacs Lisp, because after the call to make-add exits, the variable n is no longer bound to the
actual argument 2.

(defun make-add (n)
(function (lambda (m) (+ n m)))) ; Return a function.
= make-add
(fset ’add2 (make-add 2)) ; Define function add?2
; with (make-add 2).
= (lambda (m) (+ n m))
(add2 4) ; Try to add 2 to 4.
Symbol’s value as variable is void: n
Some Lisp dialects have “closures”, objects that are like functions but record additional
variable bindings. XEmacs Lisp does not have closures.

10.8.3 Implementation of Dynamic Scoping

A simple sample implementation (which is not how XEmacs Lisp actually works) may help
you understand dynamic binding. This technique is called deep binding and was used in early
Lisp systems.

Suppose there is a stack of bindings: variable-value pairs. At entry to a function or to a let
form, we can push bindings on the stack for the arguments or local variables created there. We
can pop those bindings from the stack at exit from the binding construct.

We can find the value of a variable by searching the stack from top to bottom for a binding
for that variable; the value from that binding is the value of the variable. To set the variable,
we search for the current binding, then store the new value into that binding.

Chapter 10: Variables 141

As you can see, a function’s bindings remain in effect as long as it continues execution, even
during its calls to other functions. That is why we say the extent of the binding is dynamic.
And any other function can refer to the bindings, if it uses the same variables while the bindings
are in effect. That is why we say the scope is indefinite.

The actual implementation of variable scoping in XEmacs Lisp uses a technique called shallow
binding. Each variable has a standard place in which its current value is always found—the value
cell of the symbol.

In shallow binding, setting the variable works by storing a value in the value cell. Creating a
new binding works by pushing the old value (belonging to a previous binding) on a stack, and
storing the local value in the value cell. Eliminating a binding works by popping the old value
off the stack, into the value cell.

We use shallow binding because it has the same results as deep binding, but runs faster, since
there is never a need to search for a binding.

10.8.4 Proper Use of Dynamic Scoping

Binding a variable in one function and using it in another is a powerful technique, but if used
without restraint, it can make programs hard to understand. There are two clean ways to use
this technique:

e Use or bind the variable only in a few related functions, written close together in one file.
Such a variable is used for communication within one program.

You should write comments to inform other programmers that they can see all uses of the
variable before them, and to advise them not to add uses elsewhere.

e Give the variable a well-defined, documented meaning, and make all appropriate functions
refer to it (but not bind it or set it) wherever that meaning is relevant. For example,
the variable case-fold-search is defined as “non-nil means ignore case when searching”;
various search and replace functions refer to it directly or through their subroutines, but
do not bind or set it.

Then you can bind the variable in other programs, knowing reliably what the effect will be.

In either case, you should define the variable with defvar. This helps other people understand
your program by telling them to look for inter-function usage. It also avoids a warning from the
byte compiler. Choose the variable’s name to avoid name conflicts—don’t use short names like
X.

10.9 Buffer-Local Variables

Global and local variable bindings are found in most programming languages in one form or
another. XEmacs also supports another, unusual kind of variable binding: buffer-local bindings,
which apply only to one buffer. XEmacs Lisp is meant for programming editing commands, and
having different values for a variable in different buffers is an important customization method.

10.9.1 Introduction to Buffer-Local Variables

A buffer-local variable has a buffer-local binding associated with a particular buffer. The
binding is in effect when that buffer is current; otherwise, it is not in effect. If you set the
variable while a buffer-local binding is in effect, the new value goes in that binding, so the global
binding is unchanged; this means that the change is visible in that buffer alone.

142 XEmacs Lisp Reference Manual

A variable may have buffer-local bindings in some buffers but not in others. The global
binding is shared by all the buffers that don’t have their own bindings. Thus, if you set the
variable in a buffer that does not have a buffer-local binding for it, the new value is visible in
all buffers except those with buffer-local bindings. (Here we are assuming that there are no
let-style local bindings to complicate the issue.)

The most common use of buffer-local bindings is for major modes to change variables that
control the behavior of commands. For example, C mode and Lisp mode both set the variable
paragraph-start to specify that only blank lines separate paragraphs. They do this by making
the variable buffer-local in the buffer that is being put into C mode or Lisp mode, and then
setting it to the new value for that mode.

The usual way to make a buffer-local binding is with make-local-variable, which is what
major mode commands use. This affects just the current buffer; all other buffers (including
those yet to be created) continue to share the global value.

A more powerful operation is to mark the variable as automatically buffer-local by calling
make-variable-buffer-local. You can think of this as making the variable local in all buffers,
even those yet to be created. More precisely, the effect is that setting the variable automatically
makes the variable local to the current buffer if it is not already so. All buffers start out by
sharing the global value of the variable as usual, but any setq creates a buffer-local binding
for the current buffer. The new value is stored in the buffer-local binding, leaving the (default)
global binding untouched. The global value can no longer be changed with setq; you need to
use setq-default to do that.

Local variables in a file you edit are also represented by buffer-local bindings for the buffer
that holds the file within XEmacs. See Section 26.1.3 [Auto Major Mode|, page 332.

10.9.2 Creating and Deleting Buffer-Local Bindings

make-local-variable variable Command
This function creates a buffer-local binding in the current buffer for variable (a symbol).
Other buffers are not affected. The value returned is variable.

The buffer-local value of variable starts out as the same value variable previously had. If
variable was void, it remains void.

;3 In buffer ‘b1’:

(setq foo 5) ; Affects all buffers.
= 5

(make-local-variable ’foo) ; Now it is local in ‘b1’.
= foo

foo ; That did not change
= 5 ; the value.

(setq foo 6) ; Change the value
= 6 ; in ‘b1’.

foo
= 6

;3 In buffer ‘b2’, the value hasn’t changed.
(save-excursion
(set-buffer "b2")
foo)
= 5

Chapter 10: Variables 143

Making a variable buffer-local within a let-binding for that variable does not work. This
is because let does not distinguish between different kinds of bindings; it knows only
which variable the binding was made for.

Please note: do not use make-local-variable for a hook variable. Instead, use make-
local-hook. See Section 26.4 [Hooks|, page 342.

make-variable-buffer-local variable Command
This function marks variable (a symbol) automatically buffer-local, so that any subsequent
attempt to set it will make it local to the current buffer at the time.

The value returned is variable.

local-variable-p variable &optional buffer Function
This returns t if variable is buffer-local in buffer buffer (which defaults to the current
buffer); otherwise, nil.

buffer-local-variables &optional buffer Function
This function returns a list describing the buffer-local variables in buffer buffer. It returns
an association list (see Section 5.8 [Association Lists|, page 85) in which each association
contains one buffer-local variable and its value. When a buffer-local variable is void in
buffer, then it appears directly in the resulting list. If buffer is omitted, the current buffer
is used.

(make-local-variable ’foobar)
(makunbound ’foobar)
(make-local-variable ’bind-me)
(setq bind-me 69)
(setq 1lcl (buffer-local-variables))
;3 First, built-in variables local in all buffers:
= ((mark-active . nil)
(buffer-undo-list nil)
(mode-name . "Fundamental")

;5 Next, non-built-in local variables.
;3 This one is local and void:
foobar

;3 This one is local and nonvoid:
(bind-me . 69))

Note that storing new values into the CDRs of cons cells in this list does not change the
local values of the variables.

kill-local-variable variable Command
This function deletes the buffer-local binding (if any) for variable (a symbol) in the current
buffer. As a result, the global (default) binding of variable becomes visible in this buffer.
Usually this results in a change in the value of variable, since the global value is usually
different from the buffer-local value just eliminated.

If you kill the local binding of a variable that automatically becomes local when set, this
makes the global value visible in the current buffer. However, if you set the variable again,
that will once again create a local binding for it.

kill-local-variable returns variable.

This function is a command because it is sometimes useful to kill one buffer-local variable
interactively, just as it is useful to create buffer-local variables interactively.

144 XEmacs Lisp Reference Manual

kill-all-local-variables Function
This function eliminates all the buffer-local variable bindings of the current buffer except
for variables marked as “permanent”. As a result, the buffer will see the default values of
most variables.

This function also resets certain other information pertaining to the buffer: it sets the
local keymap to nil, the syntax table to the value of standard-syntax-table, and the
abbrev table to the value of fundamental-mode-abbrev-table.

Every major mode command begins by calling this function, which has the effect of switch-
ing to Fundamental mode and erasing most of the effects of the previous major mode. To
ensure that this does its job, the variables that major modes set should not be marked
permanent.

kill-all-local-variables returns nil.

A local variable is permanent if the variable name (a symbol) has a permanent-local prop-
erty that is non-nil. Permanent locals are appropriate for data pertaining to where the file
came from or how to save it, rather than with how to edit the contents.

10.9.3 The Default Value of a Buffer-Local Variable

The global value of a variable with buffer-local bindings is also called the default value,
because it is the value that is in effect except when specifically overridden.

The functions default-value and setq-default access and change a variable’s default value
regardless of whether the current buffer has a buffer-local binding. For example, you could use
setq-default to change the default setting of paragraph-start for most buffers; and this
would work even when you are in a C or Lisp mode buffer that has a buffer-local value for this
variable.

The special forms defvar and defconst also set the default value (if they set the variable
at all), rather than any local value.

default-value symbol Function
This function returns symbol’s default value. This is the value that is seen in buffers
that do not have their own values for this variable. If symbol is not buffer-local, this is
equivalent to symbol-value (see Section 10.6 [Accessing Variables|, page 137).

default-boundp symbol Function
The function default-boundp tells you whether symbol’s default value is nonvoid. If
(default-boundp ’foo) returns nil, then (default-value ’foo) would get an error.

default-boundp is to default-value as boundp is to symbol-value.

setq-default symbol value Special Form
This sets the default value of symbol to value. It does not evaluate symbol, but does
evaluate value. The value of the setq-default form is value.

If a symbol is not buffer-local for the current buffer, and is not marked automatically
buffer-local, setq-default has the same effect as setq. If symbol is buffer-local for the
current buffer, then this changes the value that other buffers will see (as long as they don’t
have a buffer-local value), but not the value that the current buffer sees.
;3 In buffer ‘foo’:
(make-local-variable ’local)
= local

Chapter 10: Variables 145

(setq local ’value-in-foo)
= value-in-foo
(setq-default local ’new-default)
= new-default
local
= value-in-foo
(default-value ’local)
= new-default

;3 In (the new) buffer ‘bar’:
local

= new-default
(default-value ’local)

= new-default
(setq local ’another-default)

= another-default
(default-value ’local)

= another-default

;3 Back in buffer ‘foo’:
local
= value-in-foo
(default-value ’local)
= another-default

set-default symbol value Function
This function is like setq-default, except that symbol is evaluated.

(set-default (car ’(a b c)) 23)
= 23

(default-value ’a)
= 23

10.10 Variable Aliases

You can define a variable as an alias for another. Any time you reference the former variable,
the current value of the latter is returned. Any time you change the value of the former variable,
the value of the latter is actually changed. This is useful in cases where you want to rename a
variable but still make old code work (see Section 27.6 [Obsoleteness|, page 352).

defvaralias variable alias Function

This function defines variable as an alias for alias. Thenceforth, any operations performed
on variable will actually be performed on alias. Both variable and alias should be symbols.
If alias is nil, remove any aliases for variable. alias can itself be aliased, and the chain of
variable aliases will be followed appropriately. If variable already has a value, this value
will be shadowed until the alias is removed, at which point it will be restored. Currently
variable cannot be a built-in variable, a variable that has a buffer-local value in any buffer,
or the symbols nil or t.

variable-alias variable Function
If variable is aliased to another variable, this function returns that variable. variable
should be a symbol. If variable is not aliased, this function returns nil.

146 XEmacs Lisp Reference Manual

indirect-variable object Function
This function returns the variable at the end of object’s variable-alias chain. If object is
a symbol, follow all variable aliases and return the final (non-aliased) symbol. If object is
not a symbol, just return it. Signal a cyclic-variable-indirection error if there is a
loop in the variable chain of symbols.

Chapter 11: Functions 147

11 Functions

A Lisp program is composed mainly of Lisp functions. This chapter explains what functions
are, how they accept arguments, and how to define them.

11.1 What Is a Function?

In a general sense, a function is a rule for carrying on a computation given several values called
arguments. The result of the computation is called the value of the function. The computation
can also have side effects: lasting changes in the values of variables or the contents of data
structures.

Here are important terms for functions in XEmacs Lisp and for other function-like objects.

function In XEmacs Lisp, a function is anything that can be applied to arguments in a Lisp
program. In some cases, we use it more specifically to mean a function written in
Lisp. Special forms and macros are not functions.

primitive A primitive is a function callable from Lisp that is written in C, such as car or
append. These functions are also called built-in functions or subrs. (Special forms
are also considered primitives.)

Usually the reason that a function is a primitives is because it is fundamental,
because it provides a low-level interface to operating system services, or because
it needs to run fast. Primitives can be modified or added only by changing the
C sources and recompiling the editor. See section “Writing Lisp Primitives” in
XFEmacs Internals Manual.

lambda expression
A lambda expression is a function written in Lisp. These are described in the
following section.

special form
A special form is a primitive that is like a function but does not evaluate all of
its arguments in the usual way. It may evaluate only some of the arguments, or
may evaluate them in an unusual order, or several times. Many special forms are
described in Chapter 9 [Control Structures], page 117.

macro A macro is a construct defined in Lisp by the programmer. It differs from a function
in that it translates a Lisp expression that you write into an equivalent expression to
be evaluated instead of the original expression. Macros enable Lisp programmers to
do the sorts of things that special forms can do. See Chapter 12 [Macros|, page 161,
for how to define and use macros.

command A command is an object that command-execute can invoke; it is a possible defini-
tion for a key sequence. Some functions are commands; a function written in Lisp
is a command if it contains an interactive declaration (see Section 19.2 [Defining
Commands|, page 256). Such a function can be called from Lisp expressions like
other functions; in this case, the fact that the function is a command makes no
difference.

Keyboard macros (strings and vectors) are commands also, even though they are
not functions. A symbol is a command if its function definition is a command; such
symbols can be invoked with M-x. The symbol is a function as well if the definition
is a function. See Section 19.1 [Command Overview], page 255.

148 XEmacs Lisp Reference Manual

keystroke command
A keystroke command is a command that is bound to a key sequence (typically one
to three keystrokes). The distinction is made here merely to avoid confusion with
the meaning of “command” in non-Emacs editors; for Lisp programs, the distinction
is normally unimportant.

compiled function
A compiled function is a function that has been compiled by the byte compiler. See
Section 2.4.14 [Compiled-Function Type], page 25.

subrp object Function
This function returns t if object is a built-in function (i.e., a Lisp primitive).
(subrp ’message) ; message is a symbol,
= nil ; not a subr object.
(subrp (symbol-function ’message))
=t
compiled-function-p object Function

This function returns t if object is a compiled function. For example:

(compiled-function-p (symbol-function ’next-line))
=t

11.2 Lambda Expressions

A function written in Lisp is a list that looks like this:

(lambda (arg-variables. . .)
[documentation-string]
[interactive-declaration]
body-forms. . .)

Such a list is called a lambda expression. In XEmacs Lisp, it actually is valid as an expression—
it evaluates to itself. In some other Lisp dialects, a lambda expression is not a valid expression
at all. In either case, its main use is not to be evaluated as an expression, but to be called as a
function.

11.2.1 Components of a Lambda Expression

The first element of a lambda expression is always the symbol lambda. This indicates that
the list represents a function. The reason functions are defined to start with lambda is so that
other lists, intended for other uses, will not accidentally be valid as functions.

The second element is a list of symbols—the argument variable names. This is called the
lambda list. When a Lisp function is called, the argument values are matched up against
the variables in the lambda list, which are given local bindings with the values provided. See
Section 10.3 [Local Variables|, page 132.

The documentation string is a Lisp string object placed within the function definition to de-
scribe the function for the XEmacs help facilities. See Section 11.2.4 [Function Documentation],
page 150.

The interactive declaration is a list of the form (interactive code-string). This declares
how to provide arguments if the function is used interactively. Functions with this declaration
are called commands; they can be called using M-x or bound to a key. Functions not intended

Chapter 11: Functions 149

to be called in this way should not have interactive declarations. See Section 19.2 [Defining
Commands|, page 256, for how to write an interactive declaration.

The rest of the elements are the body of the function: the Lisp code to do the work of the
function (or, as a Lisp programmer would say, “a list of Lisp forms to evaluate”). The value
returned by the function is the value returned by the last element of the body.

11.2.2 A Simple Lambda-Expression Example

Consider for example the following function:
(lambda (a b ¢) (+ a b c))
We can call this function by writing it as the CAR of an expression, like this:

((lambda (a b c) (+ a b c))
12 3)

This call evaluates the body of the lambda expression with the variable a bound to 1, b bound
to 2, and ¢ bound to 3. Evaluation of the body adds these three numbers, producing the result
6; therefore, this call to the function returns the value 6.

Note that the arguments can be the results of other function calls, as in this example:

((lambda (a b c) (+ a b c))
1 (x23) (-5 4))

This evaluates the arguments 1, (* 2 3), and (- 5 4) from left to right. Then it applies the
lambda expression to the argument values 1, 6 and 1 to produce the value 8.

It is not often useful to write a lambda expression as the CAR of a form in this way. You can
get the same result, of making local variables and giving them values, using the special form let
(see Section 10.3 [Local Variables|, page 132). And let is clearer and easier to use. In practice,
lambda expressions are either stored as the function definitions of symbols, to produce named
functions, or passed as arguments to other functions (see Section 11.7 [Anonymous Functions],
page 155).

However, calls to explicit lambda expressions were very useful in the old days of Lisp, before
the special form let was invented. At that time, they were the only way to bind and initialize
local variables.

11.2.3 Advanced Features of Argument Lists

Our simple sample function, (lambda (a b c) (+ a b c)), specifies three argument variables,
so it must be called with three arguments: if you try to call it with only two arguments or four
arguments, you get a wrong-number-of-arguments error.

It is often convenient to write a function that allows certain arguments to be omitted. For
example, the function substring accepts three arguments—a string, the start index and the
end index—but the third argument defaults to the length of the string if you omit it. It is also
convenient for certain functions to accept an indefinite number of arguments, as the functions
list and + do.

To specify optional arguments that may be omitted when a function is called, simply include
the keyword &optional before the optional arguments. To specify a list of zero or more extra
arguments, include the keyword &rest before one final argument.

Thus, the complete syntax for an argument list is as follows:

(required-vars. . .
[£optional optional-vars. . .]
[&rest rest-var])

150 XEmacs Lisp Reference Manual

The square brackets indicate that the &optional and &rest clauses, and the variables that
follow them, are optional.

A call to the function requires one actual argument for each of the required-vars. There
may be actual arguments for zero or more of the optional-vars, and there cannot be any actual
arguments beyond that unless the lambda list uses &rest. In that case, there may be any
number of extra actual arguments.

If actual arguments for the optional and rest variables are omitted, then they always default
to nil. There is no way for the function to distinguish between an explicit argument of nil and
an omitted argument. However, the body of the function is free to consider nil an abbreviation
for some other meaningful value. This is what substring does; nil as the third argument to
substring means to use the length of the string supplied.

Common Lisp note: Common Lisp allows the function to specify what default value
to use when an optional argument is omitted; XEmacs Lisp always uses nil.

For example, an argument list that looks like this:
(a b &optional c d &rest e)

binds a and b to the first two actual arguments, which are required. If one or two more arguments
are provided, ¢ and d are bound to them respectively; any arguments after the first four are
collected into a list and e is bound to that list. If there are only two arguments, c is nil; if two
or three arguments, d is nil; if four arguments or fewer, e is nil.

There is no way to have required arguments following optional ones—it would not make
sense. To see why this must be so, suppose that c in the example were optional and d were
required. Suppose three actual arguments are given; which variable would the third argument
be for? Similarly, it makes no sense to have any more arguments (either required or optional)
after a &rest argument.

Here are some examples of argument lists and proper calls:

((lambda (n) (1+ n)) ; One required:
1) ; requires exactly one argument.
= 2
((lambda (n &optional nl) ; One required and one optional:
(if n1 (+ n n1) (1+ n))) ; 1 or 2 arguments.
12)
= 3
((lambda (n &rest ns) ; One required and one rest:
(+ n (apply ’+ ns))) ; 1 or more arguments.
1 2345)
= 15

11.2.4 Documentation Strings of Functions

A lambda expression may optionally have a documentation string just after the lambda list.
This string does not affect execution of the function; it is a kind of comment, but a systematized
comment which actually appears inside the Lisp world and can be used by the XEmacs help
facilities. See Chapter 27 [Documentation|, page 345, for how the documentation-string is
accessed.

It is a good idea to provide documentation strings for all the functions in your program, even
those that are only called from within your program. Documentation strings are like comments,
except that they are easier to access.

The first line of the documentation string should stand on its own, because apropos displays
just this first line. It should consist of one or two complete sentences that summarize the
function’s purpose.

Chapter 11: Functions 151

The start of the documentation string is usually indented in the source file, but since these
spaces come before the starting double-quote, they are not part of the string. Some people make
a practice of indenting any additional lines of the string so that the text lines up in the program
source. This is a mistake. The indentation of the following lines is inside the string; what looks
nice in the source code will look ugly when displayed by the help commands.

You may wonder how the documentation string could be optional, since there are required
components of the function that follow it (the body). Since evaluation of a string returns that
string, without any side effects, it has no effect if it is not the last form in the body. Thus, in
practice, there is no confusion between the first form of the body and the documentation string;
if the only body form is a string then it serves both as the return value and as the documentation.

11.3 Naming a Function

In most computer languages, every function has a name; the idea of a function without a
name is nonsensical. In Lisp, a function in the strictest sense has no name. It is simply a list
whose first element is lambda, or a primitive subr-object.

However, a symbol can serve as the name of a function. This happens when you put the
function in the symbol’s function cell (see Section 7.1 [Symbol Components|, page 101). Then
the symbol itself becomes a valid, callable function, equivalent to the list or subr-object that its
function cell refers to. The contents of the function cell are also called the symbol’s function
definition. The procedure of using a symbol’s function definition in place of the symbol is called
symbol function indirection; see Section 8.2.4 [Function Indirection], page 112.

In practice, nearly all functions are given names in this way and referred to through their
names. For example, the symbol car works as a function and does what it does because the
primitive subr-object #<subr car> is stored in its function cell.

We give functions names because it is convenient to refer to them by their names in Lisp
expressions. For primitive subr-objects such as #<subr car>, names are the only way you can
refer to them: there is no read syntax for such objects. For functions written in Lisp, the name
is more convenient to use in a call than an explicit lambda expression. Also, a function with a
name can refer to itself—it can be recursive. Writing the function’s name in its own definition
is much more convenient than making the function definition point to itself (something that is
not impossible but that has various disadvantages in practice).

We often identify functions with the symbols used to name them. For example, we often speak
of “the function car”, not distinguishing between the symbol car and the primitive subr-object
that is its function definition. For most purposes, there is no need to distinguish.

Even so, keep in mind that a function need not have a unique name. While a given function
object usually appears in the function cell of only one symbol, this is just a matter of convenience.
It is easy to store it in several symbols using fset; then each of the symbols is equally well a
name for the same function.

A symbol used as a function name may also be used as a variable; these two uses of a symbol
are independent and do not conflict.

11.4 Defining Functions

We usually give a name to a function when it is first created. This is called defining a
function, and it is done with the defun special form.

defun name argument-list body-forms Special Form
defun is the usual way to define new Lisp functions. It defines the symbol name as a
function that looks like this:

152

define-function name definition
defalias name definition

XEmacs Lisp Reference Manual

(lambda argument-list . body-forms)

defun stores this lambda expression in the function cell of name. It returns the value
name, but usually we ignore this value.

As described previously (see Section 11.2 [Lambda Expressions|, page 148), argument-
list is a list of argument names and may include the keywords &optional and &rest.
Also, the first two forms in body-forms may be a documentation string and an interactive
declaration.

There is no conflict if the same symbol name is also used as a variable, since the symbol’s
value cell is independent of the function cell. See Section 7.1 [Symbol Components]
page 101.

Here are some examples:

(defun foo () 5)
= foo
(foo)
= 5

(defun bar (a &optional b &rest c)
(list a b ¢))
= bar
(bar 1 2 3 4 5)
= (12 (3 45))
(bar 1)
= (1 nil nil)
(bar)
Wrong number of arguments.

(defun capitalize-backwards ()
"Upcase the last letter of a word."
(interactive)

(backward-word 1)
(forward-word 1)
(backward-char 1)
(capitalize-word 1))

= capitalize-backwards

Be careful not to redefine existing functions unintentionally. defun redefines even primitive
functions such as car without any hesitation or notification. Redefining a function already
defined is often done deliberately, and there is no way to distinguish deliberate redefinition
from unintentional redefinition.

These equivalent special forms define the symbol name as a function, with definition
definition (which can be any valid Lisp function).

The proper place to use define-function or defalias is where a specific function name
is being defined—especially where that name appears explicitly in the source file being
loaded. This is because define-function and defalias record which file defined the
function, just like defun. (see Section 14.5 [Unloading|, page 184).

By contrast, in programs that manipulate function definitions for other purposes, it is
better to use £set, which does not keep such records.

See also defsubst, which defines a function like defun and tells the Lisp compiler to open-
code it. See Section 11.9 [Inline Functions|, page 158.

Function
Function

Chapter 11: Functions 153

11.5 Calling Functions

Defining functions is only half the battle. Functions don’t do anything until you call them,
i.e., tell them to run. Calling a function is also known as invocation.

The most common way of invoking a function is by evaluating a list. For example, evaluating
the list (concat "a" "b") calls the function concat with arguments "a" and "b". See Chapter 8
[Evaluation|, page 109, for a description of evaluation.

When you write a list as an expression in your program, the function name is part of the
program. This means that you choose which function to call, and how many arguments to give
it, when you write the program. Usually that’s just what you want. Occasionally you need to
decide at run time which function to call. To do that, use the functions funcall and apply.

funcall function &rest arguments Function
funcall calls function with arguments, and returns whatever function returns.

Since funcall is a function, all of its arguments, including function, are evaluated before
funcall is called. This means that you can use any expression to obtain the function
to be called. It also means that funcall does not see the expressions you write for the
arguments, only their values. These values are not evaluated a second time in the act of
calling function; funcall enters the normal procedure for calling a function at the place
where the arguments have already been evaluated.

The argument function must be either a Lisp function or a primitive function. Special
forms and macros are not allowed, because they make sense only when given the “uneval-
uated” argument expressions. funcall cannot provide these because, as we saw above, it
never knows them in the first place.

(setq f ’list)

= list
(funcall f ’x ’y ’2z)
= (xy 2)
(funcall f ’x ’y ’(2))
= xy (=)

(funcall ’and t nil)
Invalid function: #<subr and>

Compare these example with the examples of apply.

apply function &rest arguments Function
apply calls function with arguments, just like funcall but with one difference: the last
of arguments is a list of arguments to give to function, rather than a single argument. We
also say that apply spreads this list so that each individual element becomes an argument.
apply returns the result of calling function. As with funcall, function must either be
a Lisp function or a primitive function; special forms and macros do not make sense in
apply.
(setq f ’list)
= list
(apply f ’x ’y ’z)
Wrong type argument: listp, z
(apply ’+ 1 2 (3 4))
= 10
(apply ’+ (1 2 3 4))
= 10

154 XEmacs Lisp Reference Manual

(apply ’append ’((a b c¢) nil (x y z) nil))
= (abcxyz)
For an interesting example of using apply, see the description of mapcar, in Section 11.6
[Mapping Functions], page 154.

It is common for Lisp functions to accept functions as arguments or find them in data
structures (especially in hook variables and property lists) and call them using funcall or
apply. Functions that accept function arguments are often called functionals.

Sometimes, when you call a functional, it is useful to supply a no-op function as the argument.
Here are two different kinds of no-op function:

identity arg Function
This function returns arg and has no side effects.

ignore &rest args Function
This function ignores any arguments and returns nil.

11.6 Mapping Functions

A mapping function applies a given function to each element of a list or other collection.
XEmacs Lisp has three such functions; mapcar and mapconcat, which scan a list, are described
here. For the third mapping function, mapatoms, see Section 7.3 [Creating Symbols|, page 103.

mapcar function sequence Function
mapcar applies function to each element of sequence in turn, and returns a list of the
results.

The argument sequence may be a list, a vector, or a string. The result is always a list.
The length of the result is the same as the length of sequence.

For example:

(mapcar ’car ’((a b) (c d) (e £)))
= (a c e)

(mapcar ’1+ [1 2 3])
= (234

(mapcar ’char-to-string "abc")
:> (llall IIbll IIC")

;5 Call each function in my-hooks.
(mapcar ’funcall my-hooks)

(defun mapcar* (f &rest args)
"Apply FUNCTION to successive cars of all ARGS.
Return the list of results."
;3 If no list is exhausted,
(if (not (memq ’nil args))
;3 apply function to CARs.
(cons (apply f (mapcar ’car args))
(apply ’mapcarx f
;3 Recurse for rest of elements.
(mapcar ’cdr args)))))

(mapcar* ’cons ’(a b c) (1 2 3 4))
= ((a. 1) (b.2) (c.3))

Chapter 11: Functions 155

mapconcat function sequence separator Function

mapconcat applies function to each element of sequence: the results, which must be
strings, are concatenated. Between each pair of result strings, mapconcat inserts the string
separator. Usually separator contains a space or comma or other suitable punctuation.

The argument function must be a function that can take one argument and return a string.

(mapconcat ’symbol-name
’(The cat in the hat)
n II)
= "The cat in the hat"

(mapconcat (function (lambda (x) (format "%c" (1+ x))))
"HAL-8000"
"")
= "IBM.9111"

11.7 Anonymous Functions

In Lisp, a function is a list that starts with lambda, a byte-code function compiled from such
a list, or alternatively a primitive subr-object; names are “extra”’. Although usually functions
are defined with defun and given names at the same time, it is occasionally more concise to use
an explicit lambda expression—an anonymous function. Such a list is valid wherever a function
name is.

Any method of creating such a list makes a valid function. Even this:

(setq silly (append ’(lambda (x)) (list (list ’+ (x 3 4) ’x))))
= (lambda (x) (+ 12 x))

This computes a list that looks like (lambda (x) (+ 12 x)) and makes it the value (not the
function definition!) of silly.

Here is how we might call this function:

(funcall silly 1)
= 13

(It does not work to write (silly 1), because this function is not the function definition of
silly. We have not given silly any function definition, just a value as a variable.)

Most of the time, anonymous functions are constants that appear in your program. For
example, you might want to pass one as an argument to the function mapcar, which applies any
given function to each element of a list. Here we pass an anonymous function that multiplies a
number by two:

(defun double-each (list)
(mapcar ’(lambda (x) (* 2 x)) list))
= double-each
(double-each (2 11))
= (4 22)
In such cases, we usually use the special form function instead of simple quotation to quote
the anonymous function.

function function-object Special Form

This special form returns function-object without evaluating it. In this, it is equivalent
to quote. However, it serves as a note to the XEmacs Lisp compiler that function-object
is intended to be used only as a function, and therefore can safely be compiled. Contrast
this with quote, in Section 8.3 [Quoting], page 116.

156 XEmacs Lisp Reference Manual

Using function instead of quote makes a difference inside a function or macro that you are
going to compile. For example:

(defun double-each (list)
(mapcar (function (lambda (x) (* 2 x))) list))
= double-each
(double-each (2 11))
= (4 22)
If this definition of double-each is compiled, the anonymous function is compiled as well. By
contrast, in the previous definition where ordinary quote is used, the argument passed to mapcar
is the precise list shown:
(lambda (x) (* x 2))
The Lisp compiler cannot assume this list is a function, even though it looks like one, since it
does not know what mapcar does with the list. Perhaps mapcar will check that the CAR of the
third element is the symbol *! The advantage of function is that it tells the compiler to go
ahead and compile the constant function.
We sometimes write function instead of quote when quoting the name of a function, but
this usage is just a sort of comment.
(function symbol) = (quote symbol) = ’symbol
See documentation in Section 27.2 [Accessing Documentation|, page 346, for a realistic
example using function and an anonymous function.

11.8 Accessing Function Cell Contents

The function definition of a symbol is the object stored in the function cell of the symbol.
The functions described here access, test, and set the function cell of symbols.

See also the function indirect-function in Section 8.2.4 [Function Indirection|, page 112.

symbol-function symbol Function
This returns the object in the function cell of symbol. If the symbol’s function cell is void,
a void-function error is signaled.
This function does not check that the returned object is a legitimate function.

(defun bar (n) (+ n 2))

= bar
(symbol-function ’bar)

= (lambda (n) (+ n 2))
(fset ’baz ’bar)

= bar
(symbol-function ’baz)

= bar

If you have never given a symbol any function definition, we say that that symbol’s function
cell is void. In other words, the function cell does not have any Lisp object in it. If you try to
call such a symbol as a function, it signals a void-function error.

Note that void is not the same as nil or the symbol void. The symbols nil and void are
Lisp objects, and can be stored into a function cell just as any other object can be (and they
can be valid functions if you define them in turn with defun). A void function cell contains no
object whatsoever.

You can test the voidness of a symbol’s function definition with fboundp. After you have
given a symbol a function definition, you can make it void once more using fmakunbound.

Chapter 11: Functions 157

fboundp symbol Function
This function returns t if the symbol has an object in its function cell, nil otherwise. It

does not check that the object is a legitimate function.

fmakunbound symbol Function
This function makes symbol’s function cell void, so that a subsequent attempt to access
this cell will cause a void-function error. (See also makunbound, in Section 10.3 [Local
Variables|, page 132.)
(defun foo (x) x)
= X
(foo 1)
=1
(fmakunbound ’foo)
= X
(foo 1)
Symbol’s function definition is void: foo

fset symbol object Function
This function stores object in the function cell of symbol. The result is object. Normally
object should be a function or the name of a function, but this is not checked.

There are three normal uses of this function:

e Copying one symbol’s function definition to another. (In other words, making an
alternate name for a function.)

e Giving a symbol a function definition that is not a list and therefore cannot be made
with defun. For example, you can use fset to give a symbol s1 a function definition
which is another symbol s2; then s1 serves as an alias for whatever definition s2
presently has.

e In constructs for defining or altering functions. If defun were not a primitive, it could
be written in Lisp (as a macro) using fset.

Here are examples of the first two uses:

;3 Give first the same definition car has.
(fset ’first (symbol-function ’car))
= #<subr car>
(first (1 2 3))
= 1

;5 Make the symbol car the function definition of xfirst.
(fset ’xfirst ’car)
= car
(xfirst ’(1 2 3))
=1
(symbol-function ’xfirst)
= car
(symbol-function (symbol-function ’xfirst))
= #<subr car>

;3 Define a named keyboard macro.
(fset ’kill-two-lines "\"u2\"k")
= "\"u2\"k"
See also the related functions define-function and defalias, in Section 11.4 [Defining
Functions], page 151.

158 XEmacs Lisp Reference Manual

When writing a function that extends a previously defined function, the following idiom is
sometimes used:

(fset ’o0ld-foo (symbol-function ’foo))
(defun foo O
"Just like old-foo, except more so."
(old-foo)
(more-so0))

This does not work properly if foo has been defined to autoload. In such a case, when foo
calls old-foo, Lisp attempts to define o1d-foo by loading a file. Since this presumably defines
foo rather than old-foo, it does not produce the proper results. The only way to avoid this
problem is to make sure the file is loaded before moving aside the old definition of foo.

But it is unmodular and unclean, in any case, for a Lisp file to redefine a function defined
elsewhere.

11.9 Inline Functions

You can define an inline function by using defsubst instead of defun. An inline function
works just like an ordinary function except for one thing: when you compile a call to the function,
the function’s definition is open-coded into the caller.

Making a function inline makes explicit calls run faster. But it also has disadvantages. For
one thing, it reduces flexibility; if you change the definition of the function, calls already inlined
still use the old definition until you recompile them. Since the flexibility of redefining functions
is an important feature of XEmacs, you should not make a function inline unless its speed is
really crucial.

Another disadvantage is that making a large function inline can increase the size of compiled
code both in files and in memory. Since the speed advantage of inline functions is greatest for
small functions, you generally should not make large functions inline.

It’s possible to define a macro to expand into the same code that an inline function would
execute. But the macro would have a limitation: you can use it only explicitly—a macro cannot
be called with apply, mapcar and so on. Also, it takes some work to convert an ordinary function
into a macro. (See Chapter 12 [Macros|, page 161.) To convert it into an inline function is very
easy; simply replace defun with defsubst. Since each argument of an inline function is evaluated
exactly once, you needn’t worry about how many times the body uses the arguments, as you do
for macros. (See Section 12.6.1 [Argument Evaluation|, page 164.)

Inline functions can be used and open-coded later on in the same file, following the definition,
just like macros.

11.10 Other Topics Related to Functions

Here is a table of several functions that do things related to function calling and function
definitions. They are documented elsewhere, but we provide cross references here.
apply See Section 11.5 [Calling Functions], page 153.
autoload See Section 14.2 [Autoload|, page 180.

call-interactively
See Section 19.3 [Interactive Call], page 260.

commandp See Section 19.3 [Interactive Call], page 260.

Chapter 11: Functions 159

documentation
See Section 27.2 [Accessing Documentation], page 346.

eval See Section 8.1 [Eval|, page 109.
funcall See Section 11.5 [Calling Functions|, page 153.
ignore See Section 11.5 [Calling Functions], page 153.

indirect-function
See Section 8.2.4 [Function Indirection], page 112.

interactive
See Section 19.2.1 [Using Interactive], page 256.

interactive-p
See Section 19.3 [Interactive Call], page 260.

mapatoms See Section 7.3 [Creating Symbols|, page 103.
mapcar See Section 11.6 [Mapping Functions|, page 154.

mapconcat
See Section 11.6 [Mapping Functions], page 154.

undefined
See Section 20.8 [Key Lookup], page 293.

160 XEmacs Lisp Reference Manual

Chapter 12: Macros 161

12 Macros

Macros enable you to define new control constructs and other language features. A macro
is defined much like a function, but instead of telling how to compute a value, it tells how to
compute another Lisp expression which will in turn compute the value. We call this expression
the expansion of the macro.

Macros can do this because they operate on the unevaluated expressions for the arguments,
not on the argument values as functions do. They can therefore construct an expansion con-
taining these argument expressions or parts of them.

If you are using a macro to do something an ordinary function could do, just for the sake of
speed, consider using an inline function instead. See Section 11.9 [Inline Functions|, page 158.

12.1 A Simple Example of a Macro

Suppose we would like to define a Lisp construct to increment a variable value, much like
the ++ operator in C. We would like to write (inc x) and have the effect of (setq x (1+ x)).
Here’s a macro definition that does the job:

(defmacro inc (var)
(list ’setq var (list ’1+ var)))

When this is called with (inc %), the argument var has the value x—not the value of x.
The body of the macro uses this to construct the expansion, which is (setq x (1+ x)). Once
the macro definition returns this expansion, Lisp proceeds to evaluate it, thus incrementing x.

12.2 Expansion of a Macro Call

A macro call looks just like a function call in that it is a list which starts with the name of
the macro. The rest of the elements of the list are the arguments of the macro.

Evaluation of the macro call begins like evaluation of a function call except for one crucial
difference: the macro arguments are the actual expressions appearing in the macro call. They
are not evaluated before they are given to the macro definition. By contrast, the arguments of
a function are results of evaluating the elements of the function call list.

Having obtained the arguments, Lisp invokes the macro definition just as a function is in-
voked. The argument variables of the macro are bound to the argument values from the macro
call, or to a list of them in the case of a &rest argument. And the macro body executes and
returns its value just as a function body does.

The second crucial difference between macros and functions is that the value returned by
the macro body is not the value of the macro call. Instead, it is an alternate expression for
computing that value, also known as the expansion of the macro. The Lisp interpreter proceeds
to evaluate the expansion as soon as it comes back from the macro.

Since the expansion is evaluated in the normal manner, it may contain calls to other macros.
It may even be a call to the same macro, though this is unusual.

You can see the expansion of a given macro call by calling macroexpand.

macroexpand form &optional environment Function
This function expands form, if it is a macro call. If the result is another macro call, it
is expanded in turn, until something which is not a macro call results. That is the value

162 XEmacs Lisp Reference Manual

returned by macroexpand. If form is not a macro call to begin with, it is returned as
given.

Note that macroexpand does not look at the subexpressions of form (although some macro
definitions may do so). Even if they are macro calls themselves, macroexpand does not
expand them.

The function macroexpand does not expand calls to inline functions. Normally there is
no need for that, since a call to an inline function is no harder to understand than a call
to an ordinary function.

If environment is provided, it specifies an alist of macro definitions that shadow the cur-
rently defined macros. Byte compilation uses this feature.

(defmacro inc (var)
(1ist ’setq var (list ’1+ var)))
= 1inc

(macroexpand ’(inc r))
= (setq r (1+ 1))

(defmacro inc2 (varl var2)
(l1ist ’progn (list ’inc varl) (list ’inc var2)))
= 1inc2

(macroexpand ’(inc2 r s))
= (progn (inc r) (inc s)) ; inc not expanded here.

12.3 Macros and Byte Compilation

You might ask why we take the trouble to compute an expansion for a macro and then
evaluate the expansion. Why not have the macro body produce the desired results directly?
The reason has to do with compilation.

When a macro call appears in a Lisp program being compiled, the Lisp compiler calls the
macro definition just as the interpreter would, and receives an expansion. But instead of eval-
uating this expansion, it compiles the expansion as if it had appeared directly in the program.
As a result, the compiled code produces the value and side effects intended for the macro, but
executes at full compiled speed. This would not work if the macro body computed the value
and side effects itself—they would be computed at compile time, which is not useful.

In order for compilation of macro calls to work, the macros must be defined in Lisp when
the calls to them are compiled. The compiler has a special feature to help you do this: if a file
being compiled contains a defmacro form, the macro is defined temporarily for the rest of the
compilation of that file. To use this feature, you must define the macro in the same file where
it is used and before its first use.

Byte-compiling a file executes any require calls at top-level in the file. This is in case
the file needs the required packages for proper compilation. One way to ensure that necessary
macro definitions are available during compilation is to require the files that define them (see
Section 14.4 [Named Features|, page 182). To avoid loading the macro definition files when
someone runs the compiled program, write eval-when-compile around the require calls (see
Section 15.5 [Eval During Compile], page 191).

12.4 Defining Macros

Chapter 12: Macros 163

A Lisp macro is a list whose CAR is macro. Its CDR should be a function; expansion of
the macro works by applying the function (with apply) to the list of unevaluated argument-
expressions from the macro call.

It is possible to use an anonymous Lisp macro just like an anonymous function, but this is
never done, because it does not make sense to pass an anonymous macro to functionals such as
mapcar. In practice, all Lisp macros have names, and they are usually defined with the special
form defmacro.

defmacro name argument-list body-forms. . . Special Form
defmacro defines the symbol name as a macro that looks like this:

(macro lambda argument-list . body-forms)

This macro object is stored in the function cell of name. The value returned by evaluating
the defmacro form is name, but usually we ignore this value.

The shape and meaning of argument-list is the same as in a function, and the keywords
&rest and &optional may be used (see Section 11.2.3 [Argument List], page 149). Macros
may have a documentation string, but any interactive declaration is ignored since
macros cannot be called interactively.

12.5 Backquote

Macros often need to construct large list structures from a mixture of constants and noncon-
stant parts. To make this easier, use the macro ‘“’ (often called backquote).

Backquote allows you to quote a list, but selectively evaluate elements of that list. In the
simplest case, it is identical to the special form quote (see Section 8.3 [Quoting], page 116). For
example, these two forms yield identical results:

“(a list of (+ 2 3) elements)

= (a list of (+ 2 3) elements)
’(a list of (+ 2 3) elements)

= (a list of (+ 2 3) elements)

)

The special marker ‘,’ inside of the argument to backquote indicates a value that isn’t
constant. Backquote evaluates the argument of ‘,” and puts the value in the list structure:

(list ’a ’list ’of (+ 2 3) ’elements)
= (a list of 5 elements)

‘(a 1list of ,(+ 2 3) elements)
= (a list of 5 elements)

You can also splice an evaluated value into the resulting list, using the special marker ‘,@’.
The elements of the spliced list become elements at the same level as the other elements of
the resulting list. The equivalent code without using ‘¢’ is often unreadable. Here are some
examples:

(setq some-list ’(2 3))
= (2 3)

(cons 1 (append some-list ’(4) some-list))
= (123423)

‘(1 ,0some-list 4 ,@some-list)
= (12342 3)

(setq list ’(hack foo bar))
= (hack foo bar)

164

XEmacs Lisp Reference Manual

(cons ’use
(cons ’the
(cons ’words (append (cdr list) ’(as elements)))))
= (use the words foo bar as elements)
‘(use the words ,Q@(cdr list) as elements)
= (use the words foo bar as elements)

Before Emacs version 19.29, ‘¢” used a different syntax which required an extra level
of parentheses around the entire backquote construct. Likewise, each ‘,” or ‘,@’
substitution required an extra level of parentheses surrounding both the ,” or ¢, @’
and the following expression. The old syntax required whitespace between the ‘¢,

‘7 or ¢,@ and the following expression.

This syntax is still accepted, but no longer recommended except for compatibility
with old Emacs versions.

12.6 Common Problems Using Macros

The basic facts of macro expansion have counterintuitive consequences. This section describes

some important consequences that can lead to trouble, and rules to follow to avoid trouble.

12.6.1 Evaluating Macro Arguments Repeatedly

When defining a macro you must pay attention to the number of times the arguments will

be evaluated when the expansion is executed. The following macro (used to facilitate iteration)
illustrates the problem. This macro allows us to write a simple “for” loop such as one might
find in Pascal.

(defmacro for (var from init to final do &rest body)
"Execute a simple \"for\" loop.
For example, (for i from 1 to 10 do (print i))."
(list ’let (list (list var init))
(cons ’while (cons (list ’<= var final)
(append body (list (list ’inc var)))))))
= for

(for i from 1 to 3 do
(setq square (* i i))
(princ (format "\nJd %d" i square)))
—
(let ((1 1))
(while (k= i 3)
(setq square (* i i))

(princ (format "Y%d %d" i square))
(inc 1)))

-1 1

-2 4

-3 9

= nil

Chapter 12: Macros 165

(The arguments from, to, and do in this macro are “syntactic sugar”; they are entirely ignored.
The idea is that you will write noise words (such as from, to, and do) in those positions in the
macro call.)

Here’s an equivalent definition simplified through use of backquote:

(defmacro for (var from init to final do &rest body)
"Execute a simple \"for\" loop.
For example, (for i from 1 to 10 do (print i))."
‘(let ((,var ,init))
(while (<= ,var ,final)
,@body
(inc ,var))))

Both forms of this definition (with backquote and without) suffer from the defect that final is
evaluated on every iteration. If final is a constant, this is not a problem. If it is a more complex
form, say (long-complex-calculation x), this can slow down the execution significantly. If
final has side effects, executing it more than once is probably incorrect.

A well-designed macro definition takes steps to avoid this problem by producing an expansion
that evaluates the argument expressions exactly once unless repeated evaluation is part of the
intended purpose of the macro. Here is a correct expansion for the for macro:

(let ((1 1)
(max 3))
(while (<= i max)
(setq square (* i i))
(princ (format "%d %d" i square))
(inc 1)))

Here is a macro definition that creates this expansion:

(defmacro for (var from init to final do &rest body)
"Execute a simple for loop: (for i from 1 to 10 do (print i))."
‘(let ((,var ,init)
(max ,final))
(while (<= ,var max)
,@body
(inc ,var))))

Unfortunately, this introduces another problem.

12.6.2 Local Variables in Macro Expansions

The new definition of for has a new problem: it introduces a local variable named max which
the user does not expect. This causes trouble in examples such as the following;:

(let ((max 0))
(for x from O to 10 do
(let ((this (frob x)))
(if (< max this)
(setq max this)))))

The references to max inside the body of the for, which are supposed to refer to the user’s
binding of max, really access the binding made by for.

The way to correct this is to use an uninterned symbol instead of max (see Section 7.3
(Creating Symbols|, page 103). The uninterned symbol can be bound and referred to just like
any other symbol, but since it is created by for, we know that it cannot already appear in the
user’s program. Since it is not interned, there is no way the user can put it into the program

166 XEmacs Lisp Reference Manual

later. It will never appear anywhere except where put by for. Here is a definition of for that
works this way:

(defmacro for (var from init to final do &rest body)
"Execute a simple for loop: (for i from 1 to 10 do (print i))."
(let ((tempvar (make-symbol "max")))
‘(let ((,var ,init)
(,tempvar ,final))
(while (<= ,var ,tempvar)
,@body
(inc ,var)))))
This creates an uninterned symbol named max and puts it in the expansion instead of the usual
interned symbol max that appears in expressions ordinarily.

12.6.3 Evaluating Macro Arguments in Expansion

Another problem can happen if you evaluate any of the macro argument expressions during
the computation of the expansion, such as by calling eval (see Section 8.1 [Eval], page 109).
If the argument is supposed to refer to the user’s variables, you may have trouble if the user
happens to use a variable with the same name as one of the macro arguments. Inside the macro
body, the macro argument binding is the most local binding of this variable, so any references
inside the form being evaluated do refer to it. Here is an example:

(defmacro foo (a)
(list ’setq (eval a) t))

= foo

(setq x ’b)

(foo x) — (setq b t)
=t

;5 but

(setq a ’c)

(foo a) — (setq a t)
=t ; but this set a, not c.

; and b has been set.

It makes a difference whether the user’s variable is named a or x, because a conflicts with
the macro argument variable a.

Another reason not to call eval in a macro definition is that it probably won’t do what you
intend in a compiled program. The byte-compiler runs macro definitions while compiling the
program, when the program’s own computations (which you might have wished to access with
eval) don’t occur and its local variable bindings don’t exist.

The safe way to work with the run-time value of an expression is to put the expression into
the macro expansion, so that its value is computed as part of executing the expansion.

12.6.4 How Many Times is the Macro Expanded?

Occasionally problems result from the fact that a macro call is expanded each time it is
evaluated in an interpreted function, but is expanded only once (during compilation) for a
compiled function. If the macro definition has side effects, they will work differently depending
on how many times the macro is expanded.

In particular, constructing objects is a kind of side effect. If the macro is called once, then
the objects are constructed only once. In other words, the same structure of objects is used each

Chapter 12: Macros 167

time the macro call is executed. In interpreted operation, the macro is reexpanded each time,
producing a fresh collection of objects each time. Usually this does not matter—the objects
have the same contents whether they are shared or not. But if the surrounding program does
side effects on the objects, it makes a difference whether they are shared. Here is an example:

(defmacro empty-object ()
(1ist ’quote (cons nil nil)))

(defun initialize (condition)
(let ((object (empty-object)))
(if condition
(setcar object condition))
object))

If initialize is interpreted, a new list (nil) is constructed each time initialize is called.
Thus, no side effect survives between calls. If initialize is compiled, then the macro empty-
object is expanded during compilation, producing a single “constant” (nil) that is reused and
altered each time initialize is called.

One way to avoid pathological cases like this is to think of empty-object as a funny kind of
constant, not as a memory allocation construct. You wouldn’t use setcar on a constant such
as ’ (nil), so naturally you won’t use it on (empty-object) either.

168 XEmacs Lisp Reference Manual

Chapter 13: Writing Customization Definitions 169

13 Writing Customization Definitions

This chapter describes how to declare user options for customization, and also customization
groups for classifying them. We use the term customization item to include both kinds of
customization definitions—as well as face definitions.

13.1 Common Keywords for All Kinds of Items

All kinds of customization declarations (for variables and groups, and for faces) accept key-
word arguments for specifying various information. This section describes some keywords that
apply to all kinds.

All of these keywords, except :tag, can be used more than once in a given item. Each use
of the keyword has an independent effect. The keyword :tag is an exception because any given
item can only display one name.

:tag name
Use name, a string, instead of the item’s name, to label the item in customization
menus and buffers.

:group group
Put this customization item in group group. When you use :group in a defgroup,
it makes the new group a subgroup of group.

If you use this keyword more than once, you can put a single item into more than
one group. Displaying any of those groups will show this item. Be careful not to
overdo this!

:1ink link-data
Include an external link after the documentation string for this item. This is a
sentence containing an active field which references some other documentation.

There are three alternatives you can use for link-data:

(custom-manual info-node)
Link to an Info node; info-node is a string which specifies the node
name, as in " (emacs)Top". The link appears as ‘[manual]’ in the cus-
tomization buffer.

(info-1link info-node)
Like custom-manual except that the link appears in the customization
buffer with the Info node name.

(url-link url)
Link to a web page; url is a string which specifies the URL. The link
appears in the customization buffer as url.

You can specify the text to use in the customization buffer by adding :tag
name after the first element of the link-data; for example, (info-link :tag "foo"
"(emacs)Top") makes a link to the Emacs manual which appears in the buffer as
‘foo’.

An item can have more than one external link; however, most items have none at
all.

:1load file Load file file (a string) before displaying this customization item. Loading is done
with load-library, and only if the file is not already loaded.

170 XEmacs Lisp Reference Manual

:require feature
Require feature feature (a symbol) when installing a value for this item (an option
or a face) that was saved using the customization feature. This is done by calling
require.

The most common reason to use :require is when a variable enables a feature such
as a minor mode, and just setting the variable won’t have any effect unless the code
which implements the mode is loaded.

13.2 Defining Custom Groups

Each Emacs Lisp package should have one main customization group which contains all the
options, faces and other groups in the package. If the package has a small number of options
and faces, use just one group and put everything in it. When there are more than twelve or so
options and faces, then you should structure them into subgroups, and put the subgroups under
the package’s main customization group. It is OK to put some of the options and faces in the
package’s main group alongside the subgroups.

The package’s main or only group should be a member of one or more of the standard
customization groups. (To display the full list of them, use M-x customize.) Choose one or
more of them (but not too many), and add your group to each of them using the :group
keyword.

The way to declare new customization groups is with defgroup.

defgroup group members doc [keyword value]... Macro
Declare group as a customization group containing members. Do not quote the symbol
group. The argument doc specifies the documentation string for the group.

The argument members is a list specifying an initial set of customization items to be
members of the group. However, most often members is nil, and you specify the group’s
members by using the :group keyword when defining those members.

If you want to specify group members through members, each element should have the
form (name widget). Here name is a symbol, and widget is a widget type for editing that
symbol. Useful widgets are custom-variable for a variable, custom-face for a face, and
custom-group for a group.

In addition to the common keywords (see Section 13.1 [Common Keywords|, page 169),
you can use this keyword in defgroup:

:prefix prefix
If the name of an item in the group starts with prefix, then the tag for that
item is constructed (by default) by omitting prefix.

One group can have any number of prefixes.

13.3 Defining Customization Variables

Use defcustom to declare user-editable variables.

defcustom option default doc [keyword value]... Macro
Declare option as a customizable user option variable. Do not quote option. The argument
doc specifies the documentation string for the variable.

Chapter 13: Writing Customization Definitions 171

If option is void, defcustom initializes it to default. default should be an expression to
compute the value; be careful in writing it, because it can be evaluated on more than one
occasion.

The following additional keywords are defined:

:type type
Use type as the data type for this option. It specifies which values are legiti-
mate, and how to display the value. See Section 13.4 [Customization Types|
page 172, for more information.

:options list
Specify list as the list of reasonable values for use in this option.
Currently this is meaningful only when the type is hook. In that case, the
elements of list should be functions that are useful as elements of the hook
value. The user is not restricted to using only these functions, but they are
offered as convenient alternatives.

:version version
This option specifies that the variable was first introduced, or its default value
was changed, in Emacs version version. The value version must be a string.
For example,

(defcustom foo-max 34
"xMaximum number of foo’s allowed."
:type ’integer
:group ’foo
:version "20.3")

:set setfunction
Specify setfunction as the way to change the value of this option. The function
setfunction should take two arguments, a symbol and the new value, and
should do whatever is necessary to update the value properly for this option
(which may not mean simply setting the option as a Lisp variable). The
default for setfunction is set-default.

:get getfunction
Specify getfunction as the way to extract the value of this option. The func-
tion getfunction should take one argument, a symbol, and should return the
“current value” for that symbol (which need not be the symbol’s Lisp value).
The default is default-value.

:initialize function
function should be a function used to initialize the variable when the
defcustom is evaluated. It should take two arguments, the symbol and value.
Here are some predefined functions meant for use in this way:

custom-initialize-set
Use the variable’s :set function to initialize the variable, but do
not reinitialize it if it is already non-void. This is the default
:initialize function.

custom-initialize-default
Like custom-initialize-set, but use the function set-default
to set the variable, instead of the variable’s :set function. This
is the usual choice for a variable whose :set function enables or
disables a minor mode; with this choice, defining the variable will
not call the minor mode function, but customizing the variable
will do so.

172 XEmacs Lisp Reference Manual

custom-initialize-reset
Always use the :set function to initialize the variable. If the
variable is already non-void, reset it by calling the :set function
using the current value (returned by the :get method).

custom-initialize-changed
Use the :set function to initialize the variable, if it is already set
or has been customized; otherwise, just use set-default.

The :require option is useful for an option that turns on the operation of a certain feature.
Assuming that the package is coded to check the value of the option, you still need to arrange
for the package to be loaded. You can do that with :require. See Section 13.1 [Common
Keywords|, page 169. Here is an example, from the library ‘paren.el’:

(defcustom show-paren-mode nil
"Toggle Show Paren mode...."
:set (lambda (symbol value)
(show-paren-mode (or value 0)))
:initialize ’custom-initialize-default
:type ’boolean
:group ’paren-showing
:require ’paren)

Internally, defcustom uses the symbol property standard-value to record the expression for
the default value, and saved-value to record the value saved by the user with the customization
buffer. The saved-value property is actually a list whose car is an expression which evaluates
to the value.

13.4 Customization Types

When you define a user option with defcustom, you must specify its customization type.
That is a Lisp object which describes (1) which values are legitimate and (2) how to display the
value in the customization buffer for editing.

You specify the customization type in defcustom with the :type keyword. The argument
of :type is evaluated; since types that vary at run time are rarely useful, normally you use a
quoted constant. For example:

(defcustom diff-command "diff"
"*The command to use to run diff."
:type ’(string)
:group ’diff)

In general, a customization type is a list whose first element is a symbol, one of the cus-
tomization type names defined in the following sections. After this symbol come a number of
arguments, depending on the symbol. Between the type symbol and its arguments, you can
optionally write keyword-value pairs (see Section 13.4.4 [Type Keywords|, page 175).

Some of the type symbols do not use any arguments; those are called simple types. For a
simple type, if you do not use any keyword-value pairs, you can omit the parentheses around
the type symbol. For example just string as a customization type is equivalent to (string).

13.4.1 Simple Types

This section describes all the simple customization types.

Chapter 13: Writing Customization Definitions 173

sexp

integer

number

string

regexp

character

file

The value may be any Lisp object that can be printed and read back. You can use
sexp as a fall-back for any option, if you don’t want to take the time to work out a
more specific type to use.

The value must be an integer, and is represented textually in the customization
buffer.

The value must be a number, and is represented textually in the customization
buffer.

The value must be a string, and the customization buffer shows just the contents,
with no delimiting ‘"’ characters and no quoting with ‘\’.

Like string except that the string must be a valid regular expression.

The value must be a character code. A character code is actually an integer, but
this type shows the value by inserting the character in the buffer, rather than by
showing the number.

The value must be a file name, and you can do completion with M—(TAB).

(file :must-match t)

directory

symbol

function

variable
face

boolean

The value must be a file name for an existing file, and you can do completion with

M-(TAB).

The value must be a directory name, and you can do completion with M-(TAB).

The value must be a symbol. It appears in the customization buffer as the name of
the symbol.

The value must be either a lambda expression or a function name. When it is a
function name, you can do completion with M-(TAB).

The value must be a variable name, and you can do completion with M-(TAB).
The value must be a symbol which is a face name.

The value is boolean—either nil or t. Note that by using choice and const
together (see the next section), you can specify that the value must be nil or t, but
also specify the text to describe each value in a way that fits the specific meaning
of the alternative.

13.4.2 Composite Types

When none of the simple types is appropriate, you can use composite types, which build new
types from other types. Here are several ways of doing that:

(restricted-sexp :match-alternatives criteria)

The value may be any Lisp object that satisfies one of criteria. criteria should be a
list, and each elements should be one of these possibilities:

e A predicate—that is, a function of one argument that returns non-nil if the
argument fits a certain type. This means that objects of that type are accept-
able.

e A quoted constant—that is, >object. This means that object itself is an ac-
ceptable value.

For example,

174 XEmacs Lisp Reference Manual

(restricted-sexp :match-alternatives (integerp ’t ’nil))
allows integers, t and nil as legitimate values.

The customization buffer shows all legitimate values using their read syntax, and
the user edits them textually.

(cons car-type cdr-type)
The value must be a cons cell, its CAR must fit car-type, and its CDR must fit cdr-
type. For example, (cons string symbol) is a customization type which matches
values such as ("foo" . foo).

In the customization buffer, the CAR and the CDR are displayed and edited sepa-
rately, each according to the type that you specify for it.

(list element-types. . .)
The value must be a list with exactly as many elements as the element-types you
have specified; and each element must fit the corresponding element-type.

For example, (1ist integer string function) describes a list of three elements;
the first element must be an integer, the second a string, and the third a function.

In the customization buffer, the each element is displayed and edited separately,
according to the type specified for it.

(vector element-types. . .)
Like 1ist except that the value must be a vector instead of a list. The elements
work the same as in list.

(choice alternative-types. . .)
The value must fit at least one of alternative-types. For example, (choice integer
string) allows either an integer or a string.

In the customization buffer, the user selects one of the alternatives using a menu,
and can then edit the value in the usual way for that alternative.

Normally the strings in this menu are determined automatically from the choices;
however, you can specify different strings for the menu by including the :tag key-
word in the alternatives. For example, if an integer stands for a number of spaces,
while a string is text to use verbatim, you might write the customization type this
way,

(choice (integer :tag "Number of spaces")
(string :tag "Literal text"))

so that the menu offers ‘Number of spaces’ and ‘Literal Text’.

In any alternative for which nil is not a valid value, other than a const, you
should specify a valid default for that alternative using the :value keyword. See
Section 13.4.4 [Type Keywords], page 175.

(const value)
The value must be value—nothing else is allowed.

The main use of const is inside of choice. For example, (choice integer (const
nil)) allows either an integer or nil.

:tag is often used with const, inside of choice. For example,

(choice (const :tag "Yes" t)
(const :tag "No" nil)
(const :tag "Ask" foo))

(function-item function)
Like const, but used for values which are functions. This displays the documenta-
tion string as well as the function name. The documentation string is either the one
you specify with :doc, or function’s own documentation string.

Chapter 13: Writing Customization Definitions 175

(variable-item variable)
Like const, but used for values which are variable names. This displays the docu-
mentation string as well as the variable name. The documentation string is either
the one you specify with :doc, or variable’s own documentation string.

(set elements. . .)
The value must be a list and each element of the list must be one of the elements
specified. This appears in the customization buffer as a checklist.

(repeat element-type)
The value must be a list and each element of the list must fit the type element-type.
This appears in the customization buffer as a list of elements, with ‘[INS]’ and
‘[DEL]’ buttons for adding more elements or removing elements.

13.4.3 Splicing into Lists

The :inline feature lets you splice a variable number of elements into the middle of a list
or vector. You use it in a set, choice or repeat type which appears among the element-types
of a 1list or vector.

Normally, each of the element-types in a 1ist or vector describes one and only one element
of the list or vector. Thus, if an element-type is a repeat, that specifies a list of unspecified
length which appears as one element.

But when the element-type uses :inline, the value it matches is merged directly into the
containing sequence. For example, if it matches a list with three elements, those become three
elements of the overall sequence. This is analogous to using ‘,@’ in the backquote construct.

For example, to specify a list whose first element must be t and whose remaining arguments
should be zero or more of foo and bar, use this customization type:

(list (const t) (set :inline t foo bar))
This matches values such as (t), (t foo), (t bar) and (t foo bar).

When the element-type is a choice, you use :inline not in the choice itself, but in (some
of) the alternatives of the choice. For example, to match a list which must start with a file
name, followed either by the symbol t or two strings, use this customization type:

(1list file
(choice (const t)
(list :inline t string string)))
If the user chooses the first alternative in the choice, then the overall list has two elements and
the second element is t. If the user chooses the second alternative, then the overall list has three
elements and the second and third must be strings.

13.4.4 Type Keywords

You can specify keyword-argument pairs in a customization type after the type name symbol.
Here are the keywords you can use, and their meanings:

:value default
This is used for a type that appears as an alternative inside of choice; it specifies
the default value to use, at first, if and when the user selects this alternative with
the menu in the customization buffer.

Of course, if the actual value of the option fits this alternative, it will appear showing
the actual value, not default.

176 XEmacs Lisp Reference Manual

If nil is not a valid value for the alternative, then it is essential to specify a valid
default with :value.

:format format-string
This string will be inserted in the buffer to represent the value corresponding to the
type. The following ‘%’ escapes are available for use in format-string:

‘% [button’,]’
Display the text button marked as a button. The :action attribute
specifies what the button will do if the user invokes it; its value is
a function which takes two arguments—the widget which the button
appears in, and the event.

There is no way to specify two different buttons with different actions.

“%{sample’}’
Show sample in a special face specified by :sample-face.

v’ Substitute the item’s value. How the value is represented depends on
the kind of item, and (for variables) on the customization type.

hd’ Substitute the item’s documentation string.

%k’ Like ‘%d’, but if the documentation string is more than one line, add an
active field to control whether to show all of it or just the first line.

AR Substitute the tag here. You specify the tag with the :tag keyword.

AA Display a literal ‘%’ .

raction action
Perform action if the user clicks on a button.

:button-face face
Use the face face (a face name or a list of face names) for button text displayed with

Rl %

:button-prefix prefix
:button-suffix suffix
These specify the text to display before and after a button. Each can be:

nil No text is inserted.
a string The string is inserted literally.
a symbol The symbol’s value is used.

:tag tag Use tag (a string) as the tag for the value (or part of the value) that corresponds
to this type.

:doc doc Use doc as the documentation string for this value (or part of the value) that
corresponds to this type. In order for this to work, you must specify a value for
:format, and use ‘%d’ or ‘%h’ in that value.

The usual reason to specify a documentation string for a type is to provide more
information about the meanings of alternatives inside a :choice type or the parts
of some other composite type.

:help-echo motion-doc
When you move to this item with widget-forward or widget-backward, it will
display the string motion-doc in the echo area.

:match function
Specify how to decide whether a value matches the type. The corresponding value,
function, should be a function that accepts two arguments, a widget and a value; it
should return non-nil if the value is acceptable.

Chapter 14: Loading 177

14 Loading

Loading a file of Lisp code means bringing its contents into the Lisp environment in the form
of Lisp objects. XEmacs finds and opens the file, reads the text, evaluates each form, and then
closes the file.

The load functions evaluate all the expressions in a file just as the eval-current-buffer
function evaluates all the expressions in a buffer. The difference is that the load functions read
and evaluate the text in the file as found on disk, not the text in an Emacs buffer.

The loaded file must contain Lisp expressions, either as source code or as byte-compiled code.
Each form in the file is called a top-level form. There is no special format for the forms in a
loadable file; any form in a file may equally well be typed directly into a buffer and evaluated
there. (Indeed, most code is tested this way.) Most often, the forms are function definitions and
variable definitions.

A file containing Lisp code is often called a Ilibrary. Thus, the “Rmail library” is a file
containing code for Rmail mode. Similarly, a “Lisp library directory” is a directory of files
containing Lisp code.

14.1 How Programs Do Loading

XEmacs Lisp has several interfaces for loading. For example, autoload creates a placeholder
object for a function in a file; trying to call the autoloading function loads the file to get the
function’s real definition (see Section 14.2 [Autoload|, page 180). require loads a file if it isn’t
already loaded (see Section 14.4 [Named Features|, page 182). Ultimately, all these facilities call
the load function to do the work.

load filename &optional missing-ok nomessage nosuffix Function
This function finds and opens a file of Lisp code, evaluates all the forms in it, and closes
the file.

To find the file, load first looks for a file named ‘filename.elc’, that is, for a file whose
name is filename with ‘.elc’ appended. If such a file exists, it is loaded. If there is no
file by that name, then load looks for a file named ‘filename.el’. If that file exists, it is
loaded. Finally, if neither of those names is found, load looks for a file named filename
with nothing appended, and loads it if it exists. (The load function is not clever about
looking at filename. In the perverse case of a file named ‘foo.el.el’, evaluation of (Load
"foo.el") will indeed find it.)

If the optional argument nosuffix is non-nil, then the suffixes ‘.elc’ and ‘.el
tried. In this case, you must specify the precise file name you want.

¢ Y

are not

If filename is a relative file name, such as ‘foo’ or ‘baz/foo.bar’, load searches for the
file using the variable load-path. It appends filename to each of the directories listed
in load-path, and loads the first file it finds whose name matches. The current default
directory is tried only if it is specified in load-path, where nil stands for the default
directory. load tries all three possible suffixes in the first directory in load-path, then
all three suffixes in the second directory, and so on.

If you get a warning that ‘foo.elc’ is older than ‘foo.el’; it means you should consider
recompiling ‘foo.el’. See Chapter 15 [Byte Compilation], page 187.

Messages like ‘Loading foo... and ‘Loading foo...done appear in the echo area during
loading unless nomessage is non-nil.

Any unhandled errors while loading a file terminate loading. If the load was done for the
sake of autoload, any function definitions made during the loading are undone.

178 XEmacs Lisp Reference Manual

If 1load can’t find the file to load, then normally it signals the error file-error (with
‘Cannot open load file filename’). But if missing-ok is non-nil, then load just returns
nil.

You can use the variable load-read-function to specify a function for load to use instead
of read for reading expressions. See below.

load returns t if the file loads successfully.

load-path User Option
The value of this variable is a list of directories to search when loading files with load.
Each element is a string (which must be a directory name) or nil (which stands for
the current working directory). The value of load-path is initialized from the environ-
ment variable EMACSLOADPATH, if that exists; otherwise its default value is specified in
‘emacs/src/paths.h’ when XEmacs is built.

The syntax of EMACSLOADPATH is the same as used for PATH; ‘:’ (or ‘;’, according to
the operating system) separates directory names, and ‘.’ is used for the current default
directory. Here is an example of how to set your EMACSLOADPATH variable from a csh
‘.login’ file:

setenv EMACSLOADPATH .:/user/bil/emacs:/usr/lib/emacs/lisp
Here is how to set it using sh:

export EMACSLOADPATH
EMACSLOADPATH=. : /user/bil/emacs: /usr/local/lib/emacs/lisp

Here is an example of code you can place in a ‘.emacs’ file to add several directories to
the front of your default load-path:

(setq load-path
(append (1list nil "/user/bil/emacs"
"/usr/local/lisplib"
"~/emacs")
load-path))

In this example, the path searches the current working directory first, followed then by
the ‘/user/bil/emacs’ directory, the ‘/usr/local/lisplib’ directory, and the ‘~/emacs’
directory, which are then followed by the standard directories for Lisp code.

The command line options ‘-1’ or ‘-1load’ specify a Lisp library to load as part of Emacs
startup. Since this file might be in the current directory, Emacs 18 temporarily adds the
current directory to the front of load-path so the file can be found there. Newer Emacs
versions also find such files in the current directory, but without altering load-path.

Dumping Emacs uses a special value of load-path. If the value of load-path at the end of
dumping is unchanged (that is, still the same special value), the dumped Emacs switches
to the ordinary load-path value when it starts up, as described above. But if load-path
has any other value at the end of dumping, that value is used for execution of the dumped
Emacs also.

Therefore, if you want to change load-path temporarily for loading a few libraries in
‘site-init.el’ or ‘site-load.el’, you should bind load-path locally with let around
the calls to load.

locate-file filename path-list &optional suffixes mode Function
This function searches for a file in the same way that load does, and returns the
file found (if any). (In fact, load uses this function to search through load-path.)
It searches for filename through path-list, expanded by one of the optional
suffixes (string of suffixes separated by ‘:’s), checking for access mode (0111214 =
exists | executable | writeable | readable), default readable.

Chapter 14: Loading 179

locate-file keeps hash tables of the directories it searches through, in order to speed
things up. It tries valiantly to not get confused in the face of a changing and unpredictable
environment, but can occasionally get tripped up. In this case, you will have to call
locate-file-clear-hashing to get it back on track. See that function for details.

locate-file-clear-hashing path Function
This function clears the hash records for the specified list of directories. locate-file uses
a hashing scheme to speed lookup, and will correctly track the following environmental
changes:

e changes of any sort to the list of directories to be searched.

e addition and deletion of non-shadowing files (see below) from the directories in the
list.

e Dbyte-compilation of a .el file into a .elc file.

locate-file will primarily get confused if you add a file that shadows (i.e. has the
same name as) another file further down in the directory list. In this case, you must call
locate-file-clear-hashing.

load-in-progress Variable
This variable is non-nil if Emacs is in the process of loading a file, and it is nil otherwise.

load-read-function Variable
This variable specifies an alternate expression-reading function for load and eval-region
to use instead of read. The function should accept one argument, just as read does.

Normally, the variable’s value is nil, which means those functions should use read.

load-warn-when-source-newer User Option
This variable specifies whether 1load should check whether the source is newer than the
binary. If this variable is true, then when a ‘. elc’ file is being loaded and the corresponding
‘.el’ is newer, a warning message will be printed. The default is nil, but it is bound to
t during the initial loadup.

load-warn-when-source-only User Option
This variable specifies whether load should warn when loading a ‘.el’ file instead of
an ‘.elc’. If this variable is true, then when load is called with a filename without an
extension, and the ‘.elc’ version doesn’t exist but the ‘.el’ version does, then a message
will be printed. If an explicit extension is passed to load, no warning will be printed. The
default is nil, but it is bound to t during the initial loadup.

load-ignore-elc-files User Option
This variable specifies whether 1load should ignore ‘.elc’ files when a suffix is not given.
This is normally used only to bootstrap the ‘.elc’ files when building XEmacs, when
you use the command ‘make all-elc’. (This forces the ‘.el’ versions to be loaded in the
process of compiling those same files, so that existing out-of-date ‘.elc’ files do not make
it mess things up.)

To learn how load is used to build XEmacs, see Section B.1 [Building XEmacs|, page 693.

180 XEmacs Lisp Reference Manual

14.2 Autoload

The autoload facility allows you to make a function or macro known in Lisp, but put off
loading the file that defines it. The first call to the function automatically reads the proper file
to install the real definition and other associated code, then runs the real definition as if it had
been loaded all along.

There are two ways to set up an autoloaded function: by calling autoload, and by writing
a special “magic” comment in the source before the real definition. autoload is the low-level
primitive for autoloading; any Lisp program can call autoload at any time. Magic comments
do nothing on their own; they serve as a guide for the command update-file-autoloads,
which constructs calls to autoload and arranges to execute them when Emacs is built. Magic
comments are the most convenient way to make a function autoload, but only for packages
installed along with Emacs.

autoload function filename &optional docstring interactive type Function
This function defines the function (or macro) named function so as to load automatically
from filename. The string filename specifies the file to load to get the real definition of
function.

The argument docstring is the documentation string for the function. Normally, this is the
identical to the documentation string in the function definition itself. Specifying the doc-
umentation string in the call to autoload makes it possible to look at the documentation
without loading the function’s real definition.

If interactive is non-nil, then the function can be called interactively. This lets comple-
tion in M-x work without loading the function’s real definition. The complete interactive
specification need not be given here; it’s not needed unless the user actually calls function,
and when that happens, it’s time to load the real definition.

You can autoload macros and keymaps as well as ordinary functions. Specify type as
macro if function is really a macro. Specify type as keymap if function is really a keymap.
Various parts of Emacs need to know this information without loading the real definition.

An autoloaded keymap loads automatically during key lookup when a prefix key’s binding
is the symbol function. Autoloading does not occur for other kinds of access to the keymap.
In particular, it does not happen when a Lisp program gets the keymap from the value of a
variable and calls define-key; not even if the variable name is the same symbol function.

If function already has a non-void function definition that is not an autoload object,
autoload does nothing and returns nil. If the function cell of function is void, or is
already an autoload object, then it is defined as an autoload object like this:

(autoload filename docstring interactive type)
For example,

(symbol-function ’run-prolog)
= (autoload "prolog" 169681 t nil)

In this case, "prolog" is the name of the file to load, 169681 refers to the documentation
string in the ‘DOC’ file (see Section 27.1 [Documentation Basics|, page 345), t means the
function is interactive, and nil that it is not a macro or a keymap.

The autoloaded file usually contains other definitions and may require or provide one or more
features. If the file is not completely loaded (due to an error in the evaluation of its contents),
any function definitions or provide calls that occurred during the load are undone. This is to
ensure that the next attempt to call any function autoloading from this file will try again to
load the file. If not for this, then some of the functions in the file might appear defined, but

Chapter 14: Loading 181

they might fail to work properly for the lack of certain subroutines defined later in the file and
not loaded successfully.

XEmacs as distributed comes with many autoloaded functions. The calls to autoload are in
the file ‘loaddefs.el’. There is a convenient way of updating them automatically.

If the autoloaded file fails to define the desired Lisp function or macro, then an error is
signaled with data "Autoloading failed to define function function-name".

A magic autoload comment looks like ‘;;;###autoload’, on a line by itself, just before
the real definition of the function in its autoloadable source file. The command M-x update-
file-autoloads writes a corresponding autoload call into ‘loaddefs.el’. Building Emacs
loads ‘loaddefs.el’” and thus calls autoload. M-x update-directory-autoloads is even more
powerful; it updates autoloads for all files in the current directory.

The same magic comment can copy any kind of form into ‘loaddefs.el’. If the form following
the magic comment is not a function definition, it is copied verbatim. You can also use a magic
comment to execute a form at build time without executing it when the file itself is loaded. To
do this, write the form on the same line as the magic comment. Since it is in a comment, it does
nothing when you load the source file; but update-file-autoloads copies it to ‘loaddefs.el’,
where it is executed while building Emacs.

The following example shows how doctor is prepared for autoloading with a magic comment:

;5 ###autoload
(defun doctor ()
"Switch to *doctor* buffer and start giving psychotherapy."
(interactive)
(switch-to-buffer "*xdoctor*")
(doctor-mode))

Here’s what that produces in ‘loaddefs.el’:

(autoload ’doctor "doctor"
ll\

Switch to *doctor* buffer and start giving psychotherapy."
t)

The backslash and newline immediately following the double-quote are a convention used only in
the preloaded Lisp files such as ‘loaddefs.el’; they tell make-docfile to put the documentation
string in the ‘DOC’ file. See Section B.1 [Building XEmacs|, page 693.

14.3 Repeated Loading

You may load one file more than once in an Emacs session. For example, after you have
rewritten and reinstalled a function definition by editing it in a buffer, you may wish to return
to the original version; you can do this by reloading the file it came from.

When you load or reload files, bear in mind that the load and load-library functions
automatically load a byte-compiled file rather than a non-compiled file of similar name. If you
rewrite a file that you intend to save and reinstall, remember to byte-compile it if necessary;
otherwise you may find yourself inadvertently reloading the older, byte-compiled file instead of
your newer, non-compiled file!

When writing the forms in a Lisp library file, keep in mind that the file might be loaded more
than once. For example, the choice of defvar vs. defconst for defining a variable depends on
whether it is desirable to reinitialize the variable if the library is reloaded: defconst does so,
and defvar does not. (See Section 10.5 [Defining Variables|, page 134.)

The simplest way to add an element to an alist is like this:

182 XEmacs Lisp Reference Manual

(setq minor-mode-alist
(cons ’(leif-mode " Leif") minor-mode-alist))

But this would add multiple elements if the library is reloaded. To avoid the problem, write
this:

(or (assq ’leif-mode minor-mode-alist)
(setq minor-mode-alist
(cons ’(leif-mode " Leif") minor-mode-alist)))

To add an element to a list just once, use add-to-1list (see Section 10.7 [Setting Variables|,
page 137).

Occasionally you will want to test explicitly whether a library has already been loaded. Here’s
one way to test, in a library, whether it has been loaded before:

(defvar foo-was-loaded)

(if (not (boundp ’foo-was-loaded))
execute-first-time-only)

(setq foo-was-loaded t)

If the library uses provide to provide a named feature, you can use featurep to test whether
the library has been loaded.

14.4 Features

provide and require are an alternative to autoload for loading files automatically. They
work in terms of named features. Autoloading is triggered by calling a specific function, but a
feature is loaded the first time another program asks for it by name.

A feature name is a symbol that stands for a collection of functions, variables, etc. The file
that defines them should provide the feature. Another program that uses them may ensure they
are defined by requiring the feature. This loads the file of definitions if it hasn’t been loaded
already.

To require the presence of a feature, call require with the feature name as argument.
require looks in the global variable features to see whether the desired feature has been
provided already. If not, it loads the feature from the appropriate file. This file should call
provide at the top level to add the feature to features; if it fails to do so, require signals an
erTor.

Features are normally named after the files that provide them, so that require need not be
given the file name.

For example, in ‘emacs/lisp/prolog.el’, the definition for run-prolog includes the follow-
ing code:

(defun run-prolog ()
"Run an inferior Prolog process, input and output via buffer *prolog."
(interactive)
(require ’comint)
(switch-to-buffer (make-comint "prolog" prolog-program-name))
(inferior-prolog-mode))

The expression (require ’comint) loads the file ‘comint.el’ if it has not yet been loaded. This
ensures that make-comint is defined.

The ‘comint.el’ file contains the following top-level expression:

Chapter 14: Loading 183

(provide ’comint)

This adds comint to the global features list, so that (require ’comint) will henceforth know
that nothing needs to be done.

When require is used at top level in a file, it takes effect when you byte-compile that file
(see Chapter 15 [Byte Compilation|, page 187) as well as when you load it. This is in case the
required package contains macros that the byte compiler must know about.

Although top-level calls to require are evaluated during byte compilation, provide calls are
not. Therefore, you can ensure that a file of definitions is loaded before it is byte-compiled by
including a provide followed by a require for the same feature, as in the following example.

(provide ’my-feature) ; Ignored by byte compiler,
; evaluated by load.
(require ’my-feature) ; Evaluated by byte compiler.

The compiler ignores the provide, then processes the require by loading the file in question.
Loading the file does execute the provide call, so the subsequent require call does nothing
while loading.

provide feature Function
This function announces that feature is now loaded, or being loaded, into the current
XEmacs session. This means that the facilities associated with feature are or will be
available for other Lisp programs.

The direct effect of calling provide is to add feature to the front of the list features if
it is not already in the list. The argument feature must be a symbol. provide returns
feature.

features
= (bar bish)

(provide ’foo)
= foo
features
= (foo bar bish)

When a file is loaded to satisfy an autoload, and it stops due to an error in the evaluating
its contents, any function definitions or provide calls that occurred during the load are
undone. See Section 14.2 [Autoload], page 180.

require feature &optional filename Function
This function checks whether feature is present in the current XEmacs session (using
(featurep feature); see below). If it is not, then require loads filename with load. If
filename is not supplied, then the name of the symbol feature is used as the file name to
load.

If loading the file fails to provide feature, require signals an error, ‘Required feature
feature was not provided’.

featurep fexp Function
This function returns t if feature fexp is present in this Emacs. Use this to conditionalize
execution of lisp code based on the presence or absence of emacs or environment extensions.

fexp can be a symbol, a number, or a list.

If fexp is a symbol, it is looked up in the ‘features’ variable, and t is returned if it is found,
nil otherwise.

184 XEmacs Lisp Reference Manual

If fexp is a number, the function returns t if this Emacs has an equal or greater number
than fexp, nil otherwise. Note that minor Emacs version is expected to be 2 deci-
mal places wide, so (featurep 20.4) will return nil on XEmacs 20.4—you must write
(featurep 20.04), unless you wish to match for XEmacs 20.40.

If fexp is a list whose car is the symbol and, the function returns t if all the features in
its cdr are present, nil otherwise.

If fexp is a list whose car is the symbol or, the function returns t if any the features in
its cdr are present, nil otherwise.

If fexp is a list whose car is the symbol not, the function returns t if the feature is not
present, nil otherwise.

Examples:

(featurep ’xemacs)
= ; t on XEmacs.

(featurep ’(and xemacs gnus))
= ; t on XEmacs with Gnus loaded.

(featurep ’(or tty-frames (and emacs 19.30)))
= ; t if this Emacs supports TTY frames.

(featurep ’(or (and xemacs 19.15) (and emacs 19.34)))
= ; t on XEmacs 19.15 and later, or on
; FSF Emacs 19.34 and later.

Please note: The advanced arguments of this function (anything other than a symbol)
are not yet supported by FSF Emacs. If you feel they are useful for supporting multiple
Emacs variants, lobby Richard Stallman at ‘<bug-gnu-emacs@prep.ai.mit.edu>’.

features Variable
The value of this variable is a list of symbols that are the features loaded in the current
XEmacs session. FEach symbol was put in this list with a call to provide. The order of
the elements in the features list is not significant.

14.5 Unloading

You can discard the functions and variables loaded by a library to reclaim memory for other
Lisp objects. To do this, use the function unload-feature:

unload-feature feature &optional force Command
This command unloads the library that provided feature feature. It undefines all functions,
macros, and variables defined in that library with defconst, defvar, defun, defmacro,
defsubst, definf-function and defalias. It then restores any autoloads formerly asso-
ciated with those symbols. (Loading saves these in the autoload property of the symbol.)

Ordinarily, unload-feature refuses to unload a library on which other loaded libraries
depend. (A library a depends on library b if a contains a require for b.) If the optional
argument force is non-nil, dependencies are ignored and you can unload any library.

The unload-feature function is written in Lisp; its actions are based on the variable load-
history.

Chapter 14: Loading 185

load-history Variable
This variable’s value is an alist connecting library names with the names of functions and
variables they define, the features they provide, and the features they require.

Each element is a list and describes one library. The CAR of the list is the name of the
library, as a string. The rest of the list is composed of these kinds of objects:

e Symbols that were defined by this library.
e Lists of the form (require . feature) indicating features that were required.
e Lists of the form (provide . feature) indicating features that were provided.

The value of load-history may have one element whose CAR is nil. This element
describes definitions made with eval-buffer on a buffer that is not visiting a file.

The command eval-region updates load-history, but does so by adding the symbols
defined to the element for the file being visited, rather than replacing that element.

14.6 Hooks for Loading

after-load-alist Variable
An alist of expressions to evaluate if and when particular libraries are loaded. Each element

looks like this:
(filename forms. ..)

When load is run and the file-name argument is filename, the forms in the corresponding
element are executed at the end of loading.
filename must match exactly! Normally filename is the name of a library, with no directory

specified, since that is how load is normally called. An error in forms does not undo the
load, but does prevent execution of the rest of the forms.

186 XEmacs Lisp Reference Manual

Chapter 15: Byte Compilation 187

15 Byte Compilation

XEmacs Lisp has a compiler that translates functions written in Lisp into a special represen-
tation called byte-code that can be executed more efficiently. The compiler replaces Lisp function
definitions with byte-code. When a byte-coded function is called, its definition is evaluated by
the byte-code interpreter.

Because the byte-compiled code is evaluated by the byte-code interpreter, instead of being
executed directly by the machine’s hardware (as true compiled code is), byte-code is completely
transportable from machine to machine without recompilation. It is not, however, as fast as
true compiled code.

In general, any version of Emacs can run byte-compiled code produced by recent earlier
versions of Emacs, but the reverse is not true. In particular, if you compile a program with
XEmacs 20, the compiled code may not run in earlier versions. See Section 15.3 [Docs and
Compilation|, page 190.

See Section 16.3 [Compilation Errors|, page 205, for how to investigate errors occurring in
byte compilation.

15.1 Performance of Byte-Compiled Code

A byte-compiled function is not as efficient as a primitive function written in C, but runs
much faster than the version written in Lisp. Here is an example:

(defun silly-loop (m)
"Return time before and after N iterations of a loop."
(let ((t1 (current-time-string)))
(while (> (setq n (1- n))
0))
(1ist t1 (current-time-string))))
= silly-loop

(silly-loop 5000000)
= ("Fri Nov 28 20:56:16 1997"
"Fri Nov 28 20:56:39 1997") ; 23 seconds

(byte-compile ’silly-loop)

= #<compiled-function

(from "loadup.el")

(n)

"L (23)

[current-time-string t1 n 0]

2

"Return time before and after N iterations of a loop.">

(silly-loop 5000000)
= ("Fri Nov 28 20:57:49 1997"
"Fri Nov 28 20:57:55 1997") ; 6 seconds

In this example, the interpreted code required 23 seconds to run, whereas the byte-compiled
code required 6 seconds. These results are representative, but actual results will vary greatly.

188 XEmacs Lisp Reference Manual

15.2 The Compilation Functions

You can byte-compile an individual function or macro definition with the byte-compile
function. You can compile a whole file with byte-compile-file, or several files with byte-
recompile-directory or batch-byte-compile.

When you run the byte compiler, you may get warnings in a buffer called ‘*Compile-Log*’.
These report things in your program that suggest a problem but are not necessarily erroneous.

Be careful when byte-compiling code that uses macros. Macro calls are expanded when they
are compiled, so the macros must already be defined for proper compilation. For more details,
see Section 12.3 [Compiling Macros|, page 162.

Normally, compiling a file does not evaluate the file’s contents or load the file. But it does
execute any require calls at top level in the file. One way to ensure that necessary macro defi-
nitions are available during compilation is to require the file that defines them (see Section 14.4
Named Features|, page 182). To avoid loading the macro definition files when someone runs
the compiled program, write eval-when-compile around the require calls (see Section 15.5
[Eval During Compile|, page 191).

byte-compile symbol Function
This function byte-compiles the function definition of symbol, replacing the previous def-
inition with the compiled one. The function definition of symbol must be the actual
code for the function; i.e., the compiler does not follow indirection to another symbol.
byte-compile returns the new, compiled definition of symbol.

If symbol’s definition is a compiled-function object, byte-compile does nothing and re-
turns nil. Lisp records only one function definition for any symbol, and if that is already
compiled, non-compiled code is not available anywhere. So there is no way to “compile
the same definition again.”

(defun factorial (integer)
"Compute factorial of INTEGER."
(if (= 1 integer) 1
(* integer (factorial (1- integer)))))
= factorial

(byte-compile ’factorial)

= #<compiled-function

(from "loadup.el")

(integer)

"2

[integer 1 factoriall

3

"Compute factorial of INTEGER.">

The result is a compiled-function object. The string it contains is the actual byte-code;
each character in it is an instruction or an operand of an instruction. The vector contains
all the constants, variable names and function names used by the function, except for
certain primitives that are coded as special instructions.

compile-defun &optional arg Command
This command reads the defun containing point, compiles it, and evaluates the result.
If you use this on a defun that is actually a function definition, the effect is to install a
compiled version of that function.

If arg is non-nil, the result is inserted in the current buffer after the form; otherwise, it
is printed in the minibuffer.

Chapter 15: Byte Compilation 189

byte-compile-file filename &optional load Command
This function compiles a file of Lisp code named filename into a file of byte-code. The
output file’s name is made by appending ‘c’ to the end of filename.

If 1oad is non-nil, the file is loaded after having been compiled.

Compilation works by reading the input file one form at a time. If it is a definition of a
function or macro, the compiled function or macro definition is written out. Other forms
are batched together, then each batch is compiled, and written so that its compiled code
will be executed when the file is read. All comments are discarded when the input file is
read.

This command returns t. When called interactively, it prompts for the file name.
% 1ls -1 pushx

-rw-r--r-- 1 lewis 791 Oct 5 20:31 push.el
(byte-compile-file "~/emacs/push.el")
=t
% 1ls -1 pushx
-rw-r——r—— 1 lewis 791 Oct 5 20:31 push.el
-rw-rw-rw- 1 lewis 638 Oct 8 20:25 push.elc
byte-recompile-directory directory &optional flag Command

This function recompiles every ‘.el’ file in directory that needs recompilation. A file
needs recompilation if a ‘.elc’ file exists but is older than the ‘.el’ file.

When a ‘.el’ file has no corresponding ‘.elc’ file, then flag says what to do. If it is nil,
these files are ignored. If it is non-nil, the user is asked whether to compile each such file.

The returned value of this command is unpredictable.

batch-byte-compile Function
This function runs byte-compile-file on files specified on the command line. This
function must be used only in a batch execution of Emacs, as it kills Emacs on completion.
An error in one file does not prevent processing of subsequent files. (The file that gets the
error will not, of course, produce any compiled code.)

% emacs -batch -f batch-byte-compile *.el

batch-byte-recompile-directory Function
This function is similar to batch-byte-compile but runs the command byte-recompile-
directory on the files remaining on the command line.

byte-recompile-directory-ignore-errors-p Variable
If non-nil, this specifies that byte-recompile-directory will continue compiling even
when an error occurs in a file. This is normally nil, but is bound to t by batch-byte-
recompile-directory.

byte-code code-string data-vector max-stack Function
This function actually interprets byte-code. A byte-compiled function is actually defined
with a body that calls byte-code. Don’t call this function yourself. Only the byte compiler
knows how to generate valid calls to this function.

In newer Emacs versions (19 and up), byte-code is usually executed as part of a compiled-
function object, and only rarely due to an explicit call to byte-code.

190 XEmacs Lisp Reference Manual

15.3 Documentation Strings and Compilation

Functions and variables loaded from a byte-compiled file access their documentation strings
dynamically from the file whenever needed. This saves space within Emacs, and makes loading
faster because the documentation strings themselves need not be processed while loading the
file. Actual access to the documentation strings becomes slower as a result, but normally not
enough to bother users.

Dynamic access to documentation strings does have drawbacks:

e If you delete or move the compiled file after loading it, Emacs can no longer access the
documentation strings for the functions and variables in the file.

e If you alter the compiled file (such as by compiling a new version), then further access to
documentation strings in this file will give nonsense results.

If your site installs Emacs following the usual procedures, these problems will never normally
occur. Installing a new version uses a new directory with a different name; as long as the old
version remains installed, its files will remain unmodified in the places where they are expected
to be.

However, if you have built Emacs yourself and use it from the directory where you built
it, you will experience this problem occasionally if you edit and recompile Lisp files. When it
happens, you can cure the problem by reloading the file after recompiling it.

Byte-compiled files made with Emacs 19.29 will not load into older versions because the older
versions don’t support this feature. You can turn off this feature by setting byte-compile-
dynamic-docstrings to nil. Once this is done, you can compile files that will load into older
Emacs versions. You can do this globally, or for one source file by specifying a file-local binding
for the variable. Here’s one way to do that:

—*-byte-compile-dynamic-docstrings: nil;-*-

byte-compile-dynamic-docstrings Variable
If this is non-nil, the byte compiler generates compiled files that are set up for dynamic
loading of documentation strings.

The dynamic documentation string feature writes compiled files that use a special Lisp reader
construct, ‘#@count’. This construct skips the next count characters. It also uses the ‘#$’
construct, which stands for “the name of this file, as a string.” It is best not to use these
constructs in Lisp source files.

15.4 Dynamic Loading of Individual Functions

When you compile a file, you can optionally enable the dynamic function loading feature
(also known as lazy loading). With dynamic function loading, loading the file doesn’t fully
read the function definitions in the file. Instead, each function definition contains a place-holder
which refers to the file. The first time each function is called, it reads the full definition from
the file, to replace the place-holder.

The advantage of dynamic function loading is that loading the file becomes much faster. This
is a good thing for a file which contains many separate commands, provided that using one of
them does not imply you will soon (or ever) use the rest. A specialized mode which provides
many keyboard commands often has that usage pattern: a user may invoke the mode, but use
only a few of the commands it provides.

The dynamic loading feature has certain disadvantages:

Chapter 15: Byte Compilation 191

e If you delete or move the compiled file after loading it, Emacs can no longer load the
remaining function definitions not already loaded.

e If you alter the compiled file (such as by compiling a new version), then trying to load any
function not already loaded will get nonsense results.

If you compile a new version of the file, the best thing to do is immediately load the new
compiled file. That will prevent any future problems.

The byte compiler uses the dynamic function loading feature if the variable byte-compile-
dynamic is non-nil at compilation time. Do not set this variable globally, since dynamic loading
is desirable only for certain files. Instead, enable the feature for specific source files with file-local
variable bindings, like this:

—*-byte-compile-dynamic: t;-*-

byte-compile-dynamic Variable
If this is non-nil, the byte compiler generates compiled files that are set up for dynamic
function loading.

fetch-bytecode function Function
This immediately finishes loading the definition of function from its byte-compiled file, if
it is not fully loaded already. The argument function may be a compiled-function object
or a function name.

15.5 Evaluation During Compilation

These features permit you to write code to be evaluated during compilation of a program.

eval-and-compile body Special Form
This form marks body to be evaluated both when you compile the containing code and
when you run it (whether compiled or not).

You can get a similar result by putting body in a separate file and referring to that file
with require. Using require is preferable if there is a substantial amount of code to be
executed in this way.

eval-when-compile body Special Form
This form marks body to be evaluated at compile time and not when the compiled program
is loaded. The result of evaluation by the compiler becomes a constant which appears in
the compiled program. When the program is interpreted, not compiled at all, body is
evaluated normally.

At top level, this is analogous to the Common Lisp idiom (eval-when (compile eval)
...). Elsewhere, the Common Lisp ‘#.’ reader macro (but not when interpreting) is closer
to what eval-when-compile does.

15.6 Compiled-Function Objects

Byte-compiled functions have a special data type: they are compiled-function objects.

A compiled-function object is a bit like a vector; however, the evaluator handles this data type
specially when it appears as a function to be called. The printed representation for a compiled-
function object normally begins with ‘#<compiled-function’ and ends with >’. However, if the
variable print-readably is non-nil, the object is printed beginning with ‘#[’ and ending with

192 XEmacs Lisp Reference Manual

‘]’. This representation can be read directly by the Lisp reader, and is used in byte-compiled
files (those ending in ‘.elc’).

In Emacs version 18, there was no compiled-function object data type; compiled functions
used the function byte-code to run the byte code.

A compiled-function object has a number of different elements. They are:
arglist The list of argument symbols.

instructions
The string containing the byte-code instructions.

constants The vector of Lisp objects referenced by the byte code. These include symbols used
as function names and variable names.

stacksize The maximum stack size this function needs.

doc-string The documentation string (if any); otherwise, nil. The value may be a number
or a list, in case the documentation string is stored in a file. Use the function
documentation to get the real documentation string (see Section 27.2 [Accessing
Documentation], page 346).

interactive
The interactive spec (if any). This can be a string or a Lisp expression. It is nil
for a function that isn’t interactive.

domain The domain (if any). This is only meaningful if I18N3 (message-translation) support

was compiled into XEmacs. This is a string defining which domain to find the
translation for the documentation string and interactive prompt. See Section 54.2.4
[Domain Specification], page 660.

Here’s an example of a compiled-function object, in printed representation. It is the definition
of the command backward-sexp.

#<compiled-function

(from "lisp.elc")

(&optional arg)

"...(15)" [arg 1 forward-sexp] 2 854740 "_p">

The primitive way to create a compiled-function object is with make-byte-code:

make-byte-code &rest elements Function
This function constructs and returns a compiled-function object with elements as its ele-
ments.

Please note: Unlike all other Emacs-lisp functions, calling this with five arguments is not
the same as calling it with six arguments, the last of which is nil. If the interactive arg
is specified as nil, then that means that this function was defined with (interactive).
If the arg is not specified, then that means the function is not interactive. This is terrible
behavior which is retained for compatibility with old ‘.elc’ files which expected these
semantics.

You should not try to come up with the elements for a compiled-function object yourself,
because if they are inconsistent, XEmacs may crash when you call the function. Always leave
it to the byte compiler to create these objects; it makes the elements consistent (we hope).

The following primitives are provided for accessing the elements of a compiled-function object.

compiled-function-arglist function Function
This function returns the argument list of compiled-function object function.

Chapter 15: Byte Compilation 193

compiled-function-instructions function Function
This function returns a string describing the byte-code instructions of compiled-function
object function.

compiled-function-constants function Function
This function returns the vector of Lisp objects referenced by compiled-function object
function.

compiled-function-stack-size function Function
This function returns the maximum stack size needed by compiled-function object func-
tion.

compiled-function-doc-string function Function

This function returns the doc string of compiled-function object function, if available.

compiled-function-interactive function Function
This function returns the interactive spec of compiled-function object function, if any.
The return value is nil or a two-element list, the first element of which is the symbol
interactive and the second element is the interactive spec (a string or Lisp form).

compiled-function-domain function Function
This function returns the domain of compiled-function object function, if any. The result
will be a string or nil. See Section 54.2.4 [Domain Specification|, page 660.

15.7 Disassembled Byte-Code

People do not write byte-code; that job is left to the byte compiler. But we provide a
disassembler to satisfy a cat-like curiosity. The disassembler converts the byte-compiled code
into humanly readable form.

The byte-code interpreter is implemented as a simple stack machine. It pushes values onto
a stack of its own, then pops them off to use them in calculations whose results are themselves
pushed back on the stack. When a byte-code function returns, it pops a value off the stack and
returns it as the value of the function.

In addition to the stack, byte-code functions can use, bind, and set ordinary Lisp variables,
by transferring values between variables and the stack.

disassemble object &optional stream Command
This function prints the disassembled code for object. If stream is supplied, then output
goes there. Otherwise, the disassembled code is printed to the stream standard-output.
The argument object can be a function name or a lambda expression.

As a special exception, if this function is used interactively, it outputs to a buffer named
‘*Disassemble*’.

Here are two examples of using the disassemble function. We have added explanatory
comments to help you relate the byte-code to the Lisp source; these do not appear in the output
of disassemble. These examples show unoptimized byte-code. Nowadays byte-code is usually
optimized, but we did not want to rewrite these examples, since they still serve their purpose.

194

XEmacs Lisp Reference Manual

(defun factorial (integer)
"Compute factorial of an integer."
(if (= 1 integer) 1
(* integer (factorial (1- integer)))))

= factorial

(factorial 4)

(disassemble ’factorial)

doc:

= 24

-1 byte-code for factorial:

args: (integer)

Compute factorial of an integer.

0 constant 1 ; Push 1 onto stack.
1 varref integer ; Get value of integer
; from the environment
; and push the value
; onto the stack.
2 eqlsign ; Pop top two values off stack,
; compare them,
; and push result onto stack.
3 goto-if-nil 10 ; Pop and test top of stack;
; if nil, go to 10,
; else continue.
6 constant 1 ; Push 1 onto top of stack.
7 goto 17 ; Go to 17 (in this case, 1 will be
; returned by the function).
10 constant * ; Push symbol * onto stack.
11 varref integer ; Push value of integer onto stack.
12 constant factorial ; Push factorial onto stack.
13 varref integer ; Push value of integer onto stack.
14 subil ; Pop integer, decrement value,
; push new value onto stack.
; Stack now contains:
; — decremented value of integer
; — factorial
; — value of integer
5 — X
16 call 1 Call function factorial using

b
b

b

the first (i.e., the top) element
of the stack as the argument;
push returned value onto stack.

Chapter 15: Byte Compilation

; Stack now contains:

; — result of recursive

; call to factorial
; — value of integer

— %

16 call 2 ; Using the first two
; (i.e., the top two)
; elements of the stack
; as arguments,
; call the function *,
; pushing the result onto the stack.

17 return ; Return the top element
; of the stack.
= nil

The silly-loop function is somewhat more complex:

(defun silly-loop (n)
"Return time before and after N iterations of a loop."
(let ((t1 (current-time-string)))
(while (> (setq n (1- n))
0))
(1ist t1 (current-time-string))))
= silly-loop

(disassemble ’silly-loop)
-1 byte-code for silly-loop:
doc: Return time before and after N iterations of a loop.

args: (n)

0 constant current-time-string ; Push
; current-time-string
; onto top of stack.

1 call 0 ; Call current-time-string

; with no argument,
; pushing result onto stack.

2 varbind ti1 ; Pop stack and bind t1
; to popped value.

3 varref n ; Get value of n from
; the environment and push
; the value onto the stack.

4 subl ; Subtract 1 from top of stack.

5 dup ; Duplicate the top of the stack;
; l.e., copy the top of
; the stack and push the
; copy onto the stack.

195

196

12

13

14

17

18

19

20

21

22

23

varset n

constant O

gtr

goto-if-nil-else-pop 17

constant nil

discard

goto 3

discard

varref t1

b
b

b

XEmacs Lisp Reference Manual

Pop the top of the stack,
and bind n to the value.

In effect, the sequence dup varset
copies the top of the stack
into the value of n
without popping it.

Push 0 onto stack.

Pop top two values off stack,
test if n is greater than 0
and push result onto stack.

Goto 17ifn <=0
(this exits the while loop).
else pop top of stack
and continue

Push nil onto stack
(this is the body of the loop).

Discard result of the body
of the loop (a while loop
is always evaluated for
its side effects).

Jump back to beginning
of while loop.

Discard result of while loop
by popping top of stack.
This result is the value nil that
was not popped by the goto at 9.

Push value of t1 onto stack.

constant current-time-string ; Push

call 0

list2

unbind 1

return

= nil

b
b
b
’

b

3

; current-time-string
; onto top of stack.

Call current-time-string again.

; Pop top two elements off stack,

create a list of them,
and push list onto stack.

Unbind t1 in local environment.

; Return value of the top of stack.

Chapter 16: Debugging Lisp Programs 197

16 Debugging Lisp Programs

There are three ways to investigate a problem in an XEmacs Lisp program, depending on
what you are doing with the program when the problem appears.

e If the problem occurs when you run the program, you can use a Lisp debugger (either the
default debugger or Edebug) to investigate what is happening during execution.

e If the problem is syntactic, so that Lisp cannot even read the program, you can use the
XEmacs facilities for editing Lisp to localize it.

e If the problem occurs when trying to compile the program with the byte compiler, you need
to know how to examine the compiler’s input buffer.

Another useful debugging tool is the dribble file. When a dribble file is open, XEmacs copies
all keyboard input characters to that file. Afterward, you can examine the file to find out what
input was used. See Section 50.8 [Terminal Input|, page 636.

For debugging problems in terminal descriptions, the open-termscript function can be
useful. See Section 50.9 [Terminal Output|, page 639.

16.1 The Lisp Debugger

The Lisp debugger provides the ability to suspend evaluation of a form. While evaluation
is suspended (a state that is commonly known as a break), you may examine the run time
stack, examine the values of local or global variables, or change those values. Since a break is a
recursive edit, all the usual editing facilities of XEmacs are available; you can even run programs
that will enter the debugger recursively. See Section 19.10 [Recursive Editing], page 281.

16.1.1 Entering the Debugger on an Error

The most important time to enter the debugger is when a Lisp error happens. This allows
you to investigate the immediate causes of the error.

However, entry to the debugger is not a normal consequence of an error. Many commands
frequently get Lisp errors when invoked in inappropriate contexts (such as C-f at the end of
the buffer) and during ordinary editing it would be very unpleasant to enter the debugger each
time this happens. If you want errors to enter the debugger, set the variable debug-on-error
to non-nil.

debug-on-error User Option
This variable determines whether the debugger is called when an error is signaled and not
handled. If debug-on-error is t, all errors call the debugger. If it is nil, none call the
debugger.

The value can also be a list of error conditions that should call the debugger. For example,
if you set it to the list (void-variable), then only errors about a variable that has no
value invoke the debugger.

When this variable is non-nil, Emacs does not catch errors that happen in process fil-
ter functions and sentinels. Therefore, these errors also can invoke the debugger. See
Chapter 49 [Processes|, page 607.

198 XEmacs Lisp Reference Manual

debug-ignored-errors User Option
This variable specifies certain kinds of errors that should not enter the debugger. Its value
is a list of error condition symbols and/or regular expressions. If the error has any of
those condition symbols, or if the error message matches any of the regular expressions,
then that error does not enter the debugger, regardless of the value of debug-on-error.

The normal value of this variable lists several errors that happen often during editing but
rarely result from bugs in Lisp programs.

To debug an error that happens during loading of the ‘.emacs’ file, use the option
‘~debug-init’, which binds debug-on-error to t while ‘.emacs’ is loaded and inhibits use
of condition-case to catch init file errors.

If your ‘.emacs’ file sets debug-on-error, the effect may not last past the end of loading

‘.emacs’. (This is an undesirable byproduct of the code that implements the ‘~debug-init’
command line option.) The best way to make ‘.emacs’ set debug-on-error permanently is
with after-init-hook, like this:

(add-hook ’after-init-hook
’(lambda () (setq debug-on-error t)))

debug-on-signal User Option
This variable is similar to debug-on-error but breaks whenever an error is signalled,
regardless of whether it would be handled.

16.1.2 Debugging Infinite Loops

When a program loops infinitely and fails to return, your first problem is to stop the loop.
On most operating systems, you can do this with C-g, which causes quit.

Ordinary quitting gives no information about why the program was looping. To get more
information, you can set the variable debug-on-quit to non-nil. Quitting with C-g is not
considered an error, and debug-on-error has no effect on the handling of C-g. Likewise,
debug-on-quit has no effect on errors.

Once you have the debugger running in the middle of the infinite loop, you can proceed
from the debugger using the stepping commands. If you step through the entire loop, you will
probably get enough information to solve the problem.

debug-on-quit User Option
This variable determines whether the debugger is called when quit is signaled and not
handled. If debug-on-quit is non-nil, then the debugger is called whenever you quit
(that is, type C-g). If debug-on-quit is nil, then the debugger is not called when you
quit. See Section 19.8 [Quitting], page 278.

16.1.3 Entering the Debugger on a Function Call

To investigate a problem that happens in the middle of a program, one useful technique is
to enter the debugger whenever a certain function is called. You can do this to the function in
which the problem occurs, and then step through the function, or you can do this to a function
called shortly before the problem, step quickly over the call to that function, and then step
through its caller.

Chapter 16: Debugging Lisp Programs 199

debug-on-entry function-name Command
This function requests function-name to invoke the debugger each time it is called. It
works by inserting the form (debug ’debug) into the function definition as the first form.
Any function defined as Lisp code may be set to break on entry, regardless of whether
it is interpreted code or compiled code. If the function is a command, it will enter the
debugger when called from Lisp and when called interactively (after the reading of the
arguments). You can’t debug primitive functions (i.e., those written in C) this way.

When debug-on-entry is called interactively, it prompts for function-name in the mini-
buffer.
If the function is already set up to invoke the debugger on entry, debug-on-entry does
nothing.
Please note: if you redefine a function after using debug-on-entry on it, the code to enter
the debugger is lost.
debug-on-entry returns function-name.
(defun fact (n)
(if (zerop n) 1
(* n (fact (1- n)))))
= fact
(debug-on-entry ’fact)
= fact
(fact 3)

—————— Buffer: *xBacktracex —--—-———-

Entering:

* fact(3)
eval-region (4870 4878 t)
byte-code("...")
eval-last-sexp(nil)
(let ...)

eval-insert-last-sexp(nil)
* call-interactively(eval-insert-last-sexp)
—————— Buffer: *Backtracex —------

(symbol-function ’fact)
= (lambda (n)
(debug (quote debug))
(if (zerop n) 1 (* n (fact (1- n)))))

cancel-debug-on-entry function-name Command
This function undoes the effect of debug-on-entry on function-name. When called inter-
actively, it prompts for function-name in the minibuffer. If function-name is nil or the
empty string, it cancels debugging for all functions.

If cancel-debug-on-entry is called more than once on the same function, the second call
does nothing. cancel-debug-on-entry returns function-name.

16.1.4 Explicit Entry to the Debugger

You can cause the debugger to be called at a certain point in your program by writing the
expression (debug) at that point. To do this, visit the source file, insert the text ‘(debug)’ at
the proper place, and type C-M-x. Be sure to undo this insertion before you save the file!

200 XEmacs Lisp Reference Manual

The place where you insert ‘(debug)’ must be a place where an additional form can be
evaluated and its value ignored. (If the value of (debug) isn’t ignored, it will alter the execution
of the program!) The most common suitable places are inside a progn or an implicit progn (see
Section 9.1 [Sequencing], page 117).

16.1.5 Using the Debugger

When the debugger is entered, it displays the previously selected buffer in one window and a
buffer named ‘*Backtracex’ in another window. The backtrace buffer contains one line for each
level of Lisp function execution currently going on. At the beginning of this buffer is a message
describing the reason that the debugger was invoked (such as the error message and associated
data, if it was invoked due to an error).

The backtrace buffer is read-only and uses a special major mode, Debugger mode, in which
letters are defined as debugger commands. The usual XEmacs editing commands are available;
thus, you can switch windows to examine the buffer that was being edited at the time of the
error, switch buffers, visit files, or do any other sort of editing. However, the debugger is a
recursive editing level (see Section 19.10 [Recursive Editing], page 281) and it is wise to go back
to the backtrace buffer and exit the debugger (with the g command) when you are finished with
it. Exiting the debugger gets out of the recursive edit and kills the backtrace buffer.

The backtrace buffer shows you the functions that are executing and their argument values.
It also allows you to specify a stack frame by moving point to the line describing that frame.
(A stack frame is the place where the Lisp interpreter records information about a particular
invocation of a function.) The frame whose line point is on is considered the current frame.
Some of the debugger commands operate on the current frame.

The debugger itself must be run byte-compiled, since it makes assumptions about how many
stack frames are used for the debugger itself. These assumptions are false if the debugger is
running interpreted.

16.1.6 Debugger Commands

Inside the debugger (in Debugger mode), these special commands are available in addition
to the usual cursor motion commands. (Keep in mind that all the usual facilities of XEmacs,
such as switching windows or buffers, are still available.)

The most important use of debugger commands is for stepping through code, so that you can
see how control flows. The debugger can step through the control structures of an interpreted
function, but cannot do so in a byte-compiled function. If you would like to step through a
byte-compiled function, replace it with an interpreted definition of the same function. (To do
this, visit the source file for the function and type C-M-x on its definition.)

Here is a list of Debugger mode commands:

c Exit the debugger and continue execution. This resumes execution of the program
as if the debugger had never been entered (aside from the effect of any variables or
data structures you may have changed while inside the debugger).

Continuing when an error or quit was signalled will cause the normal action of the
signalling to take place. If you do not want this to happen, but instead want the
program execution to continue as if the call to signal did not occur, use the r
command.

d Continue execution, but enter the debugger the next time any Lisp function is called.
This allows you to step through the subexpressions of an expression, seeing what
values the subexpressions compute, and what else they do.

Chapter 16: Debugging Lisp Programs 201

The stack frame made for the function call which enters the debugger in this way
will be flagged automatically so that the debugger will be called again when the
frame is exited. You can use the u command to cancel this flag.

b Flag the current frame so that the debugger will be entered when the frame is exited.
Frames flagged in this way are marked with stars in the backtrace buffer.

u Don’t enter the debugger when the current frame is exited. This cancels a b com-
mand on that frame.

e Read a Lisp expression in the minibuffer, evaluate it, and print the value in the
echo area. The debugger alters certain important variables, and the current buffer,
as part of its operation; e temporarily restores their outside-the-debugger values so
you can examine them. This makes the debugger more transparent. By contrast,
M-: does nothing special in the debugger; it shows you the variable values within
the debugger.

q Terminate the program being debugged; return to top-level XEmacs command ex-
ecution.

If the debugger was entered due to a C-g but you really want to quit, and not debug,
use the g command.

r Return a value from the debugger. The value is computed by reading an expression
with the minibuffer and evaluating it.

The r command is useful when the debugger was invoked due to exit from a Lisp
call frame (as requested with b); then the value specified in the r command is used
as the value of that frame. It is also useful if you call debug and use its return value.

If the debugger was entered at the beginning of a function call, r has the same effect
as ¢, and the specified return value does not matter.

If the debugger was entered through a call to signal (i.e. as a result of an error
or quit), then returning a value will cause the call to signal itself to return, rather
than throwing to top-level or invoking a handler, as is normal. This allows you
to correct an error (e.g. the type of an argument was wrong) or continue from a
debug-on-quit as if it never happened.

Note that some errors (e.g. any error signalled using the error function, and many
errors signalled from a primitive function) are not continuable. If you return a value
from them and continue execution, then the error will immediately be signalled
again. Other errors (e.g. wrong-type-argument errors) will be continually resignalled
until the problem is corrected.

16.1.7 Invoking the Debugger

Here we describe fully the function used to invoke the debugger.

debug &rest debugger-args Function
This function enters the debugger. It switches buffers to a buffer named ‘*Backtracex’
(or ‘*Backtrace*<2>’ if it is the second recursive entry to the debugger, etc.), and fills it
with information about the stack of Lisp function calls. It then enters a recursive edit,
showing the backtrace buffer in Debugger mode.

The Debugger mode ¢ and r commands exit the recursive edit; then debug switches back
to the previous buffer and returns to whatever called debug. This is the only way the
function debug can return to its caller.

202

XEmacs Lisp Reference Manual

If the first of the debugger-args passed to debug is nil (or if it is not one of the special
values in the table below), then debug displays the rest of its arguments at the top of the
‘*Backtracex*’ buffer. This mechanism is used to display a message to the user.

However, if the first argument passed to debug is one of the following special values, then
it has special significance. Normally, these values are passed to debug only by the internals
of XEmacs and the debugger, and not by programmers calling debug.

The special values are:

lambda

debug

exit

error

nil

A first argument of lambda means debug was called because of entry to a
function when debug-on-next-call was non-nil. The debugger displays
‘Entering:’ as a line of text at the top of the buffer.

debug as first argument indicates a call to debug because of entry to a function
that was set to debug on entry. The debugger displays ‘Entering:’, just as
in the lambda case. It also marks the stack frame for that function so that it
will invoke the debugger when exited.

When the first argument is t, this indicates a call to debug due to evaluation
of a list form when debug-on-next-call is non-nil. The debugger displays
the following as the top line in the buffer:

Beginning evaluation of function call form:

When the first argument is exit, it indicates the exit of a stack frame previ-
ously marked to invoke the debugger on exit. The second argument given to
debug in this case is the value being returned from the frame. The debugger
displays ‘Return value:’ on the top line of the buffer, followed by the value
being returned.

When the first argument is error, the debugger indicates that it is being
entered because an error or quit was signaled and not handled, by displaying
‘Signaling:’ followed by the error signaled and any arguments to signal.
For example,

(let ((debug-on-error t))
(/1 0))

—————— Buffer: *Backtracex ------
Signaling: (arith-error)

/(1 0)

—————— Buffer: *Backtracex ---—--—-

If an error was signaled, presumably the variable debug-on-error is non-nil.
If quit was signaled, then presumably the variable debug-on-quit is non-nil.

Use nil as the first of the debugger-args when you want to enter the debugger
explicitly. The rest of the debugger-args are printed on the top line of the
buffer. You can use this feature to display messages—for example, to remind
yourself of the conditions under which debug is called.

Chapter 16: Debugging Lisp Programs 203

16.1.8 Internals of the Debugger

This section describes functions and variables used internally by the debugger.

debugger Variable
The value of this variable is the function to call to invoke the debugger. Its value must
be a function of any number of arguments (or, more typically, the name of a function).
Presumably this function will enter some kind of debugger. The default value of the
variable is debug.
The first argument that Lisp hands to the function indicates why it was called. The
convention for arguments is detailed in the description of debug.

backtrace &optional stream detailed Command
This function prints a trace of Lisp function calls currently active. This is the function
used by debug to fill up the ‘*Backtrace*’ buffer. It is written in C, since it must have
access to the stack to determine which function calls are active. The return value is always
nil.
The backtrace is normally printed to standard-output, but this can be changed by speci-
fying a value for stream. If detailed is non-nil, the backtrace also shows places where cur-
rently active variable bindings, catches, condition-cases, and unwind-protects were made
as well as function calls.
In the following example, a Lisp expression calls backtrace explicitly. This prints the
backtrace to the stream standard-output: in this case, to the buffer ‘backtrace-output’.
Each line of the backtrace represents one function call. The line shows the values of the
function’s arguments if they are all known. If they are still being computed, the line says
so. The arguments of special forms are elided.
(with-output-to-temp-buffer "backtrace-output"
(let ((var 1))
(save-excursion
(setq var (eval ’(progn
(1+ var)
(1ist ’testing (backtrace))))))))

= nil
——————————— Buffer: backtrace-output ---———-——---
backtrace ()
(list ...computing arguments...)
(progn ...)
eval ((progn (1+ var) (list (quote testing) (backtrace))))
(setq ...)
(save-excursion ...)
(let ...)
(with-output-to-temp-buffer ...)
eval-region(1973 2142 #<buffer *scratch*>)
byte-code("... for eval-print-last-sexp ...")

eval-print-last-sexp(nil)
* call-interactively(eval-print-last-sexp)
——————————— Buffer: backtrace-output ------------

The character ‘*’ indicates a frame whose debug-on-exit flag is set.

204 XEmacs Lisp Reference Manual

debug-on-next-call Variable
If this variable is non-nil, it says to call the debugger before the next eval, apply or
funcall. Entering the debugger sets debug-on-next-call to nil.

The d command in the debugger works by setting this variable.

backtrace-debug Ievel flag Function
This function sets the debug-on-exit flag of the stack frame Ievel levels down the stack,
giving it the value flag. If flag is non-nil, this will cause the debugger to be entered when
that frame later exits. Even a nonlocal exit through that frame will enter the debugger.

This function is used only by the debugger.

command-debug-status Variable
This variable records the debugging status of the current interactive command. Each time
a command is called interactively, this variable is bound to nil. The debugger can set this
variable to leave information for future debugger invocations during the same command.

The advantage, for the debugger, of using this variable rather than another global variable
is that the data will never carry over to a subsequent command invocation.

backtrace-frame frame-number Function
The function backtrace-frame is intended for use in Lisp debuggers. It returns infor-
mation about what computation is happening in the stack frame frame-number levels
down.

If that frame has not evaluated the arguments yet (or is a special form), the value is (nil
function arg-forms. . .).

If that frame has evaluated its arguments and called its function already, the value is (t
function arg-values. . .).

In the return value, function is whatever was supplied as the CAR of the evaluated list, or
a lambda expression in the case of a macro call. If the function has a &rest argument,
that is represented as the tail of the list arg-values.

If frame-number is out of range, backtrace-frame returns nil.

16.2 Debugging Invalid Lisp Syntax

The Lisp reader reports invalid syntax, but cannot say where the real problem is. For
example, the error “End of file during parsing” in evaluating an expression indicates an excess
of open parentheses (or square brackets). The reader detects this imbalance at the end of the
file, but it cannot figure out where the close parenthesis should have been. Likewise, “Invalid
read syntax: ")"” indicates an excess close parenthesis or missing open parenthesis, but does
not say where the missing parenthesis belongs. How, then, to find what to change?

If the problem is not simply an imbalance of parentheses, a useful technique is to try C-M-e
at the beginning of each defun, and see if it goes to the place where that defun appears to end.
If it does not, there is a problem in that defun.

However, unmatched parentheses are the most common syntax errors in Lisp, and we can
give further advice for those cases.

Chapter 16: Debugging Lisp Programs 205

16.2.1 Excess Open Parentheses

The first step is to find the defun that is unbalanced. If there is an excess open parenthesis,
the way to do this is to insert a close parenthesis at the end of the file and type C-M-b (backward-
sexp). This will move you to the beginning of the defun that is unbalanced. (Then type C-(SPC)
C-_ C-u C-PO) to set the mark there, undo the insertion of the close parenthesis, and finally
return to the mark.)

The next step is to determine precisely what is wrong. There is no way to be sure of this
except to study the program, but often the existing indentation is a clue to where the parentheses
should have been. The easiest way to use this clue is to reindent with C-M-q and see what moves.

Before you do this, make sure the defun has enough close parentheses. Otherwise, C-M-q will
get an error, or will reindent all the rest of the file until the end. So move to the end of the
defun and insert a close parenthesis there. Don’t use C-M-e to move there, since that too will
fail to work until the defun is balanced.

Now you can go to the beginning of the defun and type C-M-q. Usually all the lines from a
certain point to the end of the function will shift to the right. There is probably a missing close
parenthesis, or a superfluous open parenthesis, near that point. (However, don’t assume this is
true; study the code to make sure.) Once you have found the discrepancy, undo the C-M-q with
C-_, since the old indentation is probably appropriate to the intended parentheses.

After you think you have fixed the problem, use C-M-q again. If the old indentation actually
fit the intended nesting of parentheses, and you have put back those parentheses, C-M-q should
not change anything.

16.2.2 Excess Close Parentheses

To deal with an excess close parenthesis, first insert an open parenthesis at the beginning of
the file, back up over it, and type C-M-f to find the end of the unbalanced defun. (Then type
C-(SPC) C-_ C-u C-(SPC) to set the mark there, undo the insertion of the open parenthesis, and
finally return to the mark.)

Then find the actual matching close parenthesis by typing C-M-f at the beginning of the
defun. This will leave you somewhere short of the place where the defun ought to end. It is
possible that you will find a spurious close parenthesis in that vicinity.

If you don’t see a problem at that point, the next thing to do is to type C-M-q at the beginning
of the defun. A range of lines will probably shift left; if so, the missing open parenthesis or
spurious close parenthesis is probably near the first of those lines. (However, don’t assume this
is true; study the code to make sure.) Once you have found the discrepancy, undo the C-M-q
with C-_, since the old indentation is probably appropriate to the intended parentheses.

After you think you have fixed the problem, use C-M-q again. If the old indentation actually
fit the intended nesting of parentheses, and you have put back those parentheses, C-M-q should
not change anything.

16.3 Debugging Problems in Compilation

When an error happens during byte compilation, it is normally due to invalid syntax in the
program you are compiling. The compiler prints a suitable error message in the ‘*Compile-Log*’
buffer, and then stops. The message may state a function name in which the error was found,
or it may not. Either way, here is how to find out where in the file the error occurred.

206 XEmacs Lisp Reference Manual

What you should do is switch to the buffer * *Compiler Input*’. (Note that the buffer name
starts with a space, so it does not show up in M-x list-buffers.) This buffer contains the
program being compiled, and point shows how far the byte compiler was able to read.

If the error was due to invalid Lisp syntax, point shows exactly where the invalid syntax was
detected. The cause of the error is not necessarily near by! Use the techniques in the previous
section to find the error.

If the error was detected while compiling a form that had been read successfully, then point
is located at the end of the form. In this case, this technique can’t localize the error precisely,
but can still show you which function to check.

16.4 Edebug

Edebug is a source-level debugger for XEmacs Lisp programs that provides the following
features:

e Step through evaluation, stopping before and after each expression.

e Set conditional or unconditional breakpoints, install embedded breakpoints, or a global
break event.

e Trace slow or fast stopping briefly at each stop point, or each breakpoint.

e Display expression results and evaluate expressions as if outside of Edebug. Interface with
the custom printing package for printing circular structures.

e Automatically reevaluate a list of expressions and display their results each time Edebug
updates the display.

Output trace info on function enter and exit.
Errors stop before the source causing the error.
Display backtrace without Edebug calls.

Allow specification of argument evaluation for macros and defining forms.

Provide rudimentary coverage testing and display of frequency counts.

The first three sections should tell you enough about Edebug to enable you to use it.

16.4.1 Using Edebug

To debug an XEmacs Lisp program with Edebug, you must first instrument the Lisp code that
you want to debug. If you want to just try it now, load ‘edebug.el’, move point into a definition
and do C-u C-M-x (eval-defun with a prefix argument). See Section 16.4.2 [Instrumenting],
page 207 for alternative ways to instrument code.

Once a function is instrumented, any call to the function activates Edebug. Activating
Edebug may stop execution and let you step through the function, or it may update the display
and continue execution while checking for debugging commands, depending on the selected
Edebug execution mode. The initial execution mode is step, by default, which does stop
execution. See Section 16.4.3 [Edebug Execution Modes]|, page 208.

Within Edebug, you normally view an XEmacs buffer showing the source of the Lisp function
you are debugging. This is referred to as the source code buffer—but note that it is not always
the same buffer depending on which function is currently being executed.

An arrow at the left margin indicates the line where the function is executing. Point initially
shows where within the line the function is executing, but you can move point yourself.

If you instrument the definition of fac (shown below) and then execute (fac 3), here is what
you normally see. Point is at the open-parenthesis before if.

Chapter 16: Debugging Lisp Programs 207

(defun fac (n)
=>x(if (< 0 n)
(* n (fac (1- n)))
1))

The places within a function where Edebug can stop execution are called stop points. These
occur both before and after each subexpression that is a list, and also after each variable refer-
ence. Here we show with periods the stop points found in the function fac:

(defun fac (n)
.(Af (< 0 n.).
.(*n. .(fac (1- n.).).).
D)

While the source code buffer is selected, the special commands of Edebug are available in it,
in addition to the commands of XEmacs Lisp mode. (The buffer is temporarily made read-only,
however.) For example, you can type the Edebug command to execute until the next stop
point. If you type once after entry to fac, here is the display you will see:

(defun fac (n)
=>(if *x(< 0 n)
(* n (fac (1- n)))
1))

When Edebug stops execution after an expression, it displays the expression’s value in the
echo area.

Other frequently used commands are b to set a breakpoint at a stop point, g to execute until
a breakpoint is reached, and g to exit to the top-level command loop. Type 7 to display a list
of all Edebug commands.

16.4.2 Instrumenting for Edebug

In order to use Edebug to debug Lisp code, you must first instrument the code. Instrumenting
a form inserts additional code into it which invokes Edebug at the proper places. Furthermore,
if Edebug detects a syntax error while instrumenting, point is left at the erroneous code and an
invalid-read-syntax error is signaled.

Once you have loaded Edebug, the command C-M-x (eval-defun) is redefined so that when
invoked with a prefix argument on a definition, it instruments the definition before evaluating it.
(The source code itself is not modified.) If the variable edebug-all-defs is non-nil, that inverts
the meaning of the prefix argument: then C-M-x instruments the definition unless it has a prefix
argument. The default value of edebug-all-defs is nil. The command M-x edebug-all-defs
toggles the value of the variable edebug-all-defs.

If edebug-all-defs is non-nil, then the commands eval-region, eval-current-buffer,
and eval-buffer also instrument any definitions they evaluate. Similarly, edebug-all-forms
controls whether eval-region should instrument any form, even non-defining forms. This
doesn’t apply to loading or evaluations in the minibuffer. The command M-x edebug-all-forms
toggles this option.

Another command, M-x edebug-eval-top-level-form, is available to instrument any top-
level form regardless of the value of edebug-all-defs or edebug-all-forms.

Just before Edebug instruments any code, it calls any functions in the variable edebug-
setup-hook and resets its value to nil. You could use this to load up Edebug specifications
associated with a package you are using but only when you also use Edebug. For example,
‘my-specs.el’ may be loaded automatically when you use my-package with Edebug by including
the following code in ‘my-package.el’.

208 XEmacs Lisp Reference Manual

(add-hook ’edebug-setup-hook
(function (lambda () (require ’my-specs))))

While Edebug is active, the command I (edebug-instrument-callee) instruments the defi-
nition of the function or macro called by the list form after point, if is not already instrumented.
If the location of the definition is not known to Edebug, this command cannot be used. After
loading Edebug, eval-region records the position of every definition it evaluates, even if not
instrumenting it. Also see the command i (Section 16.4.4 [Jumping], page 209) which steps into
the callee.

Edebug knows how to instrument all the standard special forms, an interactive form with an
expression argument, anonymous lambda expressions, and other defining forms. (Specifications
for macros defined by ‘cl.el’ (version 2.03) are provided in ‘cl-specs.el’.) Edebug cannot
know what a user-defined macro will do with the arguments of a macro call so you must tell it.
See Section 16.4.16 [Instrumenting Macro Calls], page 217 for the details.

Note that a couple ways remain to evaluate expressions without instrumenting them. Loading
a file via the load subroutine does not instrument expressions for Edebug. Evaluations in the
minibuffer via eval-expression (M-ESC) are not instrumented.

To remove instrumentation from a definition, simply reevaluate it with one of the non-
instrumenting commands, or reload the file.

See Section 16.4.9 [Edebug Evall, page 212 for other evaluation functions available inside of
Edebug.

16.4.3 Edebug Execution Modes

Edebug supports several execution modes for running the program you are debugging. We
call these alternatives Edebug execution modes; do not confuse them with major or minor
modes. The current Edebug execution mode determines how Edebug displays the progress of
the evaluation, whether it stops at each stop point, or continues to the next breakpoint, for
example.

Normally, you specify the Edebug execution mode by typing a command to continue the
program in a certain mode. Here is a table of these commands. All except for S resume
execution of the program, at least for a certain distance.

S Stop: don’t execute any more of the program for now, just wait for more Edebug
commands (edebug-stop).

Step: stop at the next stop point encountered (edebug-step-mode).

n Next: stop at the next stop point encountered after an expression (edebug-next-

mode). Also see edebug-forward-sexp in Section 16.4.5 [Edebug Misc|, page 210.

Trace: pause one second at each Edebug stop point (edebug-trace-mode).

T Rapid trace: update at each stop point, but don’t actually pause (edebug-Trace-
fast-mode).
g Go: run until the next breakpoint (edebug-go-mode). See Section 16.4.6 [Break-

points|, page 210.

c Continue: pause for one second at each breakpoint, but don’t stop (edebug-
continue-mode).

c Rapid continue: update at each breakpoint, but don’t actually pause (edebug-
Continue-fast-mode).

G Go non-stop: ignore breakpoints (edebug-Go-nonstop-mode). You can still stop
the program by hitting any key.

Chapter 16: Debugging Lisp Programs 209

In general, the execution modes earlier in the above list run the program more slowly or stop
sooner.

When you enter a new Edebug level, the initial execution mode comes from the value of
the variable edebug-initial-mode. By default, this specifies step mode. Note that you may
reenter the same Edebug level several times if, for example, an instrumented function is called
several times from one command.

While executing or tracing, you can interrupt the execution by typing any Edebug command.
Edebug stops the program at the next stop point and then executes the command that you typed.
For example, typing t during execution switches to trace mode at the next stop point. You can
use S to stop execution without doing anything else.

If your function happens to read input, a character you hit intending to interrupt execution
may be read by the function instead. You can avoid such unintended results by paying attention
to when your program wants input.

Keyboard macros containing Edebug commands do not work; when you exit from Edebug,
to resume the program, whether you are defining or executing a keyboard macro is forgotten.
Also, defining or executing a keyboard macro outside of Edebug does not affect the command
loop inside Edebug. This is usually an advantage. But see edebug-continue-kbd-macro.

16.4.4 Jumping

Commands described here let you jump to a specified location. All, except i, use temporary
breakpoints to establish the stop point and then switch to go mode. Any other breakpoint
reached before the intended stop point will also stop execution. See Section 16.4.6 [Breakpoints|
page 210 for the details on breakpoints.

f Run the program forward over one expression (edebug-forward-sexp). More pre-
cisely, set a temporary breakpoint at the position that C-M-f would reach, then
execute in go mode so that the program will stop at breakpoints.

With a prefix argument n, the temporary breakpoint is placed n sexps beyond point.
If the containing list ends before n more elements, then the place to stop is after
the containing expression.

Be careful that the position C-M-f finds is a place that the program will really get
to; this may not be true in a cond, for example.

This command does forward-sexp starting at point rather than the stop point. If
you want to execute one expression from the current stop point, type w first, to
move point there.

o Continue “out of” an expression (edebug-step-out). It places a temporary break-
point at the end of the sexp containing point.

If the containing sexp is a function definition itself, it continues until just before the
last sexp in the definition. If that is where you are now, it returns from the function
and then stops. In other words, this command does not exit the currently executing
function unless you are positioned after the last sexp.

I Step into the function or macro after point after first ensuring that it is instrumented.
It does this by calling edebug-on-entry and then switching to go mode.
Although the automatic instrumentation is convenient, it is not later automatically
uninstrumented.

h Proceed to the stop point near where point is using a temporary breakpoint (edebug-
goto-here).

All the commands in this section may fail to work as expected in case of nonlocal exit, because
a nonlocal exit can bypass the temporary breakpoint where you expected the program to stop.

210 XEmacs Lisp Reference Manual

16.4.5 Miscellaneous

Some miscellaneous commands are described here.

? Display the help message for Edebug (edebug-help).
c-] Abort one level back to the previous command level (abort-recursive-edit).
q Return to the top level editor command loop (top-level). This exits all recursive

editing levels, including all levels of Edebug activity. However, instrumented code
protected with unwind-protect or condition-case forms may resume debugging.

Like g but don’t stop even for protected code (top-level-nonstop).

Redisplay the most recently known expression result in the echo area (edebug-
previous-result).

d Display a backtrace, excluding Edebug’s own functions for clarity (edebug-
backtrace).

You cannot use debugger commands in the backtrace buffer in Edebug as you would
in the standard debugger.

The backtrace buffer is killed automatically when you continue execution.

From the Edebug recursive edit, you may invoke commands that activate Edebug again
recursively. Any time Edebug is active, you can quit to the top level with g or abort one
recursive edit level with C-J. You can display a backtrace of all the pending evaluations with d.

16.4.6 Breakpoints

There are three more ways to stop execution once it has started: breakpoints, the global
break condition, and embedded breakpoints.

While using Edebug, you can specify breakpoints in the program you are testing: points where
execution should stop. You can set a breakpoint at any stop point, as defined in Section 16.4.1
Using Edebug], page 206. For setting and unsetting breakpoints, the stop point that is affected
is the first one at or after point in the source code buffer. Here are the Edebug commands for
breakpoints:

b Set a breakpoint at the stop point at or after point (edebug-set-breakpoint). If
you use a prefix argument, the breakpoint is temporary (it turns off the first time
it stops the program).

u Unset the breakpoint (if any) at the stop point at or after the current point (edebug-
unset-breakpoint).

x condition
Set a conditional breakpoint which stops the program only if condition evaluates to
anon-nil value (edebug-set-conditional-breakpoint). If you use a prefix argu-
ment, the breakpoint is temporary (it turns off the first time it stops the program).

B Move point to the next breakpoint in the definition (edebug-next-breakpoint).

While in Edebug, you can set a breakpoint with b and unset one with u. First you must
move point to a position at or before the desired Edebug stop point, then hit the key to change
the breakpoint. Unsetting a breakpoint that has not been set does nothing.

Reevaluating or reinstrumenting a definition clears all its breakpoints.

A conditional breakpoint tests a condition each time the program gets there. To set a
conditional breakpoint, use x, and specify the condition expression in the minibuffer. Setting a

Chapter 16: Debugging Lisp Programs 211

conditional breakpoint at a stop point that already has a conditional breakpoint puts the current
condition expression in the minibuffer so you can edit it.

You can make both conditional and unconditional breakpoints temporary by using a prefix
arg to the command to set the breakpoint. After breaking at a temporary breakpoint, it is
automatically cleared.

Edebug always stops or pauses at a breakpoint except when the Edebug mode is Go-nonstop.
In that mode, it ignores breakpoints entirely.

To find out where your breakpoints are, use B, which moves point to the next breakpoint in
the definition following point, or to the first breakpoint if there are no following breakpoints.
This command does not continue execution—it just moves point in the buffer.

16.4.6.1 Global Break Condition

In contrast to breaking when execution reaches specified locations, you can also cause a
break when a certain event occurs. The global break condition is a condition that is repeatedly
evaluated at every stop point. If it evaluates to a non-nil value, then execution is stopped or
paused depending on the execution mode, just like a breakpoint. Any errors that might occur
as a result of evaluating the condition are ignored, as if the result were nil.

You can set or edit the condition expression, stored in edebug-global-break-condition,
using X (edebug-set-global-break-condition).

Using the global break condition is perhaps the fastest way to find where in your code some
event occurs, but since it is rather expensive you should reset the condition to nil when not in
use.

16.4.6.2 Embedded Breakpoints

Since all breakpoints in a definition are cleared each time you reinstrument it, you might
rather create an embedded breakpoint which is simply a call to the function edebug. You can,
of course, make such a call conditional. For example, in the fac function, insert the first line as
shown below to stop when the argument reaches zero:

(defun fac (n)
(if (= n 0) (edebug))
(if (< 0 n)
(* n (fac (1- n)))
1))

When the fac definition is instrumented and the function is called, Edebug will stop before
the call to edebug. Depending on the execution mode, Edebug will stop or pause.

However, if no instrumented code is being executed, calling edebug will instead invoke debug.
Calling debug will always invoke the standard backtrace debugger.

16.4.7 Trapping Errors

An error may be signaled by subroutines or XEmacs Lisp code. If a signal is not handled by a
condition-case, this indicates an unrecognized situation has occurred. If Edebug is not active
when an unhandled error is signaled, debug is run normally (if debug-on-error is non-nil). But
while Edebug is active, debug-on-error and debug-on-quit are bound to edebug-on-error
and edebug-on-quit, which are both t by default. Actually, if debug-on-error already has a
non-nil value, that value is still used.

212 XEmacs Lisp Reference Manual

It is best to change the values of edebug-on-error or edebug-on-quit when Edebug is
not active since their values won’t be used until the next time Edebug is invoked at a deeper
command level. If you only change debug-on-error or debug-on-quit while Edebug is active,
these changes will be forgotten when Edebug becomes inactive. Furthermore, during Edebug’s
recursive edit, these variables are bound to the values they had outside of Edebug.

Edebug shows you the last stop point that it knew about before the error was signaled. This
may be the location of a call to a function which was not instrumented, within which the error
actually occurred. For an unbound variable error, the last known stop point might be quite
distant from the offending variable. If the cause of the error is not obvious at first, note that
you can also get a full backtrace inside of Edebug (see Section 16.4.5 [Edebug Misc|, page 210).

Edebug can also trap signals even if they are handled. If debug-on-error is a list of signal
names, Edebug will stop when any of these errors are signaled. Edebug shows you the last known
stop point just as for unhandled errors. After you continue execution, the error is signaled again
(but without being caught by Edebug). Edebug can only trap errors that are handled if they
are signaled in Lisp code (not subroutines) since it does so by temporarily replacing the signal
function.

16.4.8 Edebug Views

The following Edebug commands let you view aspects of the buffer and window status that
obtained before entry to Edebug.

v View the outside window configuration (edebug-view-outside).

p Temporarily display the outside current buffer with point at its outside position
(edebug-bounce-point). If prefix arg is supplied, sit for that many seconds instead.

W Move point back to the current stop point (edebug-where) in the source code buffer.
Also, if you use this command in another window displaying the same buffer, this
window will be used instead to display the buffer in the future.

W Toggle the edebug-save-windows variable which indicates whether the outside win-
dow configuration is saved and restored (edebug-toggle-save-windows). Also,
each time it is toggled on, make the outside window configuration the same as the
current window configuration.

With a prefix argument, edebug-toggle-save-windows only toggles saving and
restoring of the selected window. To specify a window that is not displaying the
source code buffer, you must use C-xXW from the global keymap.

You can view the outside window configuration with v or just bounce to the current point
in the current buffer with p, even if it is not normally displayed. After moving point, you may
wish to pop back to the stop point with w from a source code buffer.

By using W twice, Edebug again saves and restores the outside window configuration, but
to the current configuration. This is a convenient way to, for example, add another buffer to
be displayed whenever Edebug is active. However, the automatic redisplay of ‘*edebug*’ and
‘xedebug-trace*’ may conflict with the buffers you wish to see unless you have enough windows
open.

16.4.9 Evaluation

While within Edebug, you can evaluate expressions “as if” Edebug were not running. Edebug
tries to be invisible to the expression’s evaluation and printing. Evaluation of expressions that
cause side effects will work as expected except for things that Edebug explicitly saves and

Chapter 16: Debugging Lisp Programs 213

restores. See Section 16.4.15 [The Outside Context|, page 216 for details on this process. Also
see Section 16.4.11 [Reading in Edebug], page 214 and Section 16.4.12 [Printing in Edebug],
page 214 for topics related to evaluation.

e exp
Evaluate expression exp in the context outside of Edebug (edebug-eval-
expression). In other words, Edebug tries to avoid altering the effect of
exp.

M-ESC) exp

Evaluate expression exp in the context of Edebug itself.

C-x C-e Evaluate the expression before point, in the context outside of Edebug (edebug-
eval-last-sexp).

Edebug supports evaluation of expressions containing references to lexically bound symbols
created by the following constructs in ‘cl.el’ (version 2.03 or later): lexical-let, macrolet,
and symbol-macrolet.

16.4.10 Evaluation List Buffer

You can use the evaluation list buffer, called ‘*edebug*’, to evaluate expressions interactively.
You can also set up the evaluation list of expressions to be evaluated automatically each time
Edebug updates the display.

E Switch to the evaluation list buffer ‘*edebug*’ (edebug-visit-eval-list).

In the ‘*edebug*’ buffer you can use the commands of Lisp Interaction as well as these special
commands:

LFD Evaluate the expression before point, in the outside context, and insert the value in
the buffer (edebug-eval-print-last-sexp).

C-x C-e Evaluate the expression before point, in the context outside of Edebug (edebug-
eval-last-sexp).

C-c C-u Build a new evaluation list from the first expression of each group, reevaluate and
redisplay (edebug-update-eval-list). Groups are separated by comment lines.

C-c C-d Delete the evaluation list group that point is in (edebug-delete-eval-item).
C-c C-w Switch back to the source code buffer at the current stop point (edebug-where).

You can evaluate expressions in the evaluation list window with LFD or C-x C-e, just as you
would in ‘*scratch*’; but they are evaluated in the context outside of Edebug.

The expressions you enter interactively (and their results) are lost when you continue execu-
tion unless you add them to the evaluation list with C-c C-u. This command builds a new list
from the first expression of each evaluation list group. Groups are separated by comment lines.
Be careful not to add expressions that execute instrumented code otherwise an infinite loop will
result.

When the evaluation list is redisplayed, each expression is displayed followed by the result
of evaluating it, and a comment line. If an error occurs during an evaluation, the error message
is displayed in a string as if it were the result. Therefore expressions that, for example, use
variables not currently valid do not interrupt your debugging.

Here is an example of what the evaluation list window looks like after several expressions
have been added to it:

214 XEmacs Lisp Reference Manual

(current-buffer)

#<buffer *scratch*>
(selected-window)
#<window 16 on *scratchx*>

bad-var
"Symbol’s value as variable is void: bad-var"

this-command
eval-last-sexp

To delete a group, move point into it and type C-c C-d, or simply delete the text for the
group and update the evaluation list with C-c C-u. When you add a new group, be sure it is
separated from its neighbors by a comment line.

After selecting ‘*edebug*’, you can return to the source code buffer with C-c C-w. The
‘xedebug*’ buffer is killed when you continue execution, and recreated next time it is needed.

16.4.11 Reading in Edebug

To instrument a form, Edebug first reads the whole form. Edebug replaces the standard Lisp
Reader with its own reader that remembers the positions of expressions. This reader is used
by the Edebug replacements for eval-region, eval-defun, eval-buffer, and eval-current-
buffer.

Another package, ‘cl-read.el’, replaces the standard reader with one that understands
Common Lisp reader macros. If you use that package, Edebug will automatically load
‘edebug-cl-read.el’ to provide corresponding reader macros that remember positions of ex-
pressions. If you define new reader macros, you will have to define similar reader macros for
Edebug.

16.4.12 Printing in Edebug

If the result of an expression in your program contains a circular reference, you may get an
error when Edebug attempts to print it. You can set print-length to a non-zero value to limit
the print length of lists (the number of cdrs), and in Emacs 19, set print-level to a non-zero
value to limit the print depth of lists. But you can print such circular structures and structures
that share elements more informatively by using the ‘cust-print’ package.

To load ‘cust-print’ and activate custom printing only for Edebug, simply use the command
M-x edebug-install-custom-print. To restore the standard print functions, use M-x edebug-
uninstall-custom-print. You can also activate custom printing for printing in any Lisp code;
see the package for details.

Here is an example of code that creates a circular structure:

Chapter 16: Debugging Lisp Programs 215

(progn
(edebug-install-custom-print)
(setq a ’(x y))
(setcar a a))
Edebug will print the result of the setcar as ‘Result: #1=(#1# y)’. The ‘#1=" notation
names the structure that follows it, and the ‘#1#’ notation references the previously named
structure. This notation is used for any shared elements of lists or vectors.

Independent of whether ‘cust-print’ is active, while printing results Edebug binds print-
length, print-level, and print-circle to edebug-print-length (50), edebug-print-level
(50), and edebug-print-circle (t) respectively, if these values are non-nil. Also, print-
readably is bound to nil since some objects simply cannot be printed readably.

16.4.13 Tracing

In addition to automatic stepping through source code, which is also called tracing (see
Section 16.4.3 [Edebug Execution Modes|, page 208), Edebug can produce a traditional trace
listing of execution in a separate buffer, ‘*edebug-tracex*’.

If the variable edebug-trace is non-nil, each function entry and exit adds lines to the trace
buffer. On function entry, Edebug prints ‘::::{’ followed by the function name and argument
values. On function exit, Edebug prints ‘::::}’ followed by the function name and result
of the function. The number of ‘:’s is computed from the recursion depth. The balanced
braces in the trace buffer can be used to find the matching beginning or end of function calls.
These displays may be customized by replacing the functions edebug-print-trace-before and
edebug-print-trace-after, which take an arbitrary message string to print.

The macro edebug-tracing provides tracing similar to function enter and exit tracing, but
for arbitrary expressions. This macro should be explicitly inserted by you around expressions
you wish to trace the execution of. The first argument is a message string (evaluated), and the
rest are expressions to evaluate. The result of the last expression is returned.

Finally, you can insert arbitrary strings into the trace buffer with explicit calls to edebug-
trace. The arguments of this function are the same as for message, but a newline is always
inserted after each string printed in this way.

edebug-tracing and edebug-trace insert lines in the trace buffer even if Edebug is not
active. Every time the trace buffer is added to, the window is scrolled to show the last lines
inserted. (There may be some display problems if you use tracing along with the evaluation
list.)

16.4.14 Coverage Testing

Edebug provides a rudimentary coverage tester and display of execution frequency. Frequency
counts are always accumulated, both before and after evaluation of each instrumented expression,
even if the execution mode is Go-nonstop. Coverage testing is only done if the option edebug-
test-coverage is non-nil because this is relatively expensive. Both data sets are displayed by
M-x edebug-display-freq-count.

edebug-display-freq-count Command
Display the frequency count data for each line of the current definition. The frequency
counts are inserted as comment lines after each line, and you can undo all insertions with
one undo command. The counts are inserted starting under the (before an expression or
the) after an expression, or on the last char of a symbol. The counts are only displayed
when they differ from previous counts on the same line.

216 XEmacs Lisp Reference Manual

If coverage is being tested, whenever all known results of an expression are eq, the char =
will be appended after the count for that expression. Note that this is always the case for
an expression only evaluated once.

To clear the frequency count and coverage data for a definition, reinstrument it.

For example, after evaluating (fac 5) with an embedded breakpoint, and setting edebug-
test-coverage to t, when the breakpoint is reached, the frequency data is looks like this:
(defun fac (n)
(if (= n 0) (edebug))

; #6 1 0 =5
(if (< 0 n)
s #5 =
(* n (fac (1- n)))
s # 5 0
1))
s # 0

The comment lines show that fac has been called 6 times. The first if statement has returned
5 times with the same result each time, and the same is true for the condition on the second if.
The recursive call of fac has not returned at all.

16.4.15 The Outside Context

Edebug tries to be transparent to the program you are debugging. In addition, most eval-
uations you do within Edebug (see Section 16.4.9 [Edebug Eval|, page 212) occur in the same
outside context which is temporarily restored for the evaluation. But Edebug is not completely
successful and this section explains precisely how it fails. Edebug operation unavoidably alters
some data in XEmacs, and this can interfere with debugging certain programs. Also notice that
Edebug’s protection against change of outside data means that any side effects intended by the
user in the course of debugging will be defeated.

16.4.15.1 Checking Whether to Stop

Whenever Edebug is entered just to think about whether to take some action, it needs to
save and restore certain data.

e max-lisp-eval-depth and max-specpdl-size are both incremented one time to reduce
Edebug’s impact on the stack. You could, however, still run out of stack space when using
Edebug.

e The state of keyboard macro execution is saved and restored. While Edebug is active,
executing-macro is bound to edebug-continue-kbd-macro.

16.4.15.2 Edebug Display Update

When Edebug needs to display something (e.g., in trace mode), it saves the current window
configuration from “outside” Edebug. When you exit Edebug (by continuing the program), it
restores the previous window configuration.

XEmagcs redisplays only when it pauses. Usually, when you continue execution, the program

comes back into Edebug at a breakpoint or after stepping without pausing or reading input in
between. In such cases, XEmacs never gets a chance to redisplay the “outside” configuration.

Chapter 16: Debugging Lisp Programs 217

What you see is the same window configuration as the last time Edebug was active, with no
interruption.

Entry to Edebug for displaying something also saves and restores the following data, but
some of these are deliberately not restored if an error or quit signal occurs.

e Which buffer is current, and where point and mark are in the current buffer are saved and
restored.

e The Edebug Display Update, is saved and restored if edebug-save-windows is non-nil. It
is not restored on error or quit, but the outside selected window is reselected even on error
or quit in case a save-excursion is active. If the value of edebug-save-windows is a list,
only the listed windows are saved and restored.

The window start and horizontal scrolling of the source code buffer are not restored, how-
ever, so that the display remains coherent.

e The value of point in each displayed buffer is saved and restored if edebug-save-displayed-
buffer-points is non-nil.

o The variables overlay-arrow-position and overlay-arrow-string are saved and re-
stored. So you can safely invoke Edebug from the recursive edit elsewhere in the same

buffer.

e cursor-in-echo-area is locally bound to nil so that the cursor shows up in the window.

16.4.15.3 Edebug Recursive Edit

When Edebug is entered and actually reads commands from the user, it saves (and later
restores) these additional data:

e The current match data, for whichever buffer was current.

e last-command, this-command, last-command-char, last-input-char, last-
input-event, last-command-event, last-event-frame, last-nonmenu-event, and
track-mouse . Commands used within Edebug do not affect these variables outside of
Edebug.

The key sequence returned by this-command-keys is changed by executing commands
within Edebug and there is no way to reset the key sequence from Lisp.

For Emacs 18, Edebug cannot save and restore the value of unread-command-char. Entering
Edebug while this variable has a nontrivial value can interfere with execution of the program
you are debugging.

e Complex commands executed while in Edebug are added to the variable command-history.
In rare cases this can alter execution.

e Within Edebug, the recursion depth appears one deeper than the recursion depth outside
Edebug. This is not true of the automatically updated evaluation list window.

e standard-output and standard-input are bound to nil by the recursive-edit, but
Edebug temporarily restores them during evaluations.

e The state of keyboard macro definition is saved and restored. While Edebug is active,
defining-kbd-macro is bound to edebug-continue-kbd-macro.

16.4.16 Instrumenting Macro Calls

When Edebug instruments an expression that calls a Lisp macro, it needs additional advice
to do the job properly. This is because there is no way to tell which subexpressions of the
macro call may be evaluated. (Evaluation may occur explicitly in the macro body, or when the
resulting expansion is evaluated, or any time later.) You must explain the format of macro call
arguments by using def-edebug-spec to define an Edebug specification for each macro.

218 XEmacs Lisp Reference Manual

def-edebug-spec macro specification Macro
Specify which expressions of a call to macro macro are forms to be evaluated. For simple
macros, the specification often looks very similar to the formal argument list of the macro
definition, but specifications are much more general than macro arguments.

The macro argument may actually be any symbol, not just a macro name.

Unless you are using Emacs 19 or XEmacs, this macro is only defined in Edebug, so
you may want to use the following which is equivalent: (put ’>macro ’edebug-form-spec
> specification)

Here is a simple example that defines the specification for the for macro described in the
XEmacs Lisp Reference Manual, followed by an alternative, equivalent specification.

(def-edebug-spec for
(symbolp "from" form "to" form "do" &rest form))

(def-edebug-spec for
(symbolp [’from form] [’to form] [’do bodyl))

Here is a table of the possibilities for specification and how each directs processing of argu-
ments.

ot All arguments are instrumented for evaluation.
o0 None of the arguments is instrumented.

ea symbol The symbol must have an Edebug specification which is used instead. This indi-
rection is repeated until another kind of specification is found. This allows you to
inherit the specification for another macro.

oa list The elements of the list describe the types of the arguments of a calling form. The
possible elements of a specification list are described in the following sections.

16.4.16.1 Specification List

A specification list is required for an Edebug specification if some arguments of a macro
call are evaluated while others are not. Some elements in a specification list match one or more
arguments, but others modify the processing of all following elements. The latter, called keyword
specifications, are symbols beginning with ‘¢’ (e.g. &optional).

A specification list may contain sublists which match arguments that are themselves lists, or
it may contain vectors used for grouping. Sublists and groups thus subdivide the specification
list into a hierarchy of levels. Keyword specifications only apply to the remainder of the sublist
or group they are contained in and there is an implicit grouping around a keyword specification
and all following elements in the sublist or group.

If a specification list fails at some level, then backtracking may be invoked to find some
alternative at a higher level, or if no alternatives remain, an error will be signaled. See Sec-
tion 16.4.16.2 [Backtracking], page 221 for more details.

Edebug specifications provide at least the power of regular expression matching. Some
context-free constructs are also supported: the matching of sublists with balanced parenthe-
ses, recursive processing of forms, and recursion via indirect specifications.

Each element of a specification list may be one of the following, with the corresponding type
of argument:

sexp A single unevaluated expression.

form A single evaluated expression, which is instrumented.

Chapter 16: Debugging Lisp Programs 219

place

body

A place as in the Common Lisp setf place argument. It will be instrumented just
like a form, but the macro is expected to strip the instrumentation. Two functions,
edebug-unwrap and edebug-unwrap*, are provided to strip the instrumentation one
level or recursively at all levels.

Short for &rest form. See &rest below.

function-form

A function form: either a quoted function symbol, a quoted lambda expression, or
a form (that should evaluate to a function symbol or lambda expression). This is
useful when function arguments might be quoted with quote rather than function
since the body of a lambda expression will be instrumented either way.

lambda-expr

&optional

&rest

&or

¬

&define

An unquoted anonymous lambda expression.

All following elements in the specification list are optional; as soon as one does not
match, Edebug stops matching at this level.

To make just a few elements optional followed by non-optional elements, use
[&optional specs...]. To specify that several elements should all succeed together,
use &optional [specs...]. See the defun example below.

All following elements in the specification list are repeated zero or more times. All
the elements need not match in the last repetition, however.

To repeat only a few elements, use [&rest specs...]. To specify all elements must
match on every repetition, use &rest [specs...].

Each of the following elements in the specification list is an alternative, processed
left to right until one matches. One of the alternatives must match otherwise the
&or specification fails.

Each list element following &or is a single alternative even if it is a keyword specifi-
cation. (This breaks the implicit grouping rule.) To group two or more list elements
as a single alternative, enclose them in [...].

Each of the following elements is matched as alternatives as if by using &or, but
if any of them match, the specification fails. If none of them match, nothing is
matched, but the ¬ specification succeeds.

Indicates that the specification is for a defining form. The defining form itself is not
instrumented (i.e. Edebug does not stop before and after the defining form), but
forms inside it typically will be instrumented. The &define keyword should be the
first element in a list specification.

Additional specifications that may only appear after &define are described here.
See the defun example below.

name The argument, a symbol, is the name of the defining form. But a
defining form need not be named at all, in which case a unique name
will be created for it.

The name specification may be used more than once in the specifica-
tion and each subsequent use will append the corresponding symbol
argument to the previous name with ‘@’ between them. This is use-
ful for generating unique but meaningful names for definitions such as
defadvice and defmethod.

:name The element following :name should be a symbol; it is used as an ad-
ditional name component for the definition. This is useful to add a
unique, static component to the name of the definition. It may be used
more than once. No argument is matched.

220

nil

gate

XEmacs Lisp Reference Manual

arg The argument, a symbol, is the name of an argument of the defining
form. However, lambda list keywords (symbols starting with ‘&’) are
not allowed. See lambda-1list and the example below.

lambda-list
This matches the whole argument list of an XEmacs Lisp lambda ex-
pression, which is a list of symbols and the keywords &optional and
&rest

def-body The argument is the body of code in a definition. This is like body,
described above, but a definition body must be instrumented with a
different Edebug call that looks up information associated with the def-
inition. Use def-body for the highest level list of forms within the
definition.

def-form The argument is a single, highest-level form in a definition. This is like
def-body, except use this to match a single form rather than a list of
forms. As a special case, def-form also means that tracing information
is not output when the form is executed. See the interactive example
below.

This is successful when there are no more arguments to match at the current ar-
gument list level; otherwise it fails. See sublist specifications and the backquote
example below.

No argument is matched but backtracking through the gate is disabled while match-
ing the remainder of the specifications at this level. This is primarily used to generate
more specific syntax error messages. See Section 16.4.16.2 [Backtracking], page 221
for more details. Also see the let example below.

other-symbol

[elements. .

"string"

>symbol or

(vector ele

Any other symbol in a specification list may be a predicate or an indirect specifica-
tion.

If the symbol has an Edebug specification, this indirect specification should be either
a list specification that is used in place of the symbol, or a function that is called
to process the arguments. The specification may be defined with def-edebug-spec
just as for macros. See the defun example below.

Otherwise, the symbol should be a predicate. The predicate is called with the
argument and the specification fails if the predicate fails. The argument is not
instrumented.

Predicates that may be used include: symbolp, integerp, stringp, vectorp, atom
(which matches a number, string, symbol, or vector), keywordp, and lambda-1list-
keywordp. The last two, defined in ‘edebug.el’, test whether the argument is a
symbol starting with ‘:” and ‘&’ respectively.

.1
Rather than matching a vector argument, a vector treats the elements as a single
group specification.

The argument should be a symbol named string. This specification is equivalent to
the quoted symbol, ’>symbol, where the name of symbol is the string, but the string
form is preferred.

(quote symbol)
The argument should be the symbol symbol. But use a string specification instead.

ments. . .)
The argument should be a vector whose elements must match the elements in the
specification. See the backquote example below.

Chapter 16: Debugging Lisp Programs 221

(elements. . .)
Any other list is a sublist specification and the argument must be a list whose
elements match the specification elements.

A sublist specification may be a dotted list and the corresponding list argument may
then be a dotted list. Alternatively, the last cdr of a dotted list specification may be
another sublist specification (via a grouping or an indirect specification, e.g. (spec
. [(more specs...)])) whose elements match the non-dotted list arguments. This
is useful in recursive specifications such as in the backquote example below. Also
see the description of a nil specification above for terminating such recursion.

Note that a sublist specification of the form (specs . nil) means the same
as (specs), and (specs . (sublist-elements...)) means the same as (specs
sublist-elements...).

16.4.16.2 Backtracking

If a specification fails to match at some point, this does not necessarily mean a syntax
error will be signaled; instead, backtracking will take place until all alternatives have been
exhausted. Eventually every element of the argument list must be matched by some element in
the specification, and every required element in the specification must match some argument.

Backtracking is disabled for the remainder of a sublist or group when certain conditions occur,
described below. Backtracking is reenabled when a new alternative is established by &optional,
&rest, or &or. It is also reenabled initially when processing a sublist or group specification or
an indirect specification.

You might want to disable backtracking to commit to some alternative so that Edebug can
provide a more specific syntax error message. Normally, if no alternative matches, Edebug
reports that none matched, but if one alternative is committed to, Edebug can report how it
failed to match.

First, backtracking is disabled while matching any of the form specifications (i.e. form, body,
def-form, and def-body). These specifications will match any form so any error must be in the
form itself rather than at a higher level.

Second, backtracking is disabled after successfully matching a quoted symbol or string spec-
ification, since this usually indicates a recognized construct. If you have a set of alternative
constructs that all begin with the same symbol, you can usually work around this constraint
by factoring the symbol out of the alternatives, e.g., ["foo" &or [first case] [second case]

..

Third, backtracking may be explicitly disabled by using the gate specification. This is useful
when you know that no higher alternatives may apply.

16.4.16.3 Debugging Backquote

Backquote (¢) is a macro that results in an expression that may or may not be evaluated. It
is often used to simplify the definition of a macro to return an expression that is evaluated, but
Edebug does not know when this is the case. However, the forms inside unquotes (, and ,@)
are evaluated and Edebug instruments them.

Nested backquotes are supported by Edebug, but there is a limit on the support of quotes
inside of backquotes. Quoted forms (with ?) are not normally evaluated, but if the quoted form
appears immediately within , and ,@ forms, Edebug treats this as a backquoted form at the
next higher level (even if there is not a next higher level - this is difficult to fix).

222 XEmacs Lisp Reference Manual

If the backquoted forms happen to be code intended to be evaluated, you can have Edebug
instrument them by using edebug-¢ instead of the regular ‘. Unquoted forms can always appear
inside edebug-* anywhere a form is normally allowed. But (, form) may be used in two other
places specially recognized by Edebug: wherever a predicate specification would match, and at
the head of a list form in place of a function name or lambda expression. The form inside a
spliced unquote, (,@ form), will be wrapped, but the unquote form itself will not be wrapped
since this would interfere with the splicing.

There is one other complication with using edebug-°‘. If the edebug-* call is in a macro and
the macro may be called from code that is also instrumented, and if unquoted forms contain
any macro arguments bound to instrumented forms, then you should modify the specification
for the macro as follows: the specifications for those arguments must use def-form instead of
form. (This is to reestablish the Edebugging context for those external forms.)

For example, the for macro (see section “Problems with Macros” in XEmacs Lisp Reference
Manual) is shown here but with edebug-* substituted for regular ¢.

(defmacro inc (var)
(1ist ’setq var (list ’1+ var)))

(defmacro for (var from init to final do &rest body)
(let ((tempvar (make-symbol "max")))
(edebug-‘ (let (((, var) (, init))
((, tempvar) (, final)))
(while (<= (, var) (, tempvar))
(, body)
(inc (, var)))))))

Here is the corresponding modified Edebug specification and some code that calls the macro:

(def-edebug-spec for
(symbolp "from" def-form "to" def-form "do" &rest def-form))

(let ((n 5))
(for i fromn to (*x n (+ n 1)) do
(message "%s" i)))

After instrumenting the for macro and the macro call, Edebug first steps to the beginning of
the macro call, then into the macro body, then through each of the unquoted expressions in the
backquote showing the expressions that will be embedded in the backquote form. Then when
the macro expansion is evaluated, Edebug will step through the let form and each time it gets
to an unquoted form, it will jump back to an argument of the macro call to step through that
expression. Finally stepping will continue after the macro call. Even more convoluted execution
paths may result when using anonymous functions.

When the result of an expression is an instrumented expression, it is difficult to see the
expression inside the instrumentation. So you may want to set the option edebug-unwrap-
results to a non-nil value while debugging such expressions, but it would slow Edebug down
to always do this.

16.4.16.4 Specification Examples

Here we provide several examples of Edebug specifications to show many of its capabilities.

A let special form has a sequence of bindings and a body. Each of the bindings is either
a symbol or a sublist with a symbol and optional value. In the specification below, notice the
gate inside of the sublist to prevent backtracking.

Chapter 16: Debugging Lisp Programs 223

(def-edebug-spec let
((&rest
&or symbolp (gate symbolp &optional form))
body))
Edebug uses the following specifications for defun and defmacro and the associated argument

list and interactive specifications. It is necessary to handle the expression argument of an
interactive form specially since it is actually evaluated outside of the function body.

(def-edebug-spec defmacro defun) ; Indirect ref to defun spec
(def-edebug-spec defun
(&define name lambda-list

[&optional stringp] ; Match the doc string, if present.
[&optional ("interactive" interactive)]
def-body))

(def-edebug-spec lambda-list
(([&rest arg]
[&optional ["&optional" arg &rest arg]l]
&optional ["&rest" arg]
)))

(def-edebug-spec interactive
(&optional &or stringp def-form)) ; Notice: def-form

The specification for backquote below illustrates how to match dotted lists and use nil to
terminate recursion. It also illustrates how components of a vector may be matched. (The
actual specification provided by Edebug does not support dotted lists because doing so causes
very deep recursion that could fail.)

[

(def-edebug-spec ¢ (backquote-form)) ;; alias just for clarity
(def-edebug-spec backquote-form
(&or ([&or "," ",@"] &or ("quote" backquote-form) form)
(backquote-form . [&or nil backquote-form])
(vector &rest backquote-form)
sexp))

16.4.17 Edebug Options

These options affect the behavior of Edebug:

edebug-setup-hook User Option
Functions to call before Edebug is used. Each time it is set to a new value, Edebug will
call those functions once and then edebug-setup-hook is reset to nil. You could use this
to load up Edebug specifications associated with a package you are using but only when
you also use Edebug. See Section 16.4.2 [Instrumenting|, page 207.

edebug-all-defs User Option
If non-nil, normal evaluation of any defining forms (e.g. defun and defmacro) will
instrument them for Edebug. This applies to eval-defun, eval-region, and eval-
current-buffer.

Use the command M-x edebug-all-defs to toggle the value of this variable. You
may want to make this variable local to each buffer by calling (make-local-variable

224 XEmacs Lisp Reference Manual

’edebug-all-defs) in your emacs-1lisp-mode-hook. See Section 16.4.2 [Instrumenting],
page 207.

edebug-all-forms User Option
If non-nil, normal evaluation of any forms by eval-defun, eval-region, and eval-
current-buffer will instrument them for Edebug.

Use the command M-x edebug-all-forms to toggle the value of this option. See Sec-
tion 16.4.2 [Instrumenting], page 207.

edebug-save-windows User Option
If non-nil, save and restore window configuration on Edebug calls. It takes some time to
do this, so if your program does not care what happens to data about windows, you may
want to set this variable to nil.

If the value is a list, only the listed windows are saved and restored.

M-x edebug-toggle-save-windows may be used to change this variable. This command
is bound to W in source code buffers. See Section 16.4.15.2 [Edebug Display Update]
page 216.

edebug-save-displayed-buffer-points User Option
If non-nil, save and restore point in all displayed buffers. This is necessary if you are
debugging code that changes the point of a buffer which is displayed in a non-selected
window. If Edebug or the user then selects the window, the buffer’s point will be changed
to the window’s point.

This is an expensive operation since it visits each window and therefore each displayed
buffer twice for each Edebug activation, so it is best to avoid it if you can. See Sec-
tion 16.4.15.2 [Edebug Display Update], page 216.

edebug-initial-mode User Option
If this variable is non-nil, it specifies the initial execution mode for Edebug when it
is first activated. Possible values are step, next, go, Go-nonstop, trace, Trace-fast,
continue, and Continue-fast.

The default value is step. See Section 16.4.3 [Edebug Execution Modes], page 208.

edebug-trace User Option
Non-nil means display a trace of function entry and exit. Tracing output is displayed
in a buffer named ‘*edebug-trace*’, one function entry or exit per line, indented by the
recursion level.

The default value is nil.

Also see edebug-tracing. See Section 16.4.13 [Tracing], page 215.

edebug-test-coverage User Option
If non-nil, Edebug tests coverage of all expressions debugged. This is done by comparing
the result of each expression with the previous result. Coverage is considered OK if two
different results are found. So to sufficiently test the coverage of your code, try to execute
it under conditions that evaluate all expressions more than once, and produce different
results for each expression.

Use M-x edebug-display-freq-count to display the frequency count and coverage infor-
mation for a definition. See Section 16.4.14 [Coverage Testing|, page 215.

Chapter 16: Debugging Lisp Programs 225

edebug-continue-kbd-macro User Option
If non-nil, continue defining or executing any keyboard macro that is executing outside
of Edebug. Use this with caution since it is not debugged. See Section 16.4.3 [Edebug
Execution Modes], page 208.

edebug-print-length User Option
If non-nil, bind print-length to this while printing results in Edebug. The default value
is 50. See Section 16.4.12 [Printing in Edebug], page 214.

)

edebug-print-level User Option
If non-nil, bind print-level to this while printing results in Edebug. The default value
is 50.

edebug-print-circle User Option
If non-nil, bind print-circle to this while printing results in Edebug. The default value
is nil.

edebug-on-error User Option

debug-on-error is bound to this while Edebug is active. See Section 16.4.7 [Trapping
Errors|, page 211.

edebug-on-quit User Option
debug-on-quit is bound to this while Edebug is active. See Section 16.4.7 [Trapping
Errors|, page 211.

edebug-unwrap-results User Option
Non-nil if Edebug should unwrap results of expressions. This is useful when debug-
ging macros where the results of expressions are instrumented expressions. But don’t do
this when results might be circular or an infinite loop will result. See Section 16.4.16.3
[Debugging Backquote|, page 221.

edebug-global-break-condition User Option
If non-nil, an expression to test for at every stop point. If the result is non-nil, then
break. Errors are ignored. See Section 16.4.6.1 [Global Break Condition], page 211.

226 XEmacs Lisp Reference Manual

Chapter 17: Reading and Printing Lisp Objects 227

17 Reading and Printing Lisp Objects

Printing and reading are the operations of converting Lisp objects to textual form and vice
versa. They use the printed representations and read syntax described in Chapter 2 [Lisp Data
Types], page 13.

This chapter describes the Lisp functions for reading and printing. It also describes streams,
which specify where to get the text (if reading) or where to put it (if printing).

17.1 Introduction to Reading and Printing

Reading a Lisp object means parsing a Lisp expression in textual form and producing a
corresponding Lisp object. This is how Lisp programs get into Lisp from files of Lisp code. We
call the text the read syntax of the object. For example, the text ‘(a . 5)’ is the read syntax
for a cons cell whose CAR is a and whose CDR is the number 5.

Printing a Lisp object means producing text that represents that object—converting the
object to its printed representation. Printing the cons cell described above produces the text
‘(a. B5).

Reading and printing are more or less inverse operations: printing the object that results
from reading a given piece of text often produces the same text, and reading the text that results
from printing an object usually produces a similar-looking object. For example, printing the
symbol foo produces the text ‘foo’, and reading that text returns the symbol foo. Printing a
list whose elements are a and b produces the text ‘(a b)’, and reading that text produces a list
(but not the same list) with elements a and b.

However, these two operations are not precisely inverses. There are three kinds of exceptions:

e Printing can produce text that cannot be read. For example, buffers, windows, frames,
subprocesses and markers print into text that starts with ‘#’; if you try to read this text,
you get an error. There is no way to read those data types.

e One object can have multiple textual representations. For example, ‘1’ and ‘01’ represent
the same integer, and ‘(a b)’ and ‘(a . (b))’ represent the same list. Reading will accept
any of the alternatives, but printing must choose one of them.

e Comments can appear at certain points in the middle of an object’s read sequence without
affecting the result of reading it.

17.2 Input Streams

Most of the Lisp functions for reading text take an input stream as an argument. The input
stream specifies where or how to get the characters of the text to be read. Here are the possible
types of input stream:

buffer The input characters are read from buffer, starting with the character directly after
point. Point advances as characters are read.

marker The input characters are read from the buffer that marker is in, starting with the
character directly after the marker. The marker position advances as characters are
read. The value of point in the buffer has no effect when the stream is a marker.

string The input characters are taken from string, starting at the first character in the
string and using as many characters as required.

228 XEmacs Lisp Reference Manual

function The input characters are generated by function, one character per call. Normally
function is called with no arguments, and should return a character.

Occasionally function is called with one argument (always a character). When that
happens, function should save the argument and arrange to return it on the next
call. This is called unreading the character; it happens when the Lisp reader reads
one character too many and wants to “put it back where it came from”.

t t used as a stream means that the input is read from the minibuffer. In fact, the
minibuffer is invoked once and the text given by the user is made into a string that
is then used as the input stream.

nil nil supplied as an input stream means to use the value of standard-input instead;
that value is the default input stream, and must be a non-nil input stream.

symbol A symbol as input stream is equivalent to the symbol’s function definition (if any).

Here is an example of reading from a stream that is a buffer, showing where point is located
before and after:

—————————— Buffer: foo --——-—-—-----
Thisx is the contents of foo.
—————————— Buffer: foo --———-----
(read (get-buffer "foo"))

= is
(read (get-buffer "foo"))

= the
—————————— Buffer: foo - ————————-
This is thex contents of foo.
—————————— Buffer: foo --——————-—-

Note that the first read skips a space. Reading skips any amount of whitespace preceding the
significant text.

In Emacs 18, reading a symbol discarded the delimiter terminating the symbol. Thus, point
would end up at the beginning of ‘contents’ rather than after ‘the’. The Emacs 19 behavior is
superior because it correctly handles input such as ‘bar(foo)’, where the open-parenthesis that
ends one object is needed as the beginning of another object.

Here is an example of reading from a stream that is a marker, initially positioned at the
beginning of the buffer shown. The value read is the symbol This.

—————————— Buffer: foo ----------
This is the contents of foo.
—————————— Buffer: foo ————————-

(setq m (set-marker (make-marker) 1 (get-buffer "foo")))
= #<marker at 1 in foo>

(read m)
= This
m
= #<marker at 5 in foo> ; ; Before the first space.

Here we read from the contents of a string:
(read "(When in) the course")
= (When in)
The following example reads from the minibuffer. The prompt is: ‘Lisp expression: ’
(That is always the prompt used when you read from the stream t.) The user’s input is shown
following the prompt.

Chapter 17: Reading and Printing Lisp Objects 229

(read t)
= 23
—————————— Buffer: Minibuffer ----—----—-
Lisp expression: 23
—————————— Buffer: Minibuffer ----------

Finally, here is an example of a stream that is a function, named useless-stream. Before
we use the stream, we initialize the variable useless-1ist to a list of characters. Then each call
to the function useless-stream obtains the next character in the list or unreads a character by
adding it to the front of the list.

(setq useless-list (append "XY()" nil))
= (88 89 40 41)

(defun useless-stream (&optional unread)
(if unread
(setq useless-list (cons unread useless-list))
(progl (car useless-list)
(setq useless-list (cdr useless-list)))))
= useless-stream

Now we read using the stream thus constructed:

(read ’useless-stream)
= XY

useless-1list
= (40 41)

Note that the open and close parentheses remains in the list. The Lisp reader encountered the
open parenthesis, decided that it ended the input, and unread it. Another attempt to read from
the stream at this point would read ()’ and return nil.

17.3 Input Functions

This section describes the Lisp functions and variables that pertain to reading.

In the functions below, stream stands for an input stream (see the previous section). If
stream is nil or omitted, it defaults to the value of standard-input.

An end-of-file error is signaled if reading encounters an unterminated list, vector, or string.

read &optional stream Function
This function reads one textual Lisp expression from stream, returning it as a Lisp object.
This is the basic Lisp input function.

read-from-string string &optional start end Function
This function reads the first textual Lisp expression from the text in string. It returns a
cons cell whose CAR is that expression, and whose CDR is an integer giving the position of
the next remaining character in the string (i.e., the first one not read).

If start is supplied, then reading begins at index start in the string (where the first char-
acter is at index 0). If end is also supplied, then reading stops just before that index, as
if the rest of the string were not there.

For example:

(read-from-string "(setq x 55) (setq y 5)")
= ((setq x 55) . 11)

230 XEmacs Lisp Reference Manual

(read-from-string "\"A short string\"")
= ("A short string" . 16)

;; Read starting at the first character.
(read-from-string "(list 112)" 0)
= ((list 112) . 10)
;5 Read starting at the second character.
(read-from-string "(list 112)" 1)
= (list . 5)
;5 Read starting at the seventh character,
;35 and stopping at the ninth.
(read-from-string "(list 112)" 6 8)
= (11 . 8)

standard-input Variable
This variable holds the default input stream—the stream that read uses when the stream
argument is nil.

17.4 Output Streams

An output stream specifies what to do with the characters produced by printing. Most print
functions accept an output stream as an optional argument. Here are the possible types of
output stream:

buffer The output characters are inserted into buffer at point. Point advances as characters
are inserted.

marker The output characters are inserted into the buffer that marker points into, at the
marker position. The marker position advances as characters are inserted. The
value of point in the buffer has no effect on printing when the stream is a marker.

function The output characters are passed to function, which is responsible for storing them
away. It is called with a single character as argument, as many times as there are
characters to be output, and is free to do anything at all with the characters it

receives.
t The output characters are displayed in the echo area.
nil nil specified as an output stream means to the value of standard-output instead;

that value is the default output stream, and must be a non-nil output stream.
symbol A symbol as output stream is equivalent to the symbol’s function definition (if any).

Many of the valid output streams are also valid as input streams. The difference between
input and output streams is therefore mostly one of how you use a Lisp object, not a distinction
of types of object.

Here is an example of a buffer used as an output stream. Point is initially located as shown
immediately before the ‘h’ in ‘the’. At the end, point is located directly before that same ‘h’.

—————————— Buffer: foo -----—----
This is txhe contents of foo.
—————————— Buffer: foo —————————-

(print "This is the output" (get-buffer "foo"))
= "This is the output"

Chapter 17: Reading and Printing Lisp Objects 231

This is t
"This is the output"

xhe contents of foo.

—————————— Buffer: foo --————-——-

Now we show a use of a marker as an output stream. Initially, the marker is in buffer foo,
between the ‘t” and the ‘h’ in the word ‘the’. At the end, the marker has advanced over the
inserted text so that it remains positioned before the same ‘h’. Note that the location of point,
shown in the usual fashion, has no effect.

—————————— Buffer: foo --——————-—-
"This is the xoutput"
—————————— Buffer: foo --——-—----—-

= #<marker at 11 in foo>

(print "More output for foo." m)
= "More output for foo."

---------- Buffer: foo ----------
"This is t

"More output for foo."

he xoutput"

—————————— Buffer: foo --——-———----
m

= #<marker at 35 in foo>
The following example shows output to the echo area:

(print "Echo Area output" t)

= "Echo Area output"
—————————— Echo Area ----------
"Echo Area output"
—————————— Echo Area --——————--

Finally, we show the use of a function as an output stream. The function eat-output takes
each character that it is given and conses it onto the front of the list last-output (see Section 5.5
Building Lists|, page 76). At the end, the list contains all the characters output, but in reverse
order.

(setq last-output nil)
= nil
(defun eat-output (c)
(setq last-output (cons c last-output)))
= eat-output

(print "This is the output" ’eat-output)
= "This is the output"

last-output
= (?P\n ?\" 7t 7u ?p 7t 7u 7o ?\ Te 7h 7t
2\ ?s ?7i ?\ ?s ?i 7h 7T ?7\" 7\n)
Now we can put the output in the proper order by reversing the list:
(concat (nreverse last-output))
j n
\"This is the output\"

232 XEmacs Lisp Reference Manual

Calling concat converts the list to a string so you can see its contents more clearly.

17.5 Output Functions

This section describes the Lisp functions for printing Lisp objects.

Some of the XEmacs printing functions add quoting characters to the output when necessary
so that it can be read properly. The quoting characters used are ‘"’ and ‘\’; they distinguish
strings from symbols, and prevent punctuation characters in strings and symbols from being
taken as delimiters when reading. See Section 2.1 [Printed Representation], page 13, for full
details. You specify quoting or no quoting by the choice of printing function.

If the text is to be read back into Lisp, then it is best to print with quoting characters to avoid
ambiguity. Likewise, if the purpose is to describe a Lisp object clearly for a Lisp programmer.
However, if the purpose of the output is to look nice for humans, then it is better to print
without quoting.

Printing a self-referent Lisp object requires an infinite amount of text. In certain cases, trying
to produce this text leads to a stack overflow. XEmacs detects such recursion and prints ‘#level’
instead of recursively printing an object already being printed. For example, here ‘#0’ indicates
a recursive reference to the object at level 0 of the current print operation:

(setq foo (list nil))
= (nil)
(setcar foo foo)
= (#0)

In the functions below, stream stands for an output stream. (See the previous section for a
description of output streams.) If stream is nil or omitted, it defaults to the value of standard-
output.

print object &optional stream Function

The print function is a convenient way of printing. It outputs the printed representation
of object to stream, printing in addition one newline before object and another after it.
Quoting characters are used. print returns object. For example:

(progn (print ’The\ cat\ in)

(print "the hat")
(print " came back"))

_|

4 The\ cat\ in

_{

- "the hat"

_|

- " came back"

_|

= " came back"

prinl object &optional stream Function

This function outputs the printed representation of object to stream. It does not print
newlines to separate output as print does, but it does use quoting characters just like
print. It returns object.

Chapter 17: Reading and Printing Lisp Objects 233

(progn (prinl ’The\ cat\ in)
(prinl "the hat")
(prinl " came back"))
- The\ cat\ in"the hat"" came back"
= " came back"

princ object &optional stream Function
This function outputs the printed representation of object to stream. It returns object.

This function is intended to produce output that is readable by people, not by read, so
it doesn’t insert quoting characters and doesn’t put double-quotes around the contents of
strings. It does not add any spacing between calls.

(progn
(princ ’The\ cat)
(princ " in the \"hat\""))
- The cat in the "hat"
= " in the \"hat\""

terpri &optional stream Function
This function outputs a newline to stream. The name stands for “terminate print”.

write-char character &optional stream Function
This function outputs character to stream. It returns character.

prinl-to-string object &optional noescape Function
This function returns a string containing the text that prinl would have printed for the
same argument.

(prinl-to-string ’foo)
= "foo"
(prinl-to-string (mark-marker))
= "#<marker at 2773 in strings.texi>"

If noescape is non-nil, that inhibits use of quoting characters in the output. (This argu-
ment is supported in Emacs versions 19 and later.)

(prinil-to-string "foo")

:> ll\llfoo\ll n
(prini-to-string "foo" t)
= "foo"

See format, in Section 4.7 [String Conversion|, page 60, for other ways to obtain the
printed representation of a Lisp object as a string.

17.6 Variables Affecting Output
standard-output Variable

The value of this variable is the default output stream—the stream that print functions
use when the stream argument is nil.

234 XEmacs Lisp Reference Manual

print-escape-newlines Variable
If this variable is non-nil, then newline characters in strings are printed as ‘\n’ and
formfeeds are printed as ‘\f’. Normally these characters are printed as actual newlines
and formfeeds.
This variable affects the print functions prinl and print, as well as everything that uses
them. It does not affect princ. Here is an example using prini:

(prinl "a\nb")

4 "a
- b"
= "a

bll

(let ((print-escape-newlines t))
(prinl "a\nb"))
- "a\nb"
= "a
bll
In the second expression, the local binding of print-escape-newlines is in effect during
the call to prinl, but not during the printing of the result.

print-readably Variable
If non-nil, then all objects will be printed in a readable form. If an object has no read-
able representation, then an error is signalled. When print-readably is true, compiled-
function objects will be written in ‘#[...]’ form instead of in ‘#<compiled-function
[...]> form, and two-element lists of the form ‘(quote object)’ will be written as the
equivalent ‘>object’. Do not set this variable; bind it instead.

print-length Variable
The value of this variable is the maximum number of elements of a list that will be printed.
If a list being printed has more than this many elements, it is abbreviated with an ellipsis.

If the value is nil (the default), then there is no limit.
(setq print-length 2)

= 2
(print ’(1 2 3 4 5))
4 (12 ...
= (12 ...
print-level Variable

The value of this variable is the maximum depth of nesting of parentheses and brackets
when printed. Any list or vector at a depth exceeding this limit is abbreviated with an
ellipsis. A value of nil (which is the default) means no limit.

This variable exists in version 19 and later versions.

print-string-length Variable
The value of this variable is the maximum number of characters of a string that will be

printed. If a string being printed has more than this many characters, it is abbreviated
with an ellipsis.

print-gensym Variable
If non-nil, then uninterned symbols will be printed specially. Uninterned symbols are
those which are not present in obarray, that is, those which were made with make-symbol
or by calling intern with a second argument.

Chapter 17: Reading and Printing Lisp Objects 235

)

When print-gensym is true, such symbols will be preceded by ‘#:’, which causes the
reader to create a new symbol instead of interning and returning an existing one. Beware:
The ‘#:’ syntax creates a new symbol each time it is seen, so if you print an object
which contains two pointers to the same uninterned symbol, read will not duplicate that
structure.

Also, since XEmacs has no real notion of packages, there is no way for the printer to
distinguish between symbols interned in no obarray, and symbols interned in an alternate
obarray.

float-output-format Variable
This variable holds the format descriptor string that Lisp uses to print floats. This is a
“%’-spec like those accepted by printf in C, but with some restrictions. It must start with
the two characters ‘%.’. After that comes an integer precision specification, and then a
letter which controls the format. The letters allowed are ‘e’, ‘f’ and ‘g’.

e Use ‘e’ for exponential notation ‘dig. digitseexpt’.
e Use ‘f’ for decimal point notation ‘DIGITS.DIGITS’.
e Use ‘g’ to choose the shorter of those two formats for the number at hand.

The precision in any of these cases is the number of digits following the decimal point.
With ‘f’, a precision of 0 means to omit the decimal point. 0 is not allowed with ‘f’ or

g
A value of nil means to use ‘%.16g’.

Regardless of the value of float-output-format, a floating point number will never be
printed in such a way that it is ambiguous with an integer; that is, a floating-point number
will always be printed with a decimal point and/or an exponent, even if the digits following
the decimal point are all zero. This is to preserve read-equivalence.

236 XEmacs Lisp Reference Manual

Chapter 18: Minibuffers 237

18 Minibuffers

A minibuffer is a special buffer that XEmacs commands use to read arguments more com-
plicated than the single numeric prefix argument. These arguments include file names, buffer
names, and command names (as in M-x). The minibuffer is displayed on the bottom line of the
frame, in the same place as the echo area, but only while it is in use for reading an argument.

18.1 Introduction to Minibuffers

In most ways, a minibuffer is a normal XEmacs buffer. Most operations within a buffer,
such as editing commands, work normally in a minibuffer. However, many operations for man-
aging buffers do not apply to minibuffers. The name of a minibuffer always has the form
¢ *Minibuf-number’, and it cannot be changed. Minibuffers are displayed only in special win-
dows used only for minibuffers; these windows always appear at the bottom of a frame. (Some-
time frames have no minibuffer window, and sometimes a special kind of frame contains nothing
but a minibuffer window; see Section 32.7 [Minibuffers and Frames|, page 432.)

The minibuffer’s window is normally a single line. You can resize it temporarily with the
window sizing commands; it reverts to its normal size when the minibuffer is exited. You
can resize it permanently by using the window sizing commands in the frame’s other window,
when the minibuffer is not active. If the frame contains just a minibuffer, you can change the
minibuffer’s size by changing the frame’s size.

If a command uses a minibuffer while there is an active minibuffer, this is called a recursive
minibuffer. The first minibuffer is named ‘ *Minibuf-0%*’. Recursive minibuffers are named by
incrementing the number at the end of the name. (The names begin with a space so that they
won’t show up in normal buffer lists.) Of several recursive minibuffers, the innermost (or most
recently entered) is the active minibuffer. We usually call this “the” minibuffer. You can permit
or forbid recursive minibuffers by setting the variable enable-recursive-minibuffers.

Like other buffers, a minibuffer may use any of several local keymaps (see Chapter 20
[Keymaps|, page 285); these contain various exit commands and in some cases completion com-
mands (see Section 18.5 [Completion], page 241).

e minibuffer-local-map is for ordinary input (no completion).

e minibuffer-local-ns-map is similar, except that exits just like (RET). This is used
mainly for Mocklisp compatibility.

e minibuffer-local-completion-map is for permissive completion.

e minibuffer-local-must-match-map is for strict completion and for cautious completion.

18.2 Reading Text Strings with the Minibuffer

Most often, the minibuffer is used to read text as a string. It can also be used to read a Lisp
object in textual form. The most basic primitive for minibuffer input is read-from-minibuffer;
it can do either one.

In most cases, you should not call minibuffer input functions in the middle of a Lisp func-
tion. Instead, do all minibuffer input as part of reading the arguments for a command, in the
interactive spec. See Section 19.2 [Defining Commands|, page 256.

238 XEmacs Lisp Reference Manual

read-from-minibuffer prompt-string &optional initial-contents keymap Function
read hist
This function is the most general way to get input through the minibuffer. By default, it
accepts arbitrary text and returns it as a string; however, if read is non-nil, then it uses
read to convert the text into a Lisp object (see Section 17.3 [Input Functions|, page 229).

The first thing this function does is to activate a minibuffer and display it with prompt-
string as the prompt. This value must be a string.

Then, if initial-contents is a string, read-from-minibuffer inserts it into the minibuffer,
leaving point at the end. The minibuffer appears with this text as its contents.

The value of initial-contents may also be a cons cell of the form (string . position).
This means to insert string in the minibuffer but put point position characters from the
beginning, rather than at the end.

If keymap is non-nil, that keymap is the local keymap to use in the minibuffer. If keymap
is omitted or nil, the value of minibuffer-local-map is used as the keymap. Specifying
a keymap is the most important way to customize the minibuffer for various applications
such as completion.

The argument hist specifies which history list variable to use for saving the input and
for history commands used in the minibuffer. It defaults to minibuffer-history. See
Section 18.4 [Minibuffer History|, page 240.

When the user types a command to exit the minibuffer, read-from-minibuffer uses the
text in the minibuffer to produce its return value. Normally it simply makes a string
containing that text. However, if read is non-nil, read-from-minibuffer reads the text
and returns the resulting Lisp object, unevaluated. (See Section 17.3 [Input Functions],
page 229, for information about reading.)

read-string prompt &optional initial Function
This function reads a string from the minibuffer and returns it. The arguments prompt
and initial are used as in read-from-minibuffer. The keymap used is minibuffer-
local-map.

This is a simplified interface to the read-from-minibuffer function:

(read-string prompt initial)

(read-from-minibuffer prompt initial nil nil nil)

minibuffer-local-map Variable
This is the default local keymap for reading from the minibuffer. By default, it makes the
following bindings:

LFD exit-minibuffer

RET exit-minibuffer

C-g abort-recursive-edit

M-n next-history-element

M-p previous-history-element

M-r next-matching-history-element

M-s previous-matching-history-element

Chapter 18: Minibuffers 239

read-no-blanks-input prompt &optional initial Function
This function reads a string from the minibuffer, but does not allow whitespace characters
as part of the input: instead, those characters terminate the input. The arguments prompt
and initial are used as in read-from-minibuffer.

This is a simplified interface to the read-from-minibuffer function, and passes the value
of the minibuffer-local-ns-map keymap as the keymap argument for that function.
Since the keymap minibuffer-local-ns-map does not rebind C-gq, it is possible to put a
space into the string, by quoting it.

(read-no-blanks-input prompt initial)

(read-from-minibuffer prompt initial minibuffer-local-ns-map)

minibuffer-local-ns-map Variable
This built-in variable is the keymap used as the minibuffer local keymap in the function

read-no-blanks-input. By default, it makes the following bindings, in addition to those
of minibuffer-local-map:

exit-minibuffer
TAB exit-minibuffer
7 self-insert—-and-exit

18.3 Reading Lisp Objects with the Minibuffer

This section describes functions for reading Lisp objects with the minibuffer.

read-minibuffer prompt &optional initial Function
This function reads a Lisp object in the minibuffer and returns it, without evaluating it.
The arguments prompt and initial are used as in read-from-minibuffer.
This is a simplified interface to the read-from-minibuffer function:

(read-minibuffer prompt initial)

(read-from-minibuffer prompt initial nil t)
Here is an example in which we supply the string " (testing)" as initial input:

(read-minibuffer
"Enter an expression: " (format "%s" ’(testing)))

;3 Here is how the minibuffer is displayed:

—————————— Buffer: Minibuffer ----------
Enter an expression: (testing)x
—————————— Buffer: Minibuffer -----—-—---

The user can type immediately to use the initial input as a default, or can edit the
input.

eval-minibuffer prompt &optional initial Function
This function reads a Lisp expression in the minibuffer, evaluates it, then returns the
result. The arguments prompt and initial are used as in read-from-minibuffer.

This function simply evaluates the result of a call to read-minibuffer:

240 XEmacs Lisp Reference Manual

(eval-minibuffer prompt initial)

(eval (read-minibuffer prompt initial))

edit-and-eval-command prompt form Function
This function reads a Lisp expression in the minibuffer, and then evaluates it. The dif-
ference between this command and eval-minibuffer is that here the initial form is not
optional and it is treated as a Lisp object to be converted to printed representation rather
than as a string of text. It is printed with prin1, so if it is a string, double-quote characters
(‘") appear in the initial text. See Section 17.5 [Output Functions|, page 232.
The first thing edit-and-eval-command does is to activate the minibuffer with prompt
as the prompt. Then it inserts the printed representation of form in the minibuffer, and
lets the user edit. When the user exits the minibuffer, the edited text is read with read
and then evaluated. The resulting value becomes the value of edit-and-eval-command.
In the following example, we offer the user an expression with initial text which is a valid
form already:

(edit-and-eval-command "Please edit: " ’(forward-word 1))

;3 After evaluation of the preceding expression,
HF the following appears in the minibuffer:

—————————— Buffer: Minibuffer - —-——————--
Please edit: (forward-word 1)x
—————————— Buffer: Minibuffer ---———----

Typing right away would exit the minibuffer and evaluate the expression, thus mov-
ing point forward one word. edit-and-eval-command returns t in this example.

18.4 Minibuffer History

A minibuffer history list records previous minibuffer inputs so the user can reuse them con-
veniently. A history list is actually a symbol, not a list; it is a variable whose value is a list of
strings (previous inputs), most recent first.

There are many separate history lists, used for different kinds of inputs. It’s the Lisp pro-
grammer’s job to specify the right history list for each use of the minibuffer.

The basic minibuffer input functions read-from-minibuffer and completing-read both
accept an optional argument named hist which is how you specify the history list. Here are the
possible values:

variable ~ Use variable (a symbol) as the history list.

(variable . startpos)
Use variable (a symbol) as the history list, and assume that the initial history
position is startpos (an integer, counting from zero which specifies the most recent
element of the history).

If you specify startpos, then you should also specify that element of the history as
the initial minibuffer contents, for consistency.

If you don’t specify hist, then the default history list minibuffer-history is used. For
other standard history lists, see below. You can also create your own history list variable; just
initialize it to nil before the first use.

Both read-from-minibuffer and completing-read add new elements to the history list
automatically, and provide commands to allow the user to reuse items on the list. The only

Chapter 18: Minibuffers 241

thing your program needs to do to use a history list is to initialize it and to pass its name to the
input functions when you wish. But it is safe to modify the list by hand when the minibuffer
input functions are not using it.

minibuffer-history Variable

The default history list for minibuffer history input.

query-replace-history Variable
A history list for arguments to query-replace (and similar arguments to other com-
mands).

file-name-history Variable

A history list for file name arguments.

regexp-history Variable

A history list for regular expression arguments.

extended-command-history Variable

A history list for arguments that are names of extended commands.

shell-command-history Variable

A history list for arguments that are shell commands.

read-expression-history Variable

A history list for arguments that are Lisp expressions to evaluate.

Info-minibuffer-history Variable

A history list for Info mode’s minibuffer.

Manual-page-minibuffer-history Variable

A history list for manual-entry.

There are many other minibuffer history lists, defined by various libraries. An M-x apropos
search for ‘history’ should prove fruitful in discovering them.

18.5 Completion

Completion is a feature that fills in the rest of a name starting from an abbreviation for it.
Completion works by comparing the user’s input against a list of valid names and determining
how much of the name is determined uniquely by what the user has typed. For example, when
you type C-x b (switch-to-buffer) and then type the first few letters of the name of the buffer
to which you wish to switch, and then type (minibuffer-complete), Emacs extends the
name as far as it can.

Standard XEmacs commands offer completion for names of symbols, files, buffers, and pro-
cesses; with the functions in this section, you can implement completion for other kinds of
names.

The try-completion function is the basic primitive for completion: it returns the longest
determined completion of a given initial string, with a given set of strings to match against.

The function completing-read provides a higher-level interface for completion. A call to
completing-read specifies how to determine the list of valid names. The function then activates
the minibuffer with a local keymap that binds a few keys to commands useful for completion.
Other functions provide convenient simple interfaces for reading certain kinds of names with
completion.

242 XEmacs Lisp Reference Manual

18.5.1 Basic Completion Functions

The two functions try-completion and all-completions have nothing in themselves to do
with minibuffers. We describe them in this chapter so as to keep them near the higher-level
completion features that do use the minibuffer.

try-completion string collection &optional predicate Function
This function returns the longest common substring of all possible completions of string
in collection. The value of collection must be an alist, an obarray, or a function that
implements a virtual set of strings (see below).

Completion compares string against each of the permissible completions specified by col-
lection; if the beginning of the permissible completion equals string, it matches. If no
permissible completions match, try-completion returns nil. If only one permissible
completion matches, and the match is exact, then try-completion returns t. Otherwise,
the value is the longest initial sequence common to all the permissible completions that
match.

If collection is an alist (see Section 5.8 [Association Lists|, page 85), the CARs of the alist
elements form the set of permissible completions.

If collection is an obarray (see Section 7.3 [Creating Symbols|, page 103), the names of
all symbols in the obarray form the set of permissible completions. The global variable
obarray holds an obarray containing the names of all interned Lisp symbols.

Note that the only valid way to make a new obarray is to create it empty and then add
symbols to it one by one using intern. Also, you cannot intern a given symbol in more
than one obarray.

If the argument predicate is non-nil, then it must be a function of one argument. It
is used to test each possible match, and the match is accepted only if predicate returns
non-nil. The argument given to predicate is either a cons cell from the alist (the CAR of
which is a string) or else it is a symbol (not a symbol name) from the obarray.
You can also use a symbol that is a function as collection. Then the function is solely
responsible for performing completion; try-completion returns whatever this function
returns. The function is called with three arguments: string, predicate and nil. (The
reason for the third argument is so that the same function can be used in all-completions
and do the appropriate thing in either case.) See Section 18.5.6 [Programmed Completion],
page 248.
In the first of the following examples, the string ‘foo’ is matched by three of the alist
CARs. All of the matches begin with the characters ‘fooba’; so that is the result. In the
second example, there is only one possible match, and it is exact, so the value is t.
(try-completion
Ilfooll
>(("foobarl" 1) ("barfoo" 2) ("foobaz" 3) ("foobar2" 4)))
= "fooba"

(try-completion "foo" ’(("barfoo" 2) ("foo" 3)))
= t
In the following example, numerous symbols begin with the characters ‘forw’, and all of
them begin with the word ‘forward’. In most of the symbols, this is followed with a ‘-,
but not in all, so no more than ‘forward’ can be completed.
(try-completion "forw" obarray)
= "forward"
Finally, in the following example, only two of the three possible matches pass the predicate
test (the string ‘foobaz’ is too short). Both of those begin with the string ‘foobar’.

Chapter 18: Minibuffers 243

(defun test (s)
(> (length (car s)) 6))
= test
(try-completion
l|foo|l
>(("foobarl" 1) ("barfoo" 2) ("foobaz" 3) ("foobar2" 4))
‘test)
= "foobar"

all-completions string collection &optional predicate nospace Function
This function returns a list of all possible completions of string. The parameters to this
function are the same as to try-completion.

If collection is a function, it is called with three arguments: string, predicate and t; then
all-completions returns whatever the function returns. See Section 18.5.6 [Programmed
Completion], page 248.

If nospace is non-nil, completions that start with a space are ignored unless string also
starts with a space.
Here is an example, using the function test shown in the example for try-completion:

(defun test (s)
(> (length (car s)) 6))

= test
(all-completions
llfooll
>(("foobarl" 1) ("barfoo" 2) ("foobaz" 3) ("foobar2" 4))
’test)

= ("foobarl" "foobar2")

completion-ignore-case Variable
If the value of this variable is non-nil, XEmacs does not consider case significant in
completion.

18.5.2 Completion and the Minibuffer

This section describes the basic interface for reading from the minibuffer with completion.

completing-read prompt collection &optional predicate require-match Function
initial hist
This function reads a string in the minibuffer, assisting the user by providing completion.
It activates the minibuffer with prompt prompt, which must be a string. If initial is non-
nil, completing-read inserts it into the minibuffer as part of the input. Then it allows
the user to edit the input, providing several commands to attempt completion.

The actual completion is done by passing collection and predicate to the function try-
completion. This happens in certain commands bound in the local keymaps used for
completion.

If require-match is t, the usual minibuffer exit commands won’t exit unless the input
completes to an element of collection. If require-match is neither nil nor t, then the
exit commands won’t exit unless the input typed is itself an element of collection. If
require-match is nil, the exit commands work regardless of the input in the minibuffer.

244 XEmacs Lisp Reference Manual

The user can exit with null input by typing with an empty minibuffer. Then
completing-read returns nil. This is how the user requests whatever default the com-
mand uses for the value being read. The user can return using in this way regardless
of the value of require-match.

The function completing-read works by calling read-minibuffer. It uses minibuffer-
local-completion-map as the keymap if require-match is nil, and uses minibuffer-
local-must-match-map if require-match is non-nil. See Section 18.5.3 [Completion Com-
mands|, page 244.
The argument hist specifies which history list variable to use for saving the input and
for minibuffer history commands. It defaults to minibuffer-history. See Section 18.4
[Minibuffer History], page 240.
Completion ignores case when comparing the input against the possible matches, if the
built-in variable completion-ignore-case is non-nil. See Section 18.5.1 [Basic Comple-
tion], page 242.
Here’s an example of using completing-read:
(completing-read
"Complete a foo: "
>(("foobarl" 1) ("barfoo" 2) ("foobaz" 3) ("foobar2" 4))
nil t "fo")
;5 After evaluation of the preceding expression,
o the following appears in the minibuffer:

—————————— Buffer: Minibuffer ----------
Complete a foo: fox
—————————— Buffer: Minibuffer -----—-—---

If the user then types (DEL) (DEL) b (RET), completing-read returns barfoo.

The completing-read function binds three variables to pass information to the com-
mands that actually do completion. These variables are minibuffer-completion-table,
minibuffer-completion-predicate and minibuffer-completion-confirm. For more
information about them, see Section 18.5.3 [Completion Commands|, page 244.

18.5.3 Minibuffer Commands That Do Completion

This section describes the keymaps, commands and user options used in the minibuffer to do
completion.

minibuffer-local-completion-map Variable
completing-read uses this value as the local keymap when an exact match of one of the
completions is not required. By default, this keymap makes the following bindings:

? minibuffer-completion-help
minibuffer-complete-word
TAB minibuffer-complete

with other characters bound as in minibuffer-local-map (see Section 18.2 [Text from
Minibuffer], page 237).

minibuffer-local-must-match-map Variable
completing-read uses this value as the local keymap when an exact match of one of the
completions is required. Therefore, no keys are bound to exit-minibuffer, the command

Chapter 18: Minibuffers 245

that exits the minibuffer unconditionally. By default, this keymap makes the following

bindings:

? minibuffer-completion-help
minibuffer-complete-word

TAB minibuffer-complete

LFD minibuffer-complete-and-exit
RET minibuffer-complete-and-exit

with other characters bound as in minibuffer-local-map.

minibuffer-completion-table Variable
The value of this variable is the alist or obarray used for completion in the minibuffer. This
is the global variable that contains what completing-read passes to try-completion. It
is used by minibuffer completion commands such as minibuffer-complete-word.

minibuffer-completion-predicate Variable
This variable’s value is the predicate that completing-read passes to try-completion.
The variable is also used by the other minibuffer completion functions.

minibuffer-complete-word Command
This function completes the minibuffer contents by at most a single word. Even if the
minibuffer contents have only one completion, minibuffer-complete-word does not add

any characters beyond the first character that is not a word constituent. See Chapter 38
[Syntax Tables]|, page 513.

minibuffer-complete Command
This function completes the minibuffer contents as far as possible.

minibuffer-complete-and-exit Command
This function completes the minibuffer contents, and exits if confirmation is not required,
i.e., if minibuffer-completion-confirm is non-nil. If confirmation is required, it is

given by repeating this command immediately—the command is programmed to work
without confirmation when run twice in succession.

minibuffer-completion-confirm Variable
When the value of this variable is non-nil, XEmacs asks for confirmation of a completion
before exiting the minibuffer. The function minibuffer-complete-and-exit checks the
value of this variable before it exits.

minibuffer-completion-help Command
This function creates a list of the possible completions of the current minibuffer con-
tents. It works by calling all-completions using the value of the variable minibuffer-
completion-table as the collection argument, and the value of minibuffer-completion-

predicate as the predicate argument. The list of completions is displayed as text in a
buffer named ‘*Completionsx*’.

display-completion-list completions Function
This function displays completions to the stream in standard-output, usually a buffer.
(See Chapter 17 [Read and Print], page 227, for more information about streams.) The
argument completions is normally a list of completions just returned by all-completions,

246 XEmacs Lisp Reference Manual

but it does not have to be. Each element may be a symbol or a string, either of which is
simply printed, or a list of two strings, which is printed as if the strings were concatenated.

This function is called by minibuffer-completion-help. The most common way to use
it is together with with-output-to-temp-buffer, like this:

(with-output-to-temp-buffer "*Completionsx*"
(display-completion-list
(all-completions (buffer-string) my-alist)))

completion-auto-help User Option
If this variable is non-nil, the completion commands automatically display a list of pos-
sible completions whenever nothing can be completed because the next character is not
uniquely determined.

18.5.4 High-Level Completion Functions

This section describes the higher-level convenient functions for reading certain sorts of names
with completion.

In most cases, you should not call these functions in the middle of a Lisp function. When
possible, do all minibuffer input as part of reading the arguments for a command, in the
interactive spec. See Section 19.2 [Defining Commands|, page 256.

read-buffer prompt &optional default existing Function
This function reads the name of a buffer and returns it as a string. The argument default
is the default name to use, the value to return if the user exits with an empty minibuffer.
If non-nil, it should be a string or a buffer. It is mentioned in the prompt, but is not
inserted in the minibuffer as initial input.

If existing is non-nil, then the name specified must be that of an existing buffer. The
usual commands to exit the minibuffer do not exit if the text is not valid, and does
completion to attempt to find a valid name. (However, default is not checked for validity;
it is returned, whatever it is, if the user exits with the minibuffer empty.)

In the following example, the user enters ‘minibuffer.t’, and then types RET). The
argument existing is t, and the only buffer name starting with the given input is
‘minibuffer.texi’, so that name is the value.

(read-buffer "Buffer name? " "foo" t)

;3 After evaluation of the preceding expression,
;3 the following prompt appears,

53 with an empty minibuffer:

—————————— Buffer: Minibuffer ---—--—-----
Buffer name? (default foo) *
—————————— Buffer: Minibuffer - ———————-

;3 The user types minibuffer.t (RET).
= "minibuffer.texi"

read-command prompt Function
This function reads the name of a command and returns it as a Lisp symbol. The argument
prompt is used as in read-from-minibuffer. Recall that a command is anything for which
commandp returns t, and a command name is a symbol for which commandp returns t. See
Section 19.3 [Interactive Call], page 260.

Chapter 18: Minibuffers 247

(read-command "Command name? ")

;3 After evaluation of the preceding expression,
¥ the following prompt appears with an empty minibuffer:

—————————— Buffer: Minibuffer —-——————-—-
Command name?
—————————— Buffer: Minibuffer ---———----
If the user types forward-c (RET), then this function returns forward-char.
The read-command function is a simplified interface to the function completing-read. It

uses the variable obarray so as to complete in the set of extant Lisp symbols, and it uses
the commandp predicate so as to accept only command names:

(read-command prompt)

(intern (completing-read prompt obarray
>commandp t nil))

read-variable prompt Function
This function reads the name of a user variable and returns it as a symbol.

(read-variable "Variable name? ")

;3 After evaluation of the preceding expression,
o the following prompt appears,
;5 with an empty minibuffer:

—————————— Buffer: Minibuffer -----—-----
Variable name? x
—————————— Buffer: Minibuffer ---————----

If the user then types fill-p (RET), read-variable returns fill-prefix.

This function is similar to read-command, but uses the predicate user-variable-p instead
of commandp:

(read-variable prompt)

(intern
(completing-read prompt obarray
’user-variable-p t nil))

18.5.5 Reading File Names

Here is another high-level completion function, designed for reading a file name. It provides
special features including automatic insertion of the default directory.

read-file-name prompt &optional directory default existing initial Function
This function reads a file name in the minibuffer, prompting with prompt and providing
completion. If default is non-nil, then the function returns default if the user just types
®RET). default is not checked for validity; it is returned, whatever it is, if the user exits
with the minibuffer empty.

If existing is non-nil, then the user must specify the name of an existing file;
performs completion to make the name valid if possible, and then refuses to exit if it is
not valid. If the value of existing is neither nil nor t, then also requires confirmation
after completion. If existing is nil, then the name of a nonexistent file is acceptable.

248 XEmacs Lisp Reference Manual

The argument directory specifies the directory to use for completion of relative file names.
If insert-default-directory is non-nil, directory is also inserted in the minibuffer as
initial input. It defaults to the current buffer’s value of default-directory.
If you specify initial, that is an initial file name to insert in the buffer (after with directory,
if that is inserted). In this case, point goes at the beginning of initial. The default for
initial is nil—don’t insert any file name. To see what initial does, try the command C-x
C-v.
Here is an example:

(read-file-name "The file is ")

;3 After evaluation of the preceding expression,
;3 the following appears in the minibuffer:

—————————— Buffer: Minibuffer ----------

The file is /gp/gnu/elisp/*

—————————— Buffer: Minibuffer ---———--—-
Typing manual results in the following:

—————————— Buffer: Minibuffer ---———--—-

The file is /gp/gnu/elisp/manual.texix

—————————— Buffer: Minibuffer ----———---

If the user types (RET), read-file-name returns the file name as the string
"/gp/gnu/elisp/manual . texi".

insert-default-directory User Option

This variable is used by read-file-name. Its value controls whether read-file-name
starts by placing the name of the default directory in the minibuffer, plus the initial file
name if any. If the value of this variable is nil, then read-file-name does not place any
initial input in the minibuffer (unless you specify initial input with the initial argument).

In that case, the default directory is still used for completion of relative file names, but is
not displayed.

For example:

; 3 Here the minibuffer starts out with the default directory.
(let ((insert-default-directory t))
(read-file-name "The file is "))

—————————— Buffer: Minibuffer ----------
The file is “lewis/manual/*
—————————— Buffer: Minibuffer ---———-----

; ;5 Here the minibuffer is empty and only the prompt

HE appears on its line.

(let ((insert-default-directory nil))
(read-file-name "The file is "))

—————————— Buffer: Minibuffer ---———----
The file is *
—————————— Buffer: Minibuffer ----------

18.5.6 Programmed Completion

Sometimes it is not possible to create an alist or an obarray containing all the intended pos-
sible completions. In such a case, you can supply your own function to compute the completion
of a given string. This is called programmed completion.

Chapter 18: Minibuffers 249

To use this feature, pass a symbol with a function definition as the collection argument to
completing-read. The function completing-read arranges to pass your completion function
along to try-completion and all-completions, which will then let your function do all the
work.

The completion function should accept three arguments:
e The string to be completed.

e The predicate function to filter possible matches, or nil if none. Your function should call
the predicate for each possible match, and ignore the possible match if the predicate returns
nil.

e A flag specifying the type of operation.

There are three flag values for three operations:

e nil specifies try-completion. The completion function should return the completion of
the specified string, or t if the string is an exact match already, or nil if the string matches
no possibility.

e t specifies all-completions. The completion function should return a list of all possible
completions of the specified string.

e lambda specifies a test for an exact match. The completion function should return t if the
specified string is an exact match for some possibility; nil otherwise.

It would be consistent and clean for completion functions to allow lambda expressions (lists
that are functions) as well as function symbols as collection, but this is impossible. Lists as
completion tables are already assigned another meaning—as alists. It would be unreliable to
fail to handle an alist normally because it is also a possible function. So you must arrange for
any function you wish to use for completion to be encapsulated in a symbol.

Emacs uses programmed completion when completing file names. See Section 28.8.6 [File
Name Completion], page 373.

18.6 Yes-or-No Queries

This section describes functions used to ask the user a yes-or-no question. The function y-
or-n-p can be answered with a single character; it is useful for questions where an inadvertent
wrong answer will not have serious consequences. yes-or-no-p is suitable for more momentous
questions, since it requires three or four characters to answer. Variations of these functions can
be used to ask a yes-or-no question using a dialog box, or optionally using one.

If either of these functions is called in a command that was invoked using the mouse, then it
uses a dialog box or pop-up menu to ask the question. Otherwise, it uses keyboard input.

Strictly speaking, yes-or-no-p uses the minibuffer and y-or-n-p does not; but it seems best
to describe them together.

y-or-n-p prompt Function
This function asks the user a question, expecting input in the echo area. It returns t if
the user types y, nil if the user types n. This function also accepts to mean yes and
to mean no. It accepts C-] to mean “quit”, like C-g, because the question might
look like a minibuffer and for that reason the user might try to use C-J] to get out. The
answer is a single character, with no needed to terminate it. Upper and lower case
are equivalent.

“Asking the question” means printing prompt in the echo area, followed by the string
‘(y or n) . If the input is not one of the expected answers (y, n, SPO), (DEL), or something
that quits), the function responds ‘Please answer y or n.’, and repeats the request.

250 XEmacs Lisp Reference Manual

This function does not actually use the minibuffer, since it does not allow editing of the
answer. It actually uses the echo area (see Section 45.3 [The Echo Area|, page 586), which
uses the same screen space as the minibuffer. The cursor moves to the echo area while
the question is being asked.

The answers and their meanings, even ‘y’ and ‘n’, are not hardwired. The keymap query-
replace-map specifies them. See Section 37.5 [Search and Replace], page 505.

In the following example, the user first types g, which is invalid. At the next prompt the
user types y.

(y-or-n-p "Do you need a 1lift? ")

;3 After evaluation of the preceding expression,
;5 the following prompt appears in the echo area:

—————————— Echo area - ——————-—-
Do you need a 1ift? (y or n)
—————————— Echo area ----------

;5 If the user then types g, the following appears:

—————————— Echo area --—————---
Please answer y or n. Do you need a 1ift? (y or n)
—————————— Echo area —-—-—--------

;5 When the user types a valid answer,
> it is displayed after the question:

—————————— Echo area -—---------
Do you need a 1ift? (y or n) y
—————————— Echo area --—-—-—————-

We show successive lines of echo area messages, but only one actually appears on the
screen at a time.

yes-or-no-p prompt Function
This function asks the user a question, expecting input in the minibuffer. It returns t if
the user enters ‘yes’, nil if the user types ‘no’. The user must type to finalize the
response. Upper and lower case are equivalent.
yes-or-no-p starts by displaying prompt in the echo area, followed by ‘ (yes or no) ’. The
user must type one of the expected responses; otherwise, the function responds ‘Please
answer yes or no.’, waits about two seconds and repeats the request.

yes-or-no-p requires more work from the user than y-or-n-p and is appropriate for more
crucial decisions.
Here is an example:

(yes-or-no-p "Do you really want to remove everything? ")

;3 After evaluation of the preceding expression,

M the following prompt appears,

;5 with an empty minibuffer:

—————————— Buffer: minibuffer ----—----—-

Do you really want to remove everything? (yes or no)
—————————— Buffer: minibuffer ----------

If the user first types y RET), which is invalid because this function demands the entire
word ‘yes’, it responds by displaying these prompts, with a brief pause between them:

Chapter 18: Minibuffers 251

—————————— Buffer: minibuffer ---——---—-

Please answer yes or no.

Do you really want to remove everything? (yes or no)
—————————— Buffer: minibuffer ----—-----

yes-or-no-p-dialog-box prompt Function
This function asks the user a “y or n” question with a popup dialog box. It returns t if
the answer is “yes”. prompt is the string to display to ask the question.

The following functions ask a question either in the minibuffer or a dialog box, depending on
whether the last user event (which presumably invoked this command) was a keyboard or mouse
event. When XEmacs is running on a window system, the functions y-or-n-p and yes-or-no-p
are replaced with the following functions, so that menu items bring up dialog boxes instead of
minibuffer questions.

y-or-n-p-maybe-dialog-box prompt Function
This function asks user a “y or n” question, using either a dialog box or the minibuffer,
as appropriate.

yes-or-no-p-maybe-dialog-box prompt Function
This function asks user a “yes or no” question, using either a dialog box or the minibuffer,
as appropriate.

18.7 Asking Multiple Y-or-N Questions

When you have a series of similar questions to ask, such as “Do you want to save this buffer”
for each buffer in turn, you should use map-y-or-n-p to ask the collection of questions, rather
than asking each question individually. This gives the user certain convenient facilities such as
the ability to answer the whole series at once.

map-y-or-n-p prompter actor list &optional help action-alist Function
This function, new in Emacs 19, asks the user a series of questions, reading a single-
character answer in the echo area for each one.

The value of list specifies the objects to ask questions about. It should be either a list of
objects or a generator function. If it is a function, it should expect no arguments, and
should return either the next object to ask about, or nil meaning stop asking questions.

The argument prompter specifies how to ask each question. If prompter is a string, the
question text is computed like this:

(format prompter object)
where object is the next object to ask about (as obtained from list).

If not a string, prompter should be a function of one argument (the next object to ask
about) and should return the question text. If the value is a string, that is the question
to ask the user. The function can also return t meaning do act on this object (and don’t
ask the user), or nil meaning ignore this object (and don’t ask the user).

The argument actor says how to act on the answers that the user gives. It should be a
function of one argument, and it is called with each object that the user says yes for. Its
argument is always an object obtained from list.

If the argument help is given, it should be a list of this form:

252 XEmacs Lisp Reference Manual

(singular plural action)

where singular is a string containing a singular noun that describes the objects concep-
tually being acted on, plural is the corresponding plural noun, and action is a transitive
verb describing what actor does.

If you don’t specify help, the default is ("object" "objects" "act on").

Each time a question is asked, the user may enter y, Y, or to act on that object; n,
N, or to skip that object; ! to act on all following objects; or q to exit (skip
all following objects); . (period) to act on the current object and then exit; or C-h to
get help. These are the same answers that query-replace accepts. The keymap query-
replace-map defines their meaning for map-y-or-n-p as well as for query-replace; see
Section 37.5 [Search and Replace], page 505.

You can use action-alist to specify additional possible answers and what they mean. It is
an alist of elements of the form (char function help), each of which defines one additional
answer. In this element, char is a character (the answer); function is a function of one
argument (an object from list); help is a string.

When the user responds with char, map-y-or-n-p calls function. If it returns non-nil,
the object is considered “acted upon”, and map-y-or-n-p advances to the next object in
list. If it returns nil, the prompt is repeated for the same object.

If map-y-or-n-p is called in a command that was invoked using the mouse—more precisely,
if last-nonmenu-event (see Section 19.4 [Command Loop Info|, page 261) is either nil
or a list—then it uses a dialog box or pop-up menu to ask the question. In this case, it
does not use keyboard input or the echo area. You can force use of the mouse or use of
keyboard input by binding last-nonmenu-event to a suitable value around the call.

The return value of map-y-or-n-p is the number of objects acted on.

18.8 Minibuffer Miscellany

This section describes some basic functions and variables related to minibuffers.

exit-minibuffer Command
This command exits the active minibuffer. It is normally bound to keys in minibuffer local
keymaps.

self-insert-and-exit Command

This command exits the active minibuffer after inserting the last character typed on
the keyboard (found in last-command-char; see Section 19.4 [Command Loop Infol,
page 261).

previous-history-element n Command
This command replaces the minibuffer contents with the value of the nth previous (older)
history element.

next-history-element n Command
This command replaces the minibuffer contents with the value of the nth more recent
history element.

previous-matching-history-element pattern Command
This command replaces the minibuffer contents with the value of the previous (older)
history element that matches pattern (a regular expression).

Chapter 18: Minibuffers 253

next-matching-history-element pattern Command
This command replaces the minibuffer contents with the value of the next (newer) history
element that matches pattern (a regular expression).

minibuffer-prompt Function
This function returns the prompt string of the currently active minibuffer. If no minibuffer
is active, it returns nil.

minibuffer-prompt-width Function
This function returns the display width of the prompt string of the currently active mini-
buffer. If no minibuffer is active, it returns 0.

minibuffer-setup-hook Variable
This is a normal hook that is run whenever the minibuffer is entered. See Section 26.4
[Hooks], page 342.

minibuffer-exit-hook Variable
This is a normal hook that is run whenever the minibuffer is exited. See Section 26.4
[Hooks], page 342.

minibuffer-help-form Variable
The current value of this variable is used to rebind help-form locally inside the minibuffer
(see Section 27.5 [Help Functions|, page 350).

active-minibuffer-window Function
This function returns the currently active minibuffer window, or nil if none is currently
active.

minibuffer-window &optional frame Function

This function returns the minibuffer window used for frame frame. If frame is nil, that
stands for the current frame. Note that the minibuffer window used by a frame need not
be part of that frame—a frame that has no minibuffer of its own necessarily uses some
other frame’s minibuffer window.

window-minibuffer-p window Function
This function returns non-nil if window is a minibuffer window.

It is not correct to determine whether a given window is a minibuffer by comparing it with
the result of (minibuffer-window), because there can be more than one minibuffer window if
there is more than one frame.

minibuffer-window-active-p window Function
This function returns non-nil if window, assumed to be a minibuffer window, is currently
active.

minibuffer-scroll-window Variable

If the value of this variable is non-nil, it should be a window object. When the function
scroll-other-window is called in the minibuffer, it scrolls this window.

Finally, some functions and variables deal with recursive minibuffers (see Section 19.10 [Re-
cursive Editing], page 281):

254 XEmacs Lisp Reference Manual

minibuffer-depth Function
This function returns the current depth of activations of the minibuffer, a nonnegative
integer. If no minibuffers are active, it returns zero.

enable-recursive-minibuffers User Option
If this variable is non-nil, you can invoke commands (such as find-file) that use mini-
buffers even while in the minibuffer window. Such invocation produces a recursive editing
level for a new minibuffer. The outer-level minibuffer is invisible while you are editing the
inner one.

This variable only affects invoking the minibuffer while the minibuffer window is selected.
If you switch windows while in the minibuffer, you can always invoke minibuffer commands
while some other window is selected.

In FSF Emacs 19, if a command name has a property enable-recursive-minibuffers that
is non-nil, then the command can use the minibuffer to read arguments even if it is invoked
from the minibuffer. The minibuffer command next-matching-history-element (normally
M-s in the minibuffer) uses this feature.

This is not implemented in XEmacs because it is a kludge. If you want to explicitly set the
value of enable-recursive-minibuffers in this fashion, just use an evaluated interactive spec
and bind enable-recursive-minibuffers while reading from the minibuffer. See the definition
of next-matching-history-element in ‘lisp/prim/minibuf.el’.

Chapter 19: Command Loop 255

19 Command Loop

When you run XEmacs, it enters the editor command loop almost immediately. This loop
reads events, executes their definitions, and displays the results. In this chapter, we describe
how these things are done, and the subroutines that allow Lisp programs to do them.

19.1 Command Loop Overview

The command loop in XEmacs is a standard event loop, reading events one at a time with
next-event and handling them with dispatch-event. An event is typically a single user action,
such as a keypress, mouse movement, or menu selection; but they can also be notifications from
the window system, informing XEmacs that (for example) part of its window was just uncovered
and needs to be redrawn. See Section 19.5 [Events|, page 263. Pending events are held in a
first-in, first-out list called the event queue: events are read from the head of the list, and newly
arriving events are added to the tail. In this way, events are always processed in the order in
which they arrive.

dispatch-event does most of the work of handling user actions. The first thing it must
do is put the events together into a key sequence, which is a sequence of events that translates
into a command. It does this by consulting the active keymaps, which specify what the valid
key sequences are and how to translate them into commands. See Section 20.8 [Key Lookup],
page 293, for information on how this is done. The result of the translation should be a keyboard
macro or an interactively callable function. If the key is M-x, then it reads the name of another
command, which it then calls. This is done by the command execute-extended-command (see
Section 19.3 [Interactive Call], page 260).

To execute a command requires first reading the arguments for it. This is done by calling
command-execute (see Section 19.3 [Interactive Call|, page 260). For commands written in
Lisp, the interactive specification says how to read the arguments. This may use the prefix
argument (see Section 19.9 [Prefix Command Arguments|, page 279) or may read with prompting
in the minibuffer (see Chapter 18 [Minibuffers|, page 237). For example, the command find-
file has an interactive specification which says to read a file name using the minibuffer. The
command’s function body does not use the minibuffer; if you call this command from Lisp code
as a function, you must supply the file name string as an ordinary Lisp function argument.

If the command is a string or vector (i.e., a keyboard macro) then execute-kbd-macro is
used to execute it. You can call this function yourself (see Section 19.13 [Keyboard Macros],
page 283).

To terminate the execution of a running command, type C-g. This character causes quitting
(see Section 19.8 [Quitting], page 278).

pre-command-hook Variable
The editor command loop runs this normal hook before each command. At that time,
this-command contains the command that is about to run, and last-command describes
the previous command. See Section 26.4 [Hooks|, page 342.

post-command-hook Variable
The editor command loop runs this normal hook after each command. (In FSF Emacs, it
is also run when the command loop is entered, or reentered after an error or quit.) At that
time, this-command describes the command that just ran, and last-command describes
the command before that. See Section 26.4 [Hooks|, page 342.

256 XEmacs Lisp Reference Manual

Quitting is suppressed while running pre-command-hook and post-command-hook. If an
error happens while executing one of these hooks, it terminates execution of the hook, but that
is all it does.

19.2 Defining Commands

A Lisp function becomes a command when its body contains, at top level, a form that calls
the special form interactive. This form does nothing when actually executed, but its presence
serves as a flag to indicate that interactive calling is permitted. Its argument controls the reading
of arguments for an interactive call.

19.2.1 Using interactive

This section describes how to write the interactive form that makes a Lisp function an
interactively-callable command.

interactive arg-descriptor Special Form
This special form declares that the function in which it appears is a command, and that it
may therefore be called interactively (via M-x or by entering a key sequence bound to it).
The argument arg-descriptor declares how to compute the arguments to the command
when the command is called interactively.

A command may be called from Lisp programs like any other function, but then the caller
supplies the arguments and arg-descriptor has no effect.

The interactive form has its effect because the command loop (actually, its subroutine
call-interactively) scans through the function definition looking for it, before calling
the function. Once the function is called, all its body forms including the interactive
form are executed, but at this time interactive simply returns nil without even evalu-
ating its argument.

There are three possibilities for the argument arg-descriptor:

e It may be omitted or nil; then the command is called with no arguments. This leads
quickly to an error if the command requires one or more arguments.

e It may be a Lisp expression that is not a string; then it should be a form that is evaluated
to get a list of arguments to pass to the command.

If this expression reads keyboard input (this includes using the minibuffer), keep in mind
that the integer value of point or the mark before reading input may be incorrect after
reading input. This is because the current buffer may be receiving subprocess output; if
subprocess output arrives while the command is waiting for input, it could relocate point
and the mark.

Here’s an example of what not to do:

(interactive

(1ist (region-beginning) (region-end)

(read-string "Foo: " nil ’my-history)))

Here’s how to avoid the problem, by examining point and the mark only after reading the
keyboard input:

(interactive

(let ((string (read-string "Foo: " nil ’my-history)))

(1ist (region-beginning) (region-end) string)))

Chapter 19: Command Loop 257

e It may be a string; then its contents should consist of a code character followed by a prompt
(which some code characters use and some ignore). The prompt ends either with the end
of the string or with a newline. Here is a simple example:

(interactive "bFrobnicate buffer: ")

The code letter ‘b’ says to read the name of an existing buffer, with completion. The buffer
name is the sole argument passed to the command. The rest of the string is a prompt.

If there is a newline character in the string, it terminates the prompt. If the string does not
end there, then the rest of the string should contain another code character and prompt,
specifying another argument. You can specify any number of arguments in this way.

The prompt string can use ‘%’ to include previous argument values (starting with the first
argument) in the prompt. This is done using format (see Section 4.10 [Formatting Strings|,
page 62). For example, here is how you could read the name of an existing buffer followed
by a new name to give to that buffer:

(interactive "bBuffer to rename: \nsRename buffer %s to: ")
If the first character in the string is ‘*’; then an error is signaled if the buffer is read-only.

If the first character in the string is ‘@’, and if the key sequence used to invoke the command
includes any mouse events, then the window associated with the first of those events is
selected before the command is run.

If the first character in the string is ‘_’, then this command will not cause the region to
be deactivated when it completes; that is, zmacs-region-stays will be set to t when the
command exits successfully.

You can use ‘*’, ‘@’, and ‘_’ together; the order does not matter. Actual reading of arguments
is controlled by the rest of the prompt string (starting with the first character that is not
4*77 (@7? or (_7).

function-interactive function Function
This function retrieves the interactive specification of function, which may be any fun-
callable object. The specification will be returned as the list of the symbol interactive
and the specs. If function is not interactive, nil will be returned.

19.2.2 Code Characters for interactive

The code character descriptions below contain a number of key words, defined here as follows:

Completion
Provide completion. (TAB), SPC), and perform name completion because the
argument is read using completing-read (see Section 18.5 [Completion|, page 241).
7 displays a list of possible completions.

Existing Require the name of an existing object. An invalid name is not accepted; the
commands to exit the minibuffer do not exit if the current input is not valid.

Default A default value of some sort is used if the user enters no text in the minibuffer. The
default depends on the code character.

No I/O This code letter computes an argument without reading any input. Therefore, it
does not use a prompt string, and any prompt string you supply is ignored.
Even though the code letter doesn’t use a prompt string, you must follow it with a
newline if it is not the last code character in the string.

Prompt A prompt immediately follows the code character. The prompt ends either with the
end of the string or with a newline.

258 XEmacs Lisp Reference Manual

Special This code character is meaningful only at the beginning of the interactive string,
and it does not look for a prompt or a newline. It is a single, isolated character.

Here are the code character descriptions for use with interactive:
x’ Signal an error if the current buffer is read-only. Special.

‘@ Select the window mentioned in the first mouse event in the key sequence that
invoked this command. Special.

Do not cause the region to be deactivated when this command completes. Special.

‘a’ A function name (i.e., a symbol satisfying fboundp). Existing, Completion, Prompt.

‘D’ The name of an existing buffer. By default, uses the name of the current buffer (see
Chapter 30 [Buffers|, page 391). Existing, Completion, Default, Prompt.

‘B’ A buffer name. The buffer need not exist. By default, uses the name of a recently
used buffer other than the current buffer. Completion, Default, Prompt.

‘c’ A character. The cursor does not move into the echo area. Prompt.

‘c’ A command name (i.e., a symbol satisfying commandp). Existing, Completion,
Prompt.

‘d’ The position of point, as an integer (see Section 34.1 [Point|, page 441). No I/O.

‘D’ A directory name. The default is the current default directory of the current buffer,

default-directory (see Section 50.3 [System Environment|, page 629). Existing,
Completion, Default, Prompt.

e The last mouse-button or misc-user event in the key sequence that invoked the
command. No I/O.

You can use ‘e’ more than once in a single command’s interactive specification. If
the key sequence that invoked the command has n mouse-button or misc-user events,
the nth ‘e’ provides the nth such event.

f A file name of an existing file (see Section 28.8 [File Names|, page 368). The default
directory is default-directory. Existing, Completion, Default, Prompt.

‘P’ A file name. The file need not exist. Completion, Default, Prompt.

‘)’ A key sequence (see Section 20.1 [Keymap Terminology|, page 285). This keeps

reading events until a command (or undefined command) is found in the current
key maps. The key sequence argument is represented as a vector of events. The
cursor does not move into the echo area. Prompt.

This kind of input is used by commands such as describe-key and global-set-
key.

‘K’ A key sequence, whose definition you intend to change. This works like ‘k’, except
that it suppresses, for the last input event in the key sequence, the conversions that
are normally used (when necessary) to convert an undefined key into a defined one.

‘m’ The position of the mark, as an integer. No I/O.

‘n’ A number read with the minibuffer. If the input is not a number, the user is asked
to try again. The prefix argument, if any, is not used. Prompt.

‘N’ The raw prefix argument. If the prefix argument is nil, then read a number as with
n. Requires a number. See Section 19.9 [Prefix Command Arguments], page 279.
Prompt.

p The numeric prefix argument. (Note that this ‘p’ is lower case.) No I/O.

Chapter 19: Command Loop 259

‘P’ The raw prefix argument. (Note that this ‘P’ is upper case.) No I/0O.

r Point and the mark, as two numeric arguments, smallest first. This is the only code
letter that specifies two successive arguments rather than one. No I/0.

s Arbitrary text, read in the minibuffer and returned as a string (see Section 18.2
(Text from Minibuffer|, page 237). Terminate the input with either or (RET).

(C-g may be used to include either of these characters in the input.) Prompt.
‘s’ An interned symbol whose name is read in the minibuffer. Any whitespace char-
acter terminates the input. (Use C-q to include whitespace in the string.) Other

characters that normally terminate a symbol (e.g., parentheses and brackets) do not
do so here. Prompt.

v A variable declared to be a user option (i.e., satisfying the predicate user-variable-
p). See Section 18.5.4 [High-Level Completion|, page 246. Existing, Completion,
Prompt.

‘x’ A Lisp object, specified with its read syntax, terminated with a or (RET).
The object is not evaluated. See Section 18.3 [Object from Minibuffer|, page 239.
Prompt.

‘X’ A Lisp form is read as with x, but then evaluated so that its value becomes the
argument for the command. Prompt.

19.2.3 Examples of Using interactive

Here are some examples of interactive:

(defun fool () ; fool takes no arguments,
(interactive) ; just moves forward two words.
(forward-word 2))

= fool

(defun foo2 (n) ; foo2 takes one argument,
(interactive "p") ; which is the numeric prefix.
(forward-word (* 2 n)))

= foo2

(defun foo3 (n) ; foo3 takes one argument,
(interactive "nCount:") ; which is read with the Minibuffer.
(forward-word (* 2 n)))

= foo3

(defun three-b (bl b2 b3)

"Select three existing buffers.

Put them into three windows, selecting the last one."
(interactive "bBufferl:\nbBuffer2:\nbBuffer3:")
(delete-other-windows)

(split-window (selected-window) 8)
(switch-to-buffer bil)
(other-window 1)

(split-window (selected-window) 8)
(switch-to-buffer b2)
(other-window 1)

(switch-to-buffer b3))

= three-b

260 XEmacs Lisp Reference Manual

(three-b "*scratch*" "declarations.texi" "*mailx")
= nil

19.3 Interactive Call

After the command loop has translated a key sequence into a definition, it invokes that
definition using the function command-execute. If the definition is a function that is a com-
mand, command-execute calls call-interactively, which reads the arguments and calls the
command. You can also call these functions yourself.

commandp object Function
Returns t if object is suitable for calling interactively; that is, if object is a command.
Otherwise, returns nil.

The interactively callable objects include strings and vectors (treated as keyboard macros),
lambda expressions that contain a top-level call to interactive, compiled-function objects
made from such lambda expressions, autoload objects that are declared as interactive
(non-nil fourth argument to autoload), and some of the primitive functions.

A symbol is commandp if its function definition is commandp.

Keys and keymaps are not commands. Rather, they are used to look up commands (see
Chapter 20 [Keymaps], page 285).

See documentation in Section 27.2 [Accessing Documentation|, page 346, for a realistic
example of using commandp.

call-interactively command &optional record-flag Function
This function calls the interactively callable function command, reading arguments ac-
cording to its interactive calling specifications. An error is signaled if command is not a
function or if it cannot be called interactively (i.e., is not a command). Note that key-
board macros (strings and vectors) are not accepted, even though they are considered
commands, because they are not functions.

If record-flag is the symbol lambda, the interactive calling arguments for command are read
and returned as a list, but the function is not called on them.

If record-flag is t, then this command and its arguments are unconditionally added to the
list command-history. Otherwise, the command is added only if it uses the minibuffer to
read an argument. See Section 19.12 [Command History|, page 283.

command-execute command &optional record-flag Function
This function executes command as an editing command. The argument command must
satisfy the commandp predicate; i.e., it must be an interactively callable function or a
keyboard macro.

A string or vector as command is executed with execute-kbd-macro. A function is passed
to call-interactively, along with the optional record-flag.

A symbol is handled by using its function definition in its place. A symbol with an
autoload definition counts as a command if it was declared to stand for an interactively
callable function. Such a definition is handled by loading the specified library and then
rechecking the definition of the symbol.

execute-extended-command prefix-argument Command
This function reads a command name from the minibuffer using completing-read (see
Section 18.5 [Completion], page 241). Then it uses command-execute to call the specified

Chapter 19: Command Loop 261

command. Whatever that command returns becomes the value of execute-extended-
command.

If the command asks for a prefix argument, it receives the value prefix-argument. If
execute-extended-command is called interactively, the current raw prefix argument is
used for prefix-argument, and thus passed on to whatever command is run.

execute-extended-command is the normal definition of M-x, so it uses the string ‘M-x ’ as
a prompt. (It would be better to take the prompt from the events used to invoke execute-
extended-command, but that is painful to implement.) A description of the value of the
prefix argument, if any, also becomes part of the prompt.

(execute-extended-command 1)

—————————— Buffer: Minibuffer - —-———————-
1 M-x forward-word RET

—————————— Buffer: Minibuffer ---———----

interactive-p Function
This function returns t if the containing function (the one that called interactive-p)
was called interactively, with the function call-interactively. (It makes no difference
whether call-interactively was called from Lisp or directly from the editor command
loop.) If the containing function was called by Lisp evaluation (or with apply or funcall),
then it was not called interactively.

The most common use of interactive-p is for deciding whether to print an informative
message. As a special exception, interactive-p returns nil whenever a keyboard macro
is being run. This is to suppress the informative messages and speed execution of the
macro.

For example:

(defun foo ()
(interactive)
(and (interactive-p)
(message "foo")))
= foo

(defun bar ()
(interactive)
(setq foobar (1list (foo) (interactive-p))))
= bar
;3 Type M-x foo.
- foo
;3 Type M-x bar.
;3 This does not print anything.
foobar
= (nil t)

19.4 Information from the Command Loop

The editor command loop sets several Lisp variables to keep status records for itself and for
commands that are run.

262 XEmacs Lisp Reference Manual

last-command Variable
This variable records the name of the previous command executed by the command loop
(the one before the current command). Normally the value is a symbol with a function
definition, but this is not guaranteed.

The value is copied from this-command when a command returns to the command loop,
except when the command specifies a prefix argument for the following command.

this-command Variable
This variable records the name of the command now being executed by the editor command
loop. Like last-command, it is normally a symbol with a function definition.

The command loop sets this variable just before running a command, and copies its value
into last-command when the command finishes (unless the command specifies a prefix
argument for the following command).

Some commands set this variable during their execution, as a flag for whatever command
runs next. In particular, the functions for killing text set this-command to kill-region
so that any kill commands immediately following will know to append the killed text to
the previous kill.

If you do not want a particular command to be recognized as the previous command in the
case where it got an error, you must code that command to prevent this. One way is to set
this-command to t at the beginning of the command, and set this-command back to its proper
value at the end, like this:

(defun foo (args...)
(interactive ...)
(let ((old-this-command this-command))
(setq this-command t)
.. .do the work. . .
(setq this-command old-this-command)))

this-command-keys Function
This function returns a vector containing the key and mouse events that invoked the
present command, plus any previous commands that generated the prefix argument for
this command. (Note: this is not the same as in FSF Emacs, which can return a string.)
See Section 19.5 [Events]|, page 263.
This function copies the vector and the events; it is safe to keep and modify them.

(this-command-keys)
;3 Now use C-u C-x C-e to evaluate that.
= [#<keypress-event control-U> #<keypress-event control-X> #<keypress-eve:

last-command-event Variable
This variable is set to the last input event that was read by the command loop as part of
a command. The principal use of this variable is in self-insert-command, which uses it
to decide which character to insert.

This variable is off limits: you may not set its value or modify the event that is its value,
as it is destructively modified by read-key-sequence. If you want to keep a pointer to
this value, you must use copy-event.

Note that this variable is an alias for last-command-char in F'SF Emacs.

last-command-event
;35 Now type C-u C-x C-e.
= #<keypress-event control-E>

Chapter 19: Command Loop 263

last-command-char Variable

If the value of last-command-event is a keyboard event, then this is the nearest character
equivalent to it (or nil if there is no character equivalent). last-command-char is the
character that self-insert-command will insert in the buffer. Remember that there is not
a one-to-one mapping between keyboard events and XEmacs characters: many keyboard
events have no corresponding character, and when the Mule feature is available, most
characters can not be input on standard keyboards, except possibly with help from an
input method. So writing code that examines this variable to determine what key has
been typed is bad practice, unless you are certain that it will be one of a small set of
characters.

This variable exists for compatibility with Emacs version 18.

last-command-char
;3 Now use C-u C-x C-e to evaluate that.
= ?\"E

current-mouse-event Variable
This variable holds the mouse-button event which invoked this command, or nil. This is
what (interactive "e") returns.

echo-keystrokes Variable
This variable determines how much time should elapse before command characters echo.
Its value must be an integer, which specifies the number of seconds to wait before echoing.
If the user types a prefix key (say C-x) and then delays this many seconds before continuing,
the key C-x is echoed in the echo area. Any subsequent characters in the same command
will be echoed as well.

If the value is zero, then command input is not echoed.

19.5 Events

The XEmacs command loop reads a sequence of events that represent keyboard or mouse
activity. Unlike in Emacs 18 and in FSF Emacs, events are a primitive Lisp type that must be
manipulated using their own accessor and settor primitives. This section describes the repre-
sentation and meaning of input events in detail.

A key sequence that starts with a mouse event is read using the keymaps of the buffer in
the window that the mouse was in, not the current buffer. This does not imply that clicking in
a window selects that window or its buffer—that is entirely under the control of the command
binding of the key sequence.

For information about how exactly the XEmacs command loop works, See Section 19.6
[Reading Input], page 273.

eventp object Function
This function returns non-nil if event is an input event.

19.5.1 Event Types

Events represent keyboard or mouse activity or status changes of various sorts, such as process
input being available or a timeout being triggered. The different event types are as follows:

264 XEmacs Lisp Reference Manual

key-press event
A key was pressed. Note that modifier keys such as “control”, “shift”, and “alt”
do not generate events; instead, they are tracked internally by XEmacs, and non-
modifier key presses generate events that specify both the key pressed and the
modifiers that were held down at the time.

button-press event

button-release event
A button was pressed or released. Along with the button that was pressed or
released, button events specify the modifier keys that were held down at the time
and the position of the pointer at the time.

motion event
The pointer was moved. Along with the position of the pointer, these events also
specify the modifier keys that were held down at the time.

misc-user event
A menu item was selected, the scrollbar was used, or a drag or a drop occurred.

process event
Input is available on a process.

timeout event
A timeout has triggered.

magic event
Some window-system-specific action (such as a frame being resized or a portion of
a frame needing to be redrawn) has occurred. The contents of this event are not
accessible at the E-Lisp level, but dispatch-event knows what to do with an event
of this type.

eval event This is a special kind of event specifying that a particular function needs to be called
when this event is dispatched. An event of this type is sometimes placed in the event
queue when a magic event is processed. This kind of event should generally just be
passed off to dispatch-event. See Section 19.6.3 [Dispatching an Event|, page 275.

19.5.2 Contents of the Different Types of Events

Every event, no matter what type it is, contains a timestamp (which is typically an offset
in milliseconds from when the X server was started) indicating when the event occurred. In
addition, many events contain a channel, which specifies which frame the event occurred on,
and/or a value indicating which modifier keys (shift, control, etc.) were held down at the time
of the event.

The contents of each event are as follows:

key-press event
channel

timestamp

key Which key was pressed. This is an integer (in the printing ASCII
range: >32 and <127) or a symbol such as left or right. Note that
many physical keys are actually treated as two separate keys, depending
on whether the shift key is pressed; for example, the “a” key is treated
as either “a” or “A” depending on the state of the shift key, and the
“1” key is similarly treated as either “1” or “!” on most keyboards. In
such cases, the shift key does not show up in the modifier list. For other
keys, such as backspace, the shift key shows up as a regular modifier.

Chapter 19: Command Loop 265

modifiers

button-press event
button-release event

channel
timestamp
button

modifiers

X
y

pointer-motion event
channel

timestamp

X
y

modifiers

misc-user event
timestamp

function

object

button

modifiers

X
y

process_event
timestamp

process

timeout event
timestamp

function

object

magic event
timestamp

Which modifier keys were pressed. As mentioned above, the shift key
is not treated as a modifier for many keys and will not show up in this
list in such cases.

What button went down or up. Buttons are numbered starting at 1.

Which modifier keys were pressed. The special business mentioned
above for the shift key does not apply to mouse events.

The position of the pointer (in pixels) at the time of the event.

The position of the pointer (in pixels) after it moved.

Which modifier keys were pressed. The special business mentioned
above for the shift key does not apply to mouse events.

The E-Lisp function to call for this event. This is normally either eval
or call-interactively.

The object to pass to the function. This is normally the callback that
was specified in the menu description.

What button went down or up. Buttons are numbered starting at 1.

Which modifier keys were pressed. The special business mentioned
above for the shift key does not apply to mouse events.

The position of the pointer (in pixels) at the time of the event.

The Emacs “process” object in question.

The E-Lisp function to call for this timeout. It is called with one argu-
ment, the event.

Some Lisp object associated with this timeout, to make it easier to tell
them apart. The function and object for this event were specified when
the timeout was set.

266 XEmacs Lisp Reference Manual

(The rest of the information in this event is not user-accessible.)
eval event
timestamp

function An E-Lisp function to call when this event is dispatched.

object The object to pass to the function. The function and object are set

when the event is created.

event-type event
Return the type of event.

This will be a symbol; one of

key-press
A key was pressed.

button-press
A mouse button was pressed.

button-release
A mouse button was released.

motion The mouse moved.

misc-user

Function

Some other user action happened; typically, this is a menu selection, scrollbar

action, or drag and drop action.
process Input is available from a subprocess.
timeout A timeout has expired.
eval This causes a specified action to occur when dispatched.

magic Some window-system-specific event has occurred.

19.5.3 Event Predicates

The following predicates return whether an object is an event of a particular type.

key-press-event-p object
This is true if object is a key-press event.

button-event-p object object
This is true if object is a mouse button-press or button-release event.

button-press-event-p object
This is true if object is a mouse button-press event.

button-release-event-p object
This is true if object is a mouse button-release event.

motion-event-p object
This is true if object is a mouse motion event.

mouse-event-p object
This is true if object is a mouse button-press, button-release or motion event.

Function

Function

Function

Function

Function

Function

Chapter 19: Command Loop 267

eval-event-p object Function
This is true if object is an eval event.

misc-user-event-p object Function
This is true if object is a misc-user event.

process-event-p object Function
This is true if object is a process event.

timeout-event-p object Function
This is true if object is a timeout event.

event-live-p object Function
This is true if object is any event that has not been deallocated.

19.5.4 Accessing the Position of a Mouse Event

Unlike other events, mouse events (i.e. motion, button-press, button-release, and drag or
drop type misc-user events) occur in a particular location on the screen. Many primitives are
provided for determining exactly where the event occurred and what is under that location.

19.5.4.1 Frame-Level Event Position Info

The following functions return frame-level information about where a mouse event occurred.

event-frame event Function
This function returns the “channel” or frame that the given mouse motion, button press,
button release, or misc-user event occurred in. This will be nil for non-mouse events.

event-x-pixel event Function
This function returns the X position in pixels of the given mouse event. The value returned
is relative to the frame the event occurred in. This will signal an error if the event is not
a mouse event.

event-y-pixel event Function
This function returns the Y position in pixels of the given mouse event. The value returned
is relative to the frame the event occurred in. This will signal an error if the event is not
a mouse event.

19.5.4.2 Window-Level Event Position Info

The following functions return window-level information about where a mouse event occurred.

event-window event Function
Given a mouse motion, button press, button release, or misc-user event, compute and
return the window on which that event occurred. This may be nil if the event occurred
in the border or over a toolbar. The modeline is considered to be within the window it
describes.

268 XEmacs Lisp Reference Manual

event-buffer event Function
Given a mouse motion, button press, button release, or misc-user event, compute and
return the buffer of the window on which that event occurred. This may be nil if the
event occurred in the border or over a toolbar. The modeline is considered to be within
the window it describes. This is equivalent to calling event-window and then calling
window-buffer on the result if it is a window.

event-window-x-pixel event Function
This function returns the X position in pixels of the given mouse event. The value returned
is relative to the window the event occurred in. This will signal an error if the event is
not a mouse-motion, button-press, button-release, or misc-user event.

event-window-y-pixel event Function
This function returns the Y position in pixels of the given mouse event. The value returned
is relative to the window the event occurred in. This will signal an error if the event is
not a mouse-motion, button-press, button-release, or misc-user event.

19.5.4.3 Event Text Position Info

The following functions return information about the text (including the modeline) that a
mouse event occurred over or near.

event-over-text-area-p event Function
Given a mouse-motion, button-press, button-release, or misc-user event, this function
returns t if the event is over the text area of a window. Otherwise, nil is returned. The
modeline is not considered to be part of the text area.

event-over-modeline-p event Function
Given a mouse-motion, button-press, button-release, or misc-user event, this function
returns t if the event is over the modeline of a window. Otherwise, nil is returned.

event-x event Function
This function returns the X position of the given mouse-motion, button-press, button-
release, or misc-user event in characters. This is relative to the window the event occurred
over.

event-y event Function
This function returns the Y position of the given mouse-motion, button-press, button-
release, or misc-user event in characters. This is relative to the window the event occurred
over.

event-point event Function
This function returns the character position of the given mouse-motion, button-press,
button-release, or misc-user event. If the event did not occur over a window, or did not
occur over text, then this returns nil. Otherwise, it returns an index into the buffer
visible in the event’s window.

event-closest-point event Function
This function returns the character position of the given mouse-motion, button-press,
button-release, or misc-user event. If the event did not occur over a window or over text,
it returns the closest point to the location of the event. If the Y pixel position overlaps

Chapter 19: Command Loop 269

a window and the X pixel position is to the left of that window, the closest point is the
beginning of the line containing the Y position. If the Y pixel position overlaps a window
and the X pixel position is to the right of that window, the closest point is the end of the
line containing the Y position. If the Y pixel position is above a window, 0 is returned. If
it is below a window, the value of (window-end) is returned.

19.5.4.4 Event Glyph Position Info

The following functions return information about the glyph (if any) that a mouse event
occurred over.

event-over-glyph-p event Function
Given a mouse-motion, button-press, button-release, or misc-user event, this function
returns t if the event is over a glyph. Otherwise, nil is returned.

event-glyph-extent event Function
If the given mouse-motion, button-press, button-release, or misc-user event happened on
top of a glyph, this returns its extent; else nil is returned.

event-glyph-x-pixel event Function
Given a mouse-motion, button-press, button-release, or misc-user event over a glyph, this
function returns the X position of the pointer relative to the upper left of the glyph. If
the event is not over a glyph, it returns nil.

event-glyph-y-pixel event Function
Given a mouse-motion, button-press, button-release, or misc-user event over a glyph, this
function returns the Y position of the pointer relative to the upper left of the glyph. If
the event is not over a glyph, it returns nil.

19.5.4.5 Event Toolbar Position Info

event-over-toolbar-p event Function
Given a mouse-motion, button-press, button-release, or misc-user event, this function
returns t if the event is over a toolbar. Otherwise, nil is returned.

event-toolbar-button event Function
If the given mouse-motion, button-press, button-release, or misc-user event happened on
top of a toolbar button, this function returns the button. Otherwise, nil is returned.

19.5.4.6 Other Event Position Info

event-over-border-p event Function
Given a mouse-motion, button-press, button-release, or misc-user event, this function
returns t if the event is over an internal toolbar. Otherwise, nil is returned.

270 XEmacs Lisp Reference Manual

19.5.5 Accessing the Other Contents of Events

The following functions allow access to the contents of events other than the position info
described in the previous section.

event-timestamp event Function
This function returns the timestamp of the given event object.

event-device event Function
This function returns the device that the given event occurred on.

event-key event Function
This function returns the Keysym of the given key-press event. This will be the ASCII
code of a printing character, or a symbol.

event-button event Function
This function returns the button-number of the given button-press or button-release event.

event-modifiers event Function
This function returns a list of symbols, the names of the modifier keys which were down
when the given mouse or keyboard event was produced.

event-modifier-bits event Function
This function returns a number representing the modifier keys which were down when the
given mouse or keyboard event was produced.

event-function event Function
This function returns the callback function of the given timeout, misc-user, or eval event.

event-object event Function
This function returns the callback function argument of the given timeout, misc-user, or
eval event.

event-process event Function

This function returns the process of the given process event.

19.5.6 Working With Events

XEmacs provides primitives for creating, copying, and destroying event objects. Many func-
tions that return events take an event object as an argument and fill in the fields of this event;
or they make accept either an event object or nil, creating the event object first in the latter
case.

make-event &optional type plist Function
This function creates a new event structure. If no arguments are specified, the created
event will be empty. To specify the event type, use the type argument. The allowed types
are empty, key-press, button-press, button-release, motion, or misc-user.

plist is a property list, the properties being compatible to those returned by event-
properties. For events other than empty, it is mandatory to specify certain properties.

Chapter 19: Command Loop 271

For empty events, plist must be nil. The list is canonicalized, which means that if a
property keyword is present more than once, only the first instance is taken into account.
Specifying an unknown or illegal property signals an error.

The following properties are allowed:

channel The event channel. This is a frame or a console. For mouse events (of type
button-press, button-release and motion), this must be a frame. For key-
press events, it must be a console. If channel is unspecified by plist, it will be
set to the selected frame or selected console, as appropriate.

key The event key. This is either a symbol or a character. It is allowed (and
required) only for key-press events.

button The event button. This an integer, either 1, 2 or 3. It is allowed only for
button-press and button-release events.

modifiers
The event modifiers. This is a list of modifier symbols. It is allowed for
key-press, button-press, button-release and motion events.

X The event X coordinate. This is an integer. It is relative to the channel’s root
window, and is allowed for button-press, button-release and motion events.

y The event Y coordinate. This is an integer. It is relative to the channel’s root
window, and is allowed for button-press, button-release and motion events.
This means that, for instance, to access the toolbar, the y property will have
to be negative.

timestamp
The event timestamp, a non-negative integer. Allowed for all types of events.

WARNING: the event object returned by this function may be a reused one; see the
function deallocate-event.

The events created by make-event can be used as non-interactive arguments to the func-
tions with an (interactive "e") specification.

Here are some basic examples of usage:

;3 Create an empty event.
(make-event)
= #<empty-event>

;3 Try creating a key-press event.
(make-event ’key-press)
Undefined key for keypress event

;3 Creating a key-press event, try 2
(make-event ’key-press ’(key home))
= #<keypress-event home>

;5 Create a key-press event of dubious fame.
(make-event ’key-press ’(key escape modifiers (meta alt control shift)))
= #<keypress-event control-meta-alt-shift-escape>

;3 Create a M-buttonl event at coordinates defined by variables

;5 x and y.

(make-event ’button-press ‘(button 1 modifiers (meta) x ,x y ,y))
= #<buttondown-event meta-buttonl>

;; Create a similar button-release event.
(make-event ’button-release ‘(button 1 modifiers (meta) x ,x y ,x))
= #<buttonup-event meta-buttonlup>

272 XEmacs Lisp Reference Manual

;3 Create a mouse-motion event.
(make-event ’motion ’(x 20 y 30))
= #<motion-event 20, 30>

(event-properties (make-event ’motion ’(x 20 y 30)))
= (channel #<x-frame "emacs" 0x8e2> x 20 y 30
modifiers nil timestamp 0)

In conjunction with event-properties, you can use make-event to create modified copies
of existing events. For instance, the following code will return an equal copy of event:

(make-event (event-type event)
(event-properties event))

Note, however, that you cannot use make-event as the generic replacement for copy-
event, because it does not allow creating all of the event types.

To create a modified copy of an event, you can use the canonicalization feature of plist.
The following example creates a copy of event, but with modifiers reset to nil.

(make-event (event-type event)
(append ’ (modifiers nil)
(event-properties event)))

copy-event eventl &optional event?2 Function
This function makes a copy of the given event object. If a second argument is given, the
first event is copied into the second and the second is returned. If the second argument is
not supplied (or is nil) then a new event will be made.

deallocate-event event Function
This function allows the given event structure to be reused. You MUST NOT use this
event object after calling this function with it. You will lose. It is not necessary to call
this function, as event objects are garbage-collected like all other objects; however, it may
be more efficient to explicitly deallocate events when you are sure that that is safe.

19.5.7 Converting Events

XFEmacs provides some auxiliary functions for converting between events and other ways of
representing keys. These are useful when working with ASCII strings and with keymaps.

character-to-event ch &optional event device Function
This function converts a numeric ASCII value to an event structure, replete with modifier
bits. ch is the character to convert, and event is the event object to fill in. This function
contains knowledge about what the codes “mean” — for example, the number 9 is converted
to the character (Tab), not the distinct character (Control-I).

Note that ch does not have to be a numeric value, but can be a symbol such as clear or
a list such as (control backspace).

If event is not nil, it is modified; otherwise, a new event object is created. In both cases,
the event is returned.

Optional third arg device is the device to store in the event; this also affects whether the
high bit is interpreted as a meta key. A value of nil means use the selected device but
always treat the high bit as meta.

Beware that character-to-event and event-to-character are not strictly inverse func-

tions, since events contain much more information than the ASCII character set can
encode.

Chapter 19: Command Loop 273

event-to-character event &optional allow-extra-modifiers allow-meta Function
allow-non-ascii
This function returns the closest ASCII approximation to event. If the event isn’t a
keypress, this returns nil.

If allow-extra-modifiers is non-nil, then this is lenient in its translation; it will ignore
modifier keys other than and (meta), and will ignore the modifier on those
characters which have no shifted ASCII equivalent ((Control-Shifi-A) for example, will be
mapped to the same ASCII code as (Control-A)).

If allow-meta is non-nil, then the modifier will be represented by turning on the
high bit of the byte returned; otherwise, nil will be returned for events containing the

modifier.

If allow-non-ascii is non-nil, then characters which are present in the prevailing character
set (see Chapter 20 [Keymaps|, page 285) will be returned as their code in that character
set, instead of the return value being restricted to ASCII.

Note that specifying both allow-meta and allow-non-ascii is ambiguous, as both use the
high bit; and will be indistinguishable.

events-to-keys events &optional no-mice Function
Given a vector of event objects, this function returns a vector of key descriptors, or a
string (if they all fit in the ASCII range). Optional arg no-mice means that button events
are not allowed.

19.6 Reading Input

The editor command loop reads keyboard input using the function next-event and con-
structs key sequences out of the events using dispatch-event. Lisp programs can also use the
function read-key-sequence, which reads input a key sequence at a time. See also momentary-
string-display in Section 45.8 [Temporary Displays|, page 593, and sit-for in Section 19.7
(Waiting|, page 277. See Section 50.8 [Terminal Input|, page 636, for functions and variables for
controlling terminal input modes and debugging terminal input.

For higher-level input facilities, see Chapter 18 [Minibuffers|, page 237.

19.6.1 Key Sequence Input

Lisp programs can read input a key sequence at a time by calling read-key-sequence; for
example, describe-key uses it to read the key to describe.

read-key-sequence prompt Function
This function reads a sequence of keystrokes or mouse clicks and returns it as a vector
of events. It keeps reading events until it has accumulated a full key sequence; that is,
enough to specify a non-prefix command using the currently active keymaps.

The vector and the event objects it contains are freshly created, and will not be side-
effected by subsequent calls to this function.

The function read-key-sequence suppresses quitting: C-g typed while reading with this
function works like any other character, and does not set quit-flag. See Section 19.8
[Quitting], page 278.

The argument prompt is either a string to be displayed in the echo area as a prompt, or
nil, meaning not to display a prompt.

274 XEmacs Lisp Reference Manual

If the user selects a menu item while we are prompting for a key sequence, the returned
value will be a vector of a single menu-selection event (a misc-user event). An error will
be signalled if you pass this value to lookup-key or a related function.

In the example below, the prompt ‘?’ is displayed in the echo area, and the user types C-x
C-f.

(read-key-sequence "7")

= [#<keypress-event control-X> #<keypress-event control-F>]

If an input character is an upper-case letter and has no key binding, but its lower-case
equivalent has one, then read-key-sequence converts the character to lower case. Note that
lookup-key does not perform case conversion in this way.

19.6.2 Reading One Event

The lowest level functions for command input are those which read a single event. These
functions often make a distinction between command events, which are user actions (keystrokes
and mouse actions), and other events, which serve as communication between XEmacs and the
window system.

next-event &optional event prompt Function
This function reads and returns the next available event from the window system or termi-
nal driver, waiting if necessary until an event is available. Pass this object to dispatch-
event to handle it. If an event object is supplied, it is filled in and returned; otherwise a
new event object will be created.

Events can come directly from the user, from a keyboard macro, or from unread-command-
events.

In most cases, the function next-command-event is more appropriate.

next-command-event &optional event Function
This function returns the next available “user” event from the window system or terminal
driver. Pass this object to dispatch-event to handle it. If an event object is supplied, it
is filled in and returned, otherwise a new event object will be created.
The event returned will be a keyboard, mouse press, or mouse release event. If there
are non-command events available (mouse motion, sub-process output, etc) then these
will be executed (with dispatch-event) and discarded. This function is provided as a
convenience; it is equivalent to the Lisp code
(while (progn
(next-event event)
(not (or (key-press-event-p event)
(button-press-event-p event)
(button-release-event-p event)
(menu-event-p event))))
(dispatch-event event))

Here is what happens if you call next-command-event and then press the right-arrow
function key:

Chapter 19: Command Loop 275

(next-command-event)
= #<keypress-event right>

read-char Function
This function reads and returns a character of command input. If a mouse click is detected,
an error is signalled. The character typed is returned as an ASCII value. This function
is retained for compatibility with Emacs 18, and is most likely the wrong thing for you to
be using: consider using next-command-event instead.

enqueue-eval-event function object Function
This function adds an eval event to the back of the queue. The eval event will be the next
event read after all pending events.

19.6.3 Dispatching an Event

dispatch-event event Function
Given an event object returned by next-event, this function executes it. This is the basic
function that makes XEmacs respond to user input; it also deals with notifications from
the window system (such as Expose events).

19.6.4 Quoted Character Input

You can use the function read-quoted-char to ask the user to specify a character, and
allow the user to specify a control or meta character conveniently, either literally or as an octal
character code. The command quoted-insert uses this function.

read-quoted-char &optional prompt Function
This function is like read-char, except that if the first character read is an octal digit
(0-7), it reads up to two more octal digits (but stopping if a non-octal digit is found) and
returns the character represented by those digits in octal.

Quitting is suppressed when the first character is read, so that the user can enter a C-g.
See Section 19.8 [Quitting], page 278.

If prompt is supplied, it specifies a string for prompting the user. The prompt string is
always displayed in the echo area, followed by a single ‘-’.

In the following example, the user types in the octal number 177 (which is 127 in decimal).
(read-quoted-char "What character")
—————————— Echo Area -—-—--—-——--

What character-177
—————————— Echo Area -----—-————-

= 127

276 XEmacs Lisp Reference Manual

19.6.5 Miscellaneous Event Input Features

This section describes how to “peek ahead” at events without using them up, how to check
for pending input, and how to discard pending input.

See also the variables last-command-event and last-command-char (Scction 19.4 [Com-
mand Loop Info], page 261).

unread-command-events Variable
This variable holds a list of events waiting to be read as command input. The events are
used in the order they appear in the list, and removed one by one as they are used.

The variable is needed because in some cases a function reads a event and then decides
not to use it. Storing the event in this variable causes it to be processed normally, by the
command loop or by the functions to read command input.

For example, the function that implements numeric prefix arguments reads any number
of digits. When it finds a non-digit event, it must unread the event so that it can be read
normally by the command loop. Likewise, incremental search uses this feature to unread
events with no special meaning in a search, because these events should exit the search
and then execute normally.

unread-command-event Variable
This variable holds a single event to be read as command input.

This variable is mostly obsolete now that you can use unread-command-events instead;
it exists only to support programs written for versions of XEmacs prior to 19.12.

input-pending-p Function
This function determines whether any command input is currently available to be read.
It returns immediately, with value t if there is available input, nil otherwise. On rare
occasions it may return t when no input is available.

last-input-event Variable
This variable is set to the last keyboard or mouse button event received.

This variable is off limits: you may not set its value or modify the event that is its value,
as it is destructively modified by read-key-sequence. If you want to keep a pointer to
this value, you must use copy-event.

Note that this variable is an alias for last-input-char in FSF Emacs.

In the example below, a character is read (the character 1). It becomes the value of last-
input-event, while C-e (from the C-x C-e command used to evaluate this expression)
remains the value of last-command-event.

(progn (print (next-command-event))
(print last-command-event)
last-input-event)

-1 #<keypress-event 1>
- #<keypress—event control-E>
= #<keypress-event 1>

Chapter 19: Command Loop 277

last-input-char Variable
If the value of last-input-event is a keyboard event, then this is the nearest ASCII
equivalent to it. Remember that there is mot a 1:1 mapping between keyboard events
and ASCII characters: the set of keyboard events is much larger, so writing code that
examines this variable to determine what key has been typed is bad practice, unless you
are certain that it will be one of a small set of characters.

This function exists for compatibility with Emacs version 18.

discard-input Function
This function discards the contents of the terminal input buffer and cancels any keyboard
macro that might be in the process of definition. It returns nil.
In the following example, the user may type a number of characters right after starting the
evaluation of the form. After the sleep-for finishes sleeping, discard-input discards
any characters typed during the sleep.

(progn (sleep-for 2)
(discard-input))
= nil

19.7 Waiting for Elapsed Time or Input

The wait functions are designed to wait for a certain amount of time to pass or until there
is input. For example, you may wish to pause in the middle of a computation to allow the user
time to view the display. sit-for pauses and updates the screen, and returns immediately if
input comes in, while sleep-for pauses without updating the screen.

Note that in FSF Emacs, the commands sit-for and sleep-for take two arguments to
specify the time (one integer and one float value), instead of a single argument that can be
either an integer or a float.

sit-for seconds &optional nodisp Function
This function performs redisplay (provided there is no pending input from the user), then
waits seconds seconds, or until input is available. The result is t if sit-for waited the
full time with no input arriving (see input-pending-p in Section 19.6.5 [Peeking and
Discarding], page 276). Otherwise, the value is nil.
The argument seconds need not be an integer. If it is a floating point number, sit-for
waits for a fractional number of seconds.
Redisplay is normally preempted if input arrives, and does not happen at all if input is
available before it starts. (You can force screen updating in such a case by using force-
redisplay. See Section 45.1 [Refresh Screen|, page 585.) If there is no input pending,
you can force an update with no delay by using (sit-for 0).
If nodisp is non-nil, then sit-for does not redisplay, but it still returns as soon as input
is available (or when the timeout elapses).

The usual purpose of sit-for is to give the user time to read text that you display.

sleep-for seconds Function
This function simply pauses for seconds seconds without updating the display. This func-
tion pays no attention to available input. It returns nil.

The argument seconds need not be an integer. If it is a floating point number, sleep-for
waits for a fractional number of seconds.

Use sleep-for when you wish to guarantee a delay.

See Section 50.5 [Time of Day|, page 633, for functions to get the current time.

278 XEmacs Lisp Reference Manual

19.8 Quitting

Typing C-g while a Lisp function is running causes XEmacs to quit whatever it is doing.
This means that control returns to the innermost active command loop.

Typing C-g while the command loop is waiting for keyboard input does not cause a quit; it
acts as an ordinary input character. In the simplest case, you cannot tell the difference, because
C-g normally runs the command keyboard-quit, whose effect is to quit. However, when C-g
follows a prefix key, the result is an undefined key. The effect is to cancel the prefix key as well
as any prefix argument.

In the minibuffer, C-g has a different definition: it aborts out of the minibuffer. This means,
in effect, that it exits the minibuffer and then quits. (Simply quitting would return to the
command loop within the minibuffer.) The reason why C-g does not quit directly when the
command reader is reading input is so that its meaning can be redefined in the minibuffer in
this way. C-g following a prefix key is not redefined in the minibuffer, and it has its normal
effect of canceling the prefix key and prefix argument. This too would not be possible if C-g
always quit directly.

When C-g does directly quit, it does so by setting the variable quit-flag to t. XEmacs
checks this variable at appropriate times and quits if it is not nil. Setting quit-flag non-nil
in any way thus causes a quit.

At the level of C code, quitting cannot happen just anywhere; only at the special places
that check quit-flag. The reason for this is that quitting at other places might leave an
inconsistency in XEmacs’s internal state. Because quitting is delayed until a safe place, quitting
cannot make XEmacs crash.

Certain functions such as read-key-sequence or read-quoted-char prevent quitting en-
tirely even though they wait for input. Instead of quitting, C-g serves as the requested input.
In the case of read-key-sequence, this serves to bring about the special behavior of C-g in the
command loop. In the case of read-quoted-char, this is so that C-q can be used to quote a
C-g.

You can prevent quitting for a portion of a Lisp function by binding the variable inhibit-
quit to a non-nil value. Then, although C-g still sets quit-flag to t as usual, the usual result
of this—a quit—is prevented. Eventually, inhibit-quit will become nil again, such as when
its binding is unwound at the end of a let form. At that time, if quit-flag is still non-nil, the
requested quit happens immediately. This behavior is ideal when you wish to make sure that
quitting does not happen within a “critical section” of the program.

In some functions (such as read-quoted-char), C-g is handled in a special way that does not
involve quitting. This is done by reading the input with inhibit-quit bound to t, and setting
quit-flag to nil before inhibit-quit becomes nil again. This excerpt from the definition
of read-quoted-char shows how this is done; it also shows that normal quitting is permitted
after the first character of input.

(defun read-quoted-char (&optional prompt)
"...documentation. . ."
(let ((count 0) (code 0) char)
(while (< count 3)
(let ((inhibit-quit (zerop count))
(help-form nil))
(and prompt (message "%s-" prompt))
(setq char (read-char))
(if inhibit-quit (setq quit-flag nil)))
S
(logand 255 code)))

Chapter 19: Command Loop 279

quit-flag Variable
If this variable is non-nil, then XEmacs quits immediately, unless inhibit-quit is non-
nil. Typing C-g ordinarily sets quit-flag non-nil, regardless of inhibit-quit.

inhibit-quit Variable
This variable determines whether XEmacs should quit when quit-flag is set to a value
other than nil. If inhibit-quit is non-nil, then quit-flag has no special effect.

keyboard-quit Command
This function signals the quit condition with (signal ’quit nil). This is the same thing
that quitting does. (See signal in Section 9.5.3 [Errors|, page 124.)

You can specify a character other than C-g to use for quitting. See the function set-input-
mode in Section 50.8 [Terminal Input], page 636.

19.9 Prefix Command Arguments

Most XEmacs commands can use a prefix argument, a number specified before the command
itself. (Don’t confuse prefix arguments with prefix keys.) The prefix argument is at all times
represented by a value, which may be nil, meaning there is currently no prefix argument. Each
command may use the prefix argument or ignore it.

There are two representations of the prefix argument: raw and numeric. The editor com-
mand loop uses the raw representation internally, and so do the Lisp variables that store the
information, but commands can request either representation.

Here are the possible values of a raw prefix argument:

e nil, meaning there is no prefix argument. Its numeric value is 1, but numerous commands
make a distinction between nil and the integer 1.

e An integer, which stands for itself.

e A list of one element, which is an integer. This form of prefix argument results from one or
a succession of C-u’s with no digits. The numeric value is the integer in the list, but some
commands make a distinction between such a list and an integer alone.

e The symbol -. This indicates that M-- or C-u - was typed, without following digits. The
equivalent numeric value is —1, but some commands make a distinction between the integer
—1 and the symbol -.

We illustrate these possibilities by calling the following function with various prefixes:

(defun display-prefix (arg)
"Display the value of the raw prefix arg."
(interactive "P")
(message "%s" arg))

Here are the results of calling display-prefix with various raw prefix arguments:
M-x display-prefix - nil

C-u M-x display-prefix - (4)
C-u C-u M-x display-prefix - (16)
C-u 3 M-x display-prefix - 3

M-3 M-x display-prefix H 3 ; (Same as C-u 3.)

280 XEmacs Lisp Reference Manual

Cc-3 M-x display-prefix -+ 3 ; (Same as C-u 3.)
C-u - M-x display-prefix - -

M-- M-x display-prefix - - ; (Same as C-u -.)
C-- M-x display-prefix - - ; (Same as C-u -.)

C-u - 7 M-x display-prefix - -7
M-- 7 M-x display-prefix H -7 ; (Same as C-u -7.)

C-- 7 M-x display-prefix - -7 ; (Same as C-u -7.)

XEmacs uses two variables to store the prefix argument: prefix-arg and current-prefix-
arg. Commands such as universal-argument that set up prefix arguments for other commands
store them in prefix-arg. In contrast, current-prefix-arg conveys the prefix argument to
the current command, so setting it has no effect on the prefix arguments for future commands.

Normally, commands specify which representation to use for the prefix argument, either nu-
meric or raw, in the interactive declaration. (See Section 19.2.1 [Using Interactivel], page 256.)
Alternatively, functions may look at the value of the prefix argument directly in the variable
current-prefix-arg, but this is less clean.

prefix-numeric-value arg Function
This function returns the numeric meaning of a valid raw prefix argument value, arg. The
argument may be a symbol, a number, or a list. If it is nil, the value 1 is returned; if it
is =, the value —1 is returned; if it is a number, that number is returned; if it is a list, the
CAR of that list (which should be a number) is returned.

current-prefix-arg Variable
This variable holds the raw prefix argument for the current command. Commands may
examine it directly, but the usual way to access it is with (interactive "P").

prefix-arg Variable
The value of this variable is the raw prefix argument for the nezrt editing command.
Commands that specify prefix arguments for the following command work by setting this
variable.

Do not call the functions universal-argument, digit-argument, or negative-argument
unless you intend to let the user enter the prefix argument for the next command.

universal-argument Command
This command reads input and specifies a prefix argument for the following command.
Don’t call this command yourself unless you know what you are doing.

digit-argument arg Command
This command adds to the prefix argument for the following command. The argument
arg is the raw prefix argument as it was before this command; it is used to compute the
updated prefix argument. Don’t call this command yourself unless you know what you
are doing.

Chapter 19: Command Loop 281

negative-argument arg Command
This command adds to the numeric argument for the next command. The argument arg
is the raw prefix argument as it was before this command; its value is negated to form
the new prefix argument. Don’t call this command yourself unless you know what you are
doing.

19.10 Recursive Editing

The XEmacs command loop is entered automatically when XEmacs starts up. This top-level
invocation of the command loop never exits; it keeps running as long as XEmacs does. Lisp
programs can also invoke the command loop. Since this makes more than one activation of the
command loop, we call it recursive editing. A recursive editing level has the effect of suspending
whatever command invoked it and permitting the user to do arbitrary editing before resuming
that command.

The commands available during recursive editing are the same ones available in the top-level
editing loop and defined in the keymaps. Only a few special commands exit the recursive editing
level; the others return to the recursive editing level when they finish. (The special commands
for exiting are always available, but they do nothing when recursive editing is not in progress.)

All command loops, including recursive ones, set up all-purpose error handlers so that an
error in a command run from the command loop will not exit the loop.

Minibuffer input is a special kind of recursive editing. It has a few special wrinkles, such as
enabling display of the minibuffer and the minibuffer window, but fewer than you might suppose.
Certain keys behave differently in the minibuffer, but that is only because of the minibuffer’s
local map; if you switch windows, you get the usual XEmacs commands.

To invoke a recursive editing level, call the function recursive-edit. This function contains
the command loop; it also contains a call to catch with tag exit, which makes it possible to exit
the recursive editing level by throwing to exit (see Section 9.5.1 [Catch and Throw|, page 121).
If you throw a value other than t, then recursive-edit returns normally to the function that
called it. The command C-M-c (exit-recursive-edit) does this. Throwing a t value causes
recursive-edit to quit, so that control returns to the command loop one level up. This is
called aborting, and is done by C-] (abort-recursive-edit).

Most applications should not use recursive editing, except as part of using the minibuffer.
Usually it is more convenient for the user if you change the major mode of the current buffer
temporarily to a special major mode, which should have a command to go back to the previous
mode. (The e command in Rmail uses this technique.) Or, if you wish to give the user different
text to edit “recursively”, create and select a new buffer in a special mode. In this mode, define
a command to complete the processing and go back to the previous buffer. (The m command in
Rmail does this.)

Recursive edits are useful in debugging. You can insert a call to debug into a function
definition as a sort of breakpoint, so that you can look around when the function gets there.
debug invokes a recursive edit but also provides the other features of the debugger.

Recursive editing levels are also used when you type C-r in query-replace or use C-x q
(kbd-macro-query).

recursive-edit Function
This function invokes the editor command loop. It is called automatically by the initial-
ization of XEmacs, to let the user begin editing. When called from a Lisp program, it
enters a recursive editing level.
In the following example, the function simple-rec first advances point one word, then
enters a recursive edit, printing out a message in the echo area. The user can then do any
editing desired, and then type C-M-c to exit and continue executing simple-rec.

282 XEmacs Lisp Reference Manual

(defun simple-rec ()
(forward-word 1)
(message "Recursive edit in progress")
(recursive-edit)
(forward-word 1))
= simple-rec
(simple-rec)
= nil

exit-recursive-edit Command
This function exits from the innermost recursive edit (including minibuffer input). Its
definition is effectively (throw ’exit nil).

abort-recursive-edit Command
This function aborts the command that requested the innermost recursive edit (including
minibuffer input), by signaling quit after exiting the recursive edit. Its definition is
effectively (throw ’exit t). See Section 19.8 [Quitting], page 278.

top-level Command
This function exits all recursive editing levels; it does not return a value, as it jumps
completely out of any computation directly back to the main command loop.

recursion-depth Function
This function returns the current depth of recursive edits. When no recursive edit is active,
it returns 0.

19.11 Disabling Commands

Disabling a command marks the command as requiring user confirmation before it can be
executed. Disabling is used for commands which might be confusing to beginning users, to
prevent them from using the commands by accident.

The low-level mechanism for disabling a command is to put a non-nil disabled property on
the Lisp symbol for the command. These properties are normally set up by the user’s ‘.emacs’
file with Lisp expressions such as this:

(put ’upcase-region ’disabled t)
For a few commands, these properties are present by default and may be removed by the ‘. emacs’
file.

If the value of the disabled property is a string, the message saying the command is disabled
includes that string. For example:

(put ’delete-region ’disabled
"Text deleted this way cannot be yanked back!\n")

See section “Disabling” in The XEmacs User’s Manual, for the details on what happens when
a disabled command is invoked interactively. Disabling a command has no effect on calling it
as a function from Lisp programs.

enable-command command Command
Allow command to be executed without special confirmation from now on, and (if the
user confirms) alter the user’s ‘.emacs’ file so that this will apply to future sessions.

Chapter 19: Command Loop 283

disable-command command Command
Require special confirmation to execute command from now on, and (if the user confirms)
alter the user’s ‘.emacs’ file so that this will apply to future sessions.

disabled-command-hook Variable
This normal hook is run instead of a disabled command, when the user invokes the dis-
abled command interactively. The hook functions can use this-command-keys to deter-
mine what the user typed to run the command, and thus find the command itself. See
Section 26.4 [Hooks]|, page 342.
By default, disabled-command-hook contains a function that asks the user whether to
proceed.

19.12 Command History

The command loop keeps a history of the complex commands that have been executed,
to make it convenient to repeat these commands. A complex command is one for which the
interactive argument reading uses the minibuffer. This includes any M-x command, any M-:
command, and any command whose interactive specification reads an argument from the
minibuffer. Explicit use of the minibuffer during the execution of the command itself does not
cause the command to be considered complex.

command-history Variable
This variable’s value is a list of recent complex commands, each represented as a form
to evaluate. It continues to accumulate all complex commands for the duration of the
editing session, but all but the first (most recent) thirty elements are deleted when a
garbage collection takes place (see Section B.3 [Garbage Collection], page 695).

command-history

= ((switch-to-buffer "chistory.texi")
(describe-key "X~ [")
(visit-tags-table "~ /emacs/src/")
(find-tag "repeat-complex-command"))

This history list is actually a special case of minibuffer history (see Section 18.4 [Minibuffer
History], page 240), with one special twist: the elements are expressions rather than strings.

There are a number of commands devoted to the editing and recall of previous commands.
The commands repeat-complex-command, and list-command-history are described in the
user manual (see section “Repetition” in The XEmacs User’s Manual). Within the minibuffer,
the history commands used are the same ones available in any minibuffer.

19.13 Keyboard Macros

A keyboard macro is a canned sequence of input events that can be considered a command
and made the definition of a key. The Lisp representation of a keyboard macro is a string or
vector containing the events. Don’t confuse keyboard macros with Lisp macros (see Chapter 12
[Macros|, page 161).

execute-kbd-macro macro &optional count Function
This function executes macro as a sequence of events. If macro is a string or vector, then
the events in it are executed exactly as if they had been input by the user. The sequence

284 XEmacs Lisp Reference Manual

is not expected to be a single key sequence; normally a keyboard macro definition consists
of several key sequences concatenated.

If macro is a symbol, then its function definition is used in place of macro. If that is
another symbol, this process repeats. Eventually the result should be a string or vector.
If the result is not a symbol, string, or vector, an error is signaled.

The argument count is a repeat count; macro is executed that many times. If count is
omitted or nil, macro is executed once. If it is 0, macro is executed over and over until
it encounters an error or a failing search.

executing-macro Variable
This variable contains the string or vector that defines the keyboard macro that is currently
executing. It is nil if no macro is currently executing. A command can test this variable
to behave differently when run from an executing macro. Do not set this variable yourself.

defining-kbd-macro Variable
This variable indicates whether a keyboard macro is being defined. A command can
test this variable to behave differently while a macro is being defined. The commands
start-kbd-macro and end-kbd-macro set this variable—do not set it yourself.

last-kbd-macro Variable
This variable is the definition of the most recently defined keyboard macro. Its value is a
string or vector, or nil.

The commands are described in the user’s manual (see section “Keyboard Macros” in The
XEmacs User’s Manual).

Chapter 20: Keymaps 285

20 Keymaps

The bindings between input events and commands are recorded in data structures called
keymaps. Each binding in a keymap associates (or binds) an individual event type either with
another keymap or with a command. When an event is bound to a keymap, that keymap is used
to look up the next input event; this continues until a command is found. The whole process is
called key lookup.

20.1 Keymap Terminology

A keymap is a table mapping event types to definitions (which can be any Lisp objects, though
only certain types are meaningful for execution by the command loop). Given an event (or an
event type) and a keymap, XEmacs can get the event’s definition. Events mapped in keymaps
include keypresses, button presses, and button releases (see Section 19.5 [Events|, page 263).

A sequence of input events that form a unit is called a key sequence, or key for short. A
sequence of one event is always a key sequence, and so are some multi-event sequences.

A keymap determines a binding or definition for any key sequence. If the key sequence is
a single event, its binding is the definition of the event in the keymap. The binding of a key
sequence of more than one event is found by an iterative process: the binding of the first event
is found, and must be a keymap; then the second event’s binding is found in that keymap, and
so on until all the events in the key sequence are used up.

If the binding of a key sequence is a keymap, we call the key sequence a prefix key. Otherwise,
we call it a complete key (because no more events can be added to it). If the binding is nil, we
call the key undefined. Examples of prefix keys are C-c, C-x, and C-x 4. Examples of defined
complete keys are X, RET), and C-x 4 C-f. Examples of undefined complete keys are C-x C-g,
and C-c 3. See Section 20.6 [Prefix Keys|, page 289, for more details.

The rule for finding the binding of a key sequence assumes that the intermediate bindings
(found for the events before the last) are all keymaps; if this is not so, the sequence of events
does not form a unit—it is not really a key sequence. In other words, removing one or more
events from the end of any valid key must always yield a prefix key. For example, C-f C-n is
not a key; C-f is not a prefix key, so a longer sequence starting with C-f cannot be a key.

Note that the set of possible multi-event key sequences depends on the bindings for prefix
keys; therefore, it can be different for different keymaps, and can change when bindings are
changed. However, a one-event sequence is always a key sequence, because it does not depend
on any prefix keys for its well-formedness.

At any time, several primary keymaps are active—that is, in use for finding key bindings.
These are the global map, which is shared by all buffers; the local keymap, which is usually
associated with a specific major mode; and zero or more minor mode keymaps, which belong
to currently enabled minor modes. (Not all minor modes have keymaps.) The local keymap
bindings shadow (i.e., take precedence over) the corresponding global bindings. The minor mode
keymaps shadow both local and global keymaps. See Section 20.7 [Active Keymaps|, page 290,
for details.

20.2 Format of Keymaps

A keymap is a primitive type that associates events with their bindings. Note that this is
different from Emacs 18 and FSF Emacs, where keymaps are lists.

286 XEmacs Lisp Reference Manual

keymapp object Function
This function returns t if object is a keymap, nil otherwise.

20.3 Creating Keymaps

Here we describe the functions for creating keymaps.

make-keymap &optional name Function
This function constructs and returns a new keymap object. All entries in it are nil,
meaning “command undefined”.

Optional argument name specifies a name to assign to the keymap, as in set-keymap-
name. This name is only a debugging convenience; it is not used except when printing the
keymap.

make-sparse-keymap &optional name Function
This function constructs and returns a new keymap object. All entries in it are nil,
meaning “command undefined”. The only difference between this function and make-
keymap is that this function returns a “smaller” keymap (one that is expected to contain
fewer entries). As keymaps dynamically resize, the distinction is not great.

Optional argument name specifies a name to assign to the keymap, as in set-keymap-
name. This name is only a debugging convenience; it is not used except when printing the
keymap.

set-keymap-name keymap new-name Function
This function assigns a “name” to a keymap. The name is only a debugging convenience;
it is not used except when printing the keymap.

keymap-name keymap Function
This function returns the “name” of a keymap, as assigned using set-keymap-name.

copy-keymap keymap Function
This function returns a copy of keymap. Any keymaps that appear directly as bindings in
keymap are also copied recursively, and so on to any number of levels. However, recursive
copying does not take place when the definition of a character is a symbol whose function
definition is a keymap; the same symbol appears in the new copy.

(setq map (copy-keymap (current-local-map)))
= #<keymap 3 entries 0x21£80>

(eq map (current-local-map))
= nil

20.4 Inheritance and Keymaps

A keymap can inherit the bindings of other keymaps. The other keymaps are called the
keymap’s parents, and are set with set-keymap-parents. When searching for a binding for a
key sequence in a particular keymap, that keymap itself will first be searched; then, if no binding
was found in the map and it has parents, the first parent keymap will be searched; then that
keymap’s parent will be searched, and so on, until either a binding for the key sequence is found,
or a keymap without a parent is encountered. At this point, the search will continue with the

Chapter 20: Keymaps 287

next parent of the most recently encountered keymap that has another parent, etc. Essentially,
a depth-first search of all the ancestors of the keymap is conducted.

(current-global-map) is the default parent of all keymaps.

set-keymap-parents keymap parents Function
This function sets the parent keymaps of keymap to the list parents.

If you change the bindings in one of the keymaps in parents using define-key or other
key-binding functions, these changes are visible in keymap unless shadowed by bindings in
that map or in earlier-searched ancestors. The converse is not true: if you use define-key
to change keymap, that affects the bindings in that map, but has no effect on any of the
keymaps in parents.

keymap-parents keymap Function
This function returns the list of parent keymaps of keymap, or nil if keymap has no
parents.

As an alternative to specifying a parent, you can also specify a default binding that is used
whenever a key is not otherwise bound in the keymap. This is useful for terminal emulators,
for example, which may want to trap all keystrokes and pass them on in some modified format.
Note that if you specify a default binding for a keymap, neither the keymap’s parents nor the
current global map are searched for key bindings.

set-keymap-default-binding keymap command Function
This function sets the default binding of keymap to command, or nil if no default is
desired.

keymap-default-binding keymap Function

This function returns the default binding of keymap, or nil if it has none.

20.5 Key Sequences

Contrary to popular belief, the world is not ASCII. When running under a window manager,
XEmacs can tell the difference between, for example, the keystrokes control-h, control-
shift-h, and backspace. You can, in fact, bind different commands to each of these.

A key sequence is a set of keystrokes. A keystroke is a keysym and some set of modifiers
(such as and (META)). A keysym is what is printed on the keys on your keyboard.

A keysym may be represented by a symbol, or (if and only if it is equivalent to an ASCII
character in the range 32 - 255) by a character or its equivalent ASCII code. The A key may
be represented by the symbol A, the character 7A, or by the number 65. The break key may be
represented only by the symbol break.

A keystroke may be represented by a list: the last element of the list is the key (a symbol,
character, or number, as above) and the preceding elements are the symbolic names of modifier
keys ((CONTROL), (META), (SUPER), (HYPER), (ALT), and (SHIFT)). Thus, the sequence control-b
is represented by the forms (control b), (control ?b), and (control 98). A keystroke may
also be represented by an event object, as returned by the next-command-event and read-key-
sequence functions.

Note that in this context, the keystroke control-b is not represented by the number 2 (the
ASCII code for ‘"B’) or the character ?\"B. See below.

The modifier is somewhat of a special case. You should not (and cannot) use (meta
shift a) to mean (meta A), since for characters that have ASCII equivalents, the state of the

288 XEmacs Lisp Reference Manual

shift key is implicit in the keysym (‘a’ vs. ‘A’). You also cannot say (shift =) to mean +, as
that sort of thing varies from keyboard to keyboard. The modifier is for use only with
characters that do not have a second keysym on the same key, such as backspace and tab.

A key sequence is a vector of keystrokes. As a degenerate case, elements of this vector may
also be keysyms if they have no modifiers. That is, the A keystroke is represented by all of these
forms:

A 7A 65 (A) (7A) (65)
(Al [7A] [65] [(A)] [(7A)] [(65)]

the control-a keystroke is represented by these forms:

(control A) (control 7A) (control 65)
[(control A)] [(control 7A)] [(control 65)]

the key sequence control-c control-a is represented by these forms:

[(control c) (control a)] [(control 7c) (control 7a)]
[(control 99) (control 65)] etc.

Mouse button clicks work just like keypresses: (control buttonl) means pressing the left
mouse button while holding down the control key. [(control c) (shift button3)] means
control-c, hold SHIFT), click right.

Commands may be bound to the mouse-button up-stroke rather than the down-stroke as well.
buttonl means the down-stroke, and buttonlup means the up-stroke. Different commands may
be bound to the up and down strokes, though that is probably not what you want, so be careful.

For backward compatibility, a key sequence may also be represented by a string. In this case,
it represents the key sequence(s) that would produce that sequence of ASCII characters in a
purely ASCII world. For example, a string containing the ASCII backspace character, "\"H",
would represent two key sequences: (control h) and backspace. Binding a command to this
will actually bind both of those key sequences. Likewise for the following pairs:

control h backspace

control i tab
control m return
control j linefeed
control [escape

control @ control space
After binding a command to two key sequences with a form like
(define-key global-map "\"X\"I" ’command-1)
it is possible to redefine only one of those sequences like so:

(define-key global-map [(control x) (control i)] ’command-2)
(define-key global-map [(control x) tab] ’command-3)

Of course, all of this applies only when running under a window system. If you're talking to
XEmacs through a TTY connection, you don’t get any of these features.

event-matches-key-specifier-p event key-specifier Function
This function returns non-nil if event matches key-specifier, which can be any valid form
representing a key sequence. This can be useful, e.g., to determine if the user pressed
help-char or quit-char.

Chapter 20: Keymaps 289

20.6 Prefix Keys

A prefix key has an associated keymap that defines what to do with key sequences that start
with the prefix key. For example, C-x is a prefix key, and it uses a keymap that is also stored in
the variable ctl-x-map. Here is a list of the standard prefix keys of XEmacs and their keymaps:

e help-map is used for events that follow C-h.

e mode-specific-map is for events that follow C-c. This map is not actually mode specific;
its name was chosen to be informative for the user in C-h b (display-bindings), where it
describes the main use of the C-c prefix key.

e ctl-x-map is the map used for events that follow C-x. This map is also the function
definition of Control-X-prefix.

ctl-x-4-map is used for events that follow C-x 4.
ctl-x-5-map is used for events that follow C-x 5.
The prefix keys C-x n, C-x r and C-x a use keymaps that have no special name.

esc-map is an evil hack that is present for compatibility purposes with Emacs 18. Defining
a key in esc-map is equivalent to defining the same key in global-map but with the
prefix added. You should not use this in your code. (This map is also the function definition
of ESC-prefix.)

The binding of a prefix key is the keymap to use for looking up the events that follow the
prefix key. (It may instead be a symbol whose function definition is a keymap. The effect is
the same, but the symbol serves as a name for the prefix key.) Thus, the binding of C-x is the
symbol Control-X-prefix, whose function definition is the keymap for C-x commands. (The
same keymap is also the value of ctl-x-map.)

Prefix key definitions can appear in any active keymap. The definitions of C-c, C-x, C-h and
as prefix keys appear in the global map, so these prefix keys are always available. Major
and minor modes can redefine a key as a prefix by putting a prefix key definition for it in the
local map or the minor mode’s map. See Section 20.7 [Active Keymaps|, page 290.

If a key is defined as a prefix in more than one active map, then its various definitions are in

effect merged: the commands defined in the minor mode keymaps come first, followed by those
in the local map’s prefix definition, and then by those from the global map.

In the following example, we make C-p a prefix key in the local keymap, in such a way that
C-p is identical to C-x. Then the binding for C-p C-f is the function find-file, just like C-x
C-f. The key sequence C-p 6 is not found in any active keymap.

(use-local-map (make-sparse-keymap))
= nil

(local-set-key "\C-p" ctl-x-map)
= nil

(key-binding "\C-p\C-f")
= find-file

(key-binding "\C-p6")
= nil

define-prefix-command symbol &optional mapvar Function
This function defines symbol as a prefix command: it creates a keymap and stores it as
symbol’s function definition. Storing the symbol as the binding of a key makes the key
a prefix key that has a name. If optional argument mapvar is not specified, it also sets
symbol as a variable, to have the keymap as its value. (If mapvar is given and is not t,
its value is stored as the value of symbol.) The function returns symbol.

290 XEmacs Lisp Reference Manual

In Emacs version 18, only the function definition of symbol was set, not the value as a
variable.

20.7 Active Keymaps

XFEmacs normally contains many keymaps; at any given time, just a few of them are active
in that they participate in the interpretation of user input. These are the global keymap, the
current buffer’s local keymap, and the keymaps of any enabled minor modes.

The global keymap holds the bindings of keys that are defined regardless of the current buffer,
such as C-f. The variable global-map holds this keymap, which is always active.

Each buffer may have another keymap, its local keymap, which may contain new or overriding
definitions for keys. The current buffer’s local keymap is always active except when overriding-
local-map or overriding-terminal-local-map overrides it. Extents and text properties can
specify an alternative local map for certain parts of the buffer; see Section 40.10 [Extents and
Events|, page 540.

Each minor mode may have a keymap; if it does, the keymap is active when the minor mode
is enabled.

The variable overriding-local-map and overriding-terminal-local-map, if non-nil,
specify other local keymaps that override the buffer’s local map and all the minor mode keymaps.

All the active keymaps are used together to determine what command to execute when a key
is entered. XEmacs searches these maps one by one, in order of decreasing precedence, until it
finds a binding in one of the maps.

More specifically:
For key-presses, the order of keymaps searched is:

the keymap property of any extent(s) or text properties at point;

any applicable minor-mode maps;

the current local map of the current buffer;

the current global map.

For mouse-clicks, the order of keymaps searched is:
e the current local map of the mouse-grabbed-buffer if any;

e the keymap property of any extent(s) at the position of the click (this includes modeline
extents);

e the modeline-map of the buffer corresponding to the modeline under the mouse (if the click
happened over a modeline);

e the value of toolbar-map in the current buffer (if the click happened over a toolbar);
e the current local map of the buffer under the mouse (does not apply to toolbar clicks);
e any applicable minor-mode maps;
e the current global map.
Note that if overriding-local-map or overriding-terminal-local-map is non-nil, only
those two maps and the current global map are searched.

The procedure for searching a single keymap is called key lookup; see Section 20.8 [Key
Lookup], page 293.

Since every buffer that uses the same major mode normally uses the same local keymap, you
can think of the keymap as local to the mode. A change to the local keymap of a buffer (using
local-set-key, for example) is seen also in the other buffers that share that keymap.

Chapter 20: Keymaps 291

The local keymaps that are used for Lisp mode, C mode, and several other major modes
exist even if they have not yet been used. These local maps are the values of the variables
lisp-mode-map, c-mode-map, and so on. For most other modes, which are less frequently used,
the local keymap is constructed only when the mode is used for the first time in a session.

The minibuffer has local keymaps, too; they contain various completion and exit commands.
See Section 18.1 [Intro to Minibuffers], page 237.

See Appendix E [Standard Keymaps|, page 709, for a list of standard keymaps.

current-keymaps &optional event-or-keys Function
This function returns a list of the current keymaps that will be searched for bindings.
This lists keymaps such as the current local map and the minor-mode maps, but does not
list the parents of those keymaps. event-or-keys controls which keymaps will be listed.
If event-or-keys is a mouse event (or a vector whose last element is a mouse event), the
keymaps for that mouse event will be listed. Otherwise, the keymaps for key presses will
be listed.

global-map Variable
This variable contains the default global keymap that maps XEmacs keyboard input to
commands. The global keymap is normally this keymap. The default global keymap is a
full keymap that binds self-insert-command to all of the printing characters.

It is normal practice to change the bindings in the global map, but you should not assign
this variable any value other than the keymap it starts out with.

current-global-map Function
This function returns the current global keymap. This is the same as the value of global-
map unless you change one or the other.

(current-global-map)
= #<keymap global-map 639 entries 0x221>

current-local-map Function
This function returns the current buffer’s local keymap, or nil if it has none. In the
following example, the keymap for the ‘*scratch*’ buffer (using Lisp Interaction mode)
has a number of entries, including one prefix key, C-x.

(current-local-map)

= #<keymap lisp-interaction-mode-map 5 entries 0x558>
(describe-bindings-internal (current-local-map))
= ; Inserted into the buffer:

backspace backward-delete-char-untabify
linefeed eval-print-last-sexp

delete delete-char

C-j eval-print-last-sexp

C-x << Prefix Command >>

M-tab lisp-complete-symbol

M-; lisp-indent-for-comment

M-C-i lisp-complete-symbol

M-C-q indent-sexp

M-C-x eval-defun

Alt-backspace backward-kill-sexp

Alt-delete kill-sexp

C-x x edebug-defun

292 XEmacs Lisp Reference Manual

current-minor-mode-maps Function
This function returns a list of the keymaps of currently enabled minor modes.

use-global-map keymap Function
This function makes keymap the new current global keymap. It returns nil.

It is very unusual to change the global keymap.

use-local-map keymap &optional buffer Function
This function makes keymap the new local keymap of buffer. buffer defaults to the current
buffer. If keymap is nil, then the buffer has no local keymap. use-local-map returns
nil. Most major mode commands use this function.

minor-mode-map-alist Variable
This variable is an alist describing keymaps that may or may not be active according to
the values of certain variables. Its elements look like this:

(variable . keymap)

The keymap keymap is active whenever variable has a non-nil value. Typically variable
is the variable that enables or disables a minor mode. See Section 26.2.2 [Keymaps and
Minor Modes], page 337.

Note that elements of minor-mode-map-alist do not have the same structure as elements
of minor-mode-alist. The map must be the CDR of the element; a list with the map as

the second element will not do.

What’s more, the keymap itself must appear in the CDR. It does not work to store a
variable in the CDR and make the map the value of that variable.

When more than one minor mode keymap is active, their order of priority is the order of
minor-mode-map-alist. But you should design minor modes so that they don’t interfere
with each other. If you do this properly, the order will not matter.

See also minor-mode-key-binding, above. See Section 26.2.2 [Keymaps and Minor
Modes|, page 337, for more information about minor modes.

modeline-map Variable
This variable holds the keymap consulted for mouse-clicks on the modeline of a window.
This variable may be buffer-local; its value will be looked up in the buffer of the window
whose modeline was clicked upon.

toolbar-map Variable
This variable holds the keymap consulted for mouse-clicks over a toolbar.

mouse-grabbed-buffer Variable
If non-nil, a buffer which should be consulted first for all mouse activity. When a mouse-
click is processed, it will first be looked up in the local-map of this buffer, and then
through the normal mechanism if there is no binding for that click. This buffer’s value
of mode-motion-hook will be consulted instead of the mode-motion-hook of the buffer of
the window under the mouse. You should bind this, not set it.

overriding-local-map Variable
If non-nil, this variable holds a keymap to use instead of the buffer’s local keymap and
instead of all the minor mode keymaps. This keymap, if any, overrides all other maps that
would have been active, except for the current global map.

Chapter 20: Keymaps 293

overriding-terminal-local-map Variable
If non-nil, this variable holds a keymap to use instead of the buffer’s local keymap and
instead of all the minor mode keymaps, but for the selected console only. (In other words,
this variable is always console-local; putting a keymap here only applies to keystrokes
coming from the selected console. See Chapter 33 [Consoles and Devices|, page 437.)
This keymap, if any, overrides all other maps that would have been active, except for the
current global map.

20.8 Key Lookup

Key lookup is the process of finding the binding of a key sequence from a given keymap.
Actual execution of the binding is not part of key lookup.

Key lookup uses just the event type of each event in the key sequence; the rest of the event is
ignored. In fact, a key sequence used for key lookup may designate mouse events with just their
types (symbols) instead of with entire mouse events (lists). See Section 19.5 [Events|, page 263.
Such a pseudo-key-sequence is insufficient for command-execute, but it is sufficient for looking
up or rebinding a key.

When the key sequence consists of multiple events, key lookup processes the events sequen-
tially: the binding of the first event is found, and must be a keymap; then the second event’s
binding is found in that keymap, and so on until all the events in the key sequence are used up.
(The binding thus found for the last event may or may not be a keymap.) Thus, the process of
key lookup is defined in terms of a simpler process for looking up a single event in a keymap.
How that is done depends on the type of object associated with the event in that keymap.

Let’s use the term keymap entry to describe the value found by looking up an event type in
a keymap. (This doesn’t include the item string and other extra elements in menu key bindings
because lookup-key and other key lookup functions don’t include them in the returned value.)
While any Lisp object may be stored in a keymap as a keymap entry, not all make sense for key
lookup. Here is a list of the meaningful kinds of keymap entries:

nil nil means that the events used so far in the lookup form an undefined key. When
a keymap fails to mention an event type at all, and has no default binding, that is
equivalent to a binding of nil for that event type.

keymap The events used so far in the lookup form a prefix key. The next event of the key
sequence is looked up in keymap.

command The events used so far in the lookup form a complete key, and command is its
binding. See Section 11.1 [What Is a Function], page 147.

array The array (either a string or a vector) is a keyboard macro. The events used so far
in the lookup form a complete key, and the array is its binding. See Section 19.13
[Keyboard Macros|, page 283, for more information. (Note that you cannot use a
shortened form of a key sequence here, such as (control y); you must use the full
form [(control y)]. See Section 20.5 [Key Sequences|, page 287.)

list The meaning of a list depends on the types of the elements of the list.

e If the CAR of list is lambda, then the list is a lambda expression. This is
presumed to be a command, and is treated as such (see above).

e If the CAR of list is a keymap and the CDR is an event type, then this is an
indirect entry:

(othermap . othertype)

When key lookup encounters an indirect entry, it looks up instead the binding
of othertype in othermap and uses that.

294 XEmacs Lisp Reference Manual

This feature permits you to define one key as an alias for another key. For
example, an entry whose CAR is the keymap called esc-map and whose CDR is
32 (the code for SPC)) means, “Use the global binding of Meta-EPC), whatever
that may be.”

symbol The function definition of symbol is used in place of symbol. If that too is a symbol,
then this process is repeated, any number of times. Ultimately this should lead to
an object that is a keymap, a command or a keyboard macro. A list is allowed if it
is a keymap or a command, but indirect entries are not understood when found via
symbols.

Note that keymaps and keyboard macros (strings and vectors) are not valid func-
tions, so a symbol with a keymap, string, or vector as its function definition is
invalid as a function. It is, however, valid as a key binding. If the definition is a
keyboard macro, then the symbol is also valid as an argument to command-execute
(see Section 19.3 [Interactive Call], page 260).

The symbol undefined is worth special mention: it means to treat the key as
undefined. Strictly speaking, the key is defined, and its binding is the command
undefined; but that command does the same thing that is done automatically for
an undefined key: it rings the bell (by calling ding) but does not signal an error.

undefined is used in local keymaps to override a global key binding and make the
key “undefined” locally. A local binding of nil would fail to do this because it
would not override the global binding.

anything else
If any other type of object is found, the events used so far in the lookup form a
complete key, and the object is its binding, but the binding is not executable as a
command.

In short, a keymap entry may be a keymap, a command, a keyboard macro, a symbol that
leads to one of them, or an indirection or nil.

20.9 Functions for Key Lookup

Here are the functions and variables pertaining to key lookup.

lookup-key keymap key &optional accept-defaults Function
This function returns the definition of key in keymap. If the string or vector key is not
a valid key sequence according to the prefix keys specified in keymap (which means it is
“too long” and has extra events at the end), then the value is a number, the number of
events at the front of key that compose a complete key.

If accept-defaults is non-nil, then lookup-key considers default bindings as well as bind-
ings for the specific events in key. Otherwise, lookup-key reports only bindings for the
specific sequence key, ignoring default bindings except when you explicitly ask about them.

All the other functions described in this chapter that look up keys use lookup-key.
(lookup-key (current-global-map) "\C-x\C-f")
= find-file
(lookup-key (current-global-map) "\C-x\C-£12345")
= 2

If key begins with the character whose value is contained in meta-prefix-char, that
character is implicitly removed and the modifier added to the key. Thus, the first
example below is handled by conversion into the second example.

Chapter 20: Keymaps 295

(lookup-key (current-global-map) "\ef")
= forward-word

(lookup-key (current-global-map) "\M-f")
= forward-word

Unlike read-key-sequence, this function does not modify the specified events in ways that
discard information (see Section 19.6.1 [Key Sequence Input], page 273). In particular, it
does not convert letters to lower case.

undefined Command
Used in keymaps to undefine keys. If a key sequence is defined to this, invoking this key
sequence causes a “key undefined” error, just as if the key sequence had no binding.

key-binding key &optional accept-defaults Function
This function returns the binding for key in the current keymaps, trying all the active
keymaps. The result is nil if key is undefined in the keymaps.

The argument accept-defaults controls checking for default bindings, as in lookup-key
(above).
(key-binding "\C-x\C-f")
= find-file
(key-binding ’ (control home))
= beginning-of-buffer
(key-binding [escape escape escape])
= keyboard-escape-quit

local-key-binding key &optional accept-defaults Function
This function returns the binding for key in the current local keymap, or nil if it is
undefined there.

The argument accept-defaults controls checking for default bindings, as in lookup-key
(above).

global-key-binding key &optional accept-defaults Function
This function returns the binding for command key in the current global keymap, or nil
if it is undefined there.

The argument accept-defaults controls checking for default bindings, as in lookup-key
(above).

minor-mode-key-binding key &optional accept-defaults Function
This function returns a list of all the active minor mode bindings of key. More precisely,
it returns an alist of pairs (modename . binding), where modename is the variable that
enables the minor mode, and binding is key’s binding in that mode. If key has no minor-
mode bindings, the value is nil.

If the first binding is not a prefix command, all subsequent bindings from other minor
modes are omitted, since they would be completely shadowed. Similarly, the list omits
non-prefix bindings that follow prefix bindings.

The argument accept-defaults controls checking for default bindings, as in lookup-key
(above).

meta-prefix-char Variable
This variable is the meta-prefix character code. It is used when translating a two-character
sequence to a meta character so it can be looked up in a keymap. For useful results, the

296 XEmacs Lisp Reference Manual

value should be a prefix event (see Section 20.6 [Prefix Keys|, page 289). The default value
is ?\" [(integer 27), which is the ASCII character usually produced by the key.

As long as the value of meta-prefix-char remains ?\" [, key lookup translates b
into M-b, which is normally defined as the backward-word command. However, if you
set meta-prefix-char to ?\"X (i.e. the keystroke C-x) or its equivalent ASCII code
24, then XEmacs will translate C-x b (whose standard binding is the switch-to-buffer
command) into M-b.

meta-prefix-char ; The default value.
= ?\"[; Under XEmacs 20.
= 27 ; Under XEmacs 19.

(key-binding "\eb")
= backward-word
?\C-x ; The print representation
; of a character.

= 7\"X ; Under XEmacs 20.

= 24 ; Under XEmacs 19.
(setq meta-prefix-char 24)

= 24
(key-binding "\C-xb")

= backward-word ; Now, typing C-x b is

; like typing M-b.

(setq meta-prefix-char ?7\e) ; Avoid confusion!

; Restore the default value!
= 7\ [; Under XEmacs 20.
= 27 ; Under XEmacs 19.

20.10 Changing Key Bindings

The way to rebind a key is to change its entry in a keymap. If you change a binding in the
global keymap, the change is effective in all buffers (though it has no direct effect in buffers
that shadow the global binding with a local one). If you change the current buffer’s local map,
that usually affects all buffers using the same major mode. The global-set-key and local-
set-key functions are convenient interfaces for these operations (see Section 20.11 [Key Binding
Commands|, page 299). You can also use define-key, a more general function; then you must
specify explicitly the map to change.

The way to specify the key sequence that you want to rebind is described above (see Sec-
tion 20.5 [Key Sequences], page 287).

For the functions below, an error is signaled if keymap is not a keymap or if key is not a
string or vector representing a key sequence. You can use event types (symbols) as shorthand
for events that are lists.

define-key keymap key binding Function

This function sets the binding for key in keymap. (If key is more than one event long, the
change is actually made in another keymap reached from keymap.) The argument binding
can be any Lisp object, but only certain types are meaningful. (For a list of meaningful
types, see Section 20.8 [Key Lookup|, page 293.) The value returned by define-key is
binding.

Every prefix of key must be a prefix key (i.e., bound to a keymap) or undefined; otherwise

an error is signaled.

Chapter 20: Keymaps 297

If some prefix of key is undefined, then define-key defines it as a prefix key so that the
rest of key may be defined as specified.

Here is an example that creates a sparse keymap and makes a number of bindings in it:

(setq map (make-sparse-keymap))
= #<keymap O entries Oxbee>
(define-key map "\C-f" ’forward-char)
= forward-char
map
= #<keymap 1 entry Oxbee>
(describe-bindings-internal map)
= ; (Inserted in buffer)
C-f forward-char

;3 Build sparse submap for C-x and bind f in that.
(define-key map "\C-xf" ’forward-word)

= forward-word
map

= #<keymap 2 entries Oxbee>
(describe-bindings-internal map)

= ; (Inserted in buffer)
Cc-f forward-char
C—-x << Prefix Command >>

C-x £ forward-word

;3 Bind C-p to the ctl-x-map.

(define-key map "\C-p" ctl-x-map)

;5 ctl-x-map

= #<keymap Control-X-prefix 77 entries O0x3bf>
;5 Bind C-f to foo in the ctl-x-map.

(define-key map "\C-p\C-f" ’foo)

= foo

298

map

XEmacs Lisp Reference Manual

= #<keymap 3 entries Oxbee>
(describe-bindings-internal map)

= ; (Inserted in buffer)

C-f forward-char

C-p << Prefix command Control-X-prefix >>
C-x << Prefix Command >>

C-p tab indent-rigidly

C-p $ set-selective-display
C-p’ expand-abbrev

C-p (start-kbd-macro

C-p) end-kbd-macro

C-p C—x exchange-point-and-mark
C-p C-z suspend-or-iconify-emacs
C-p M-escape repeat-complex—-command
C-p M-C-[repeat-complex—command
C-x £ forward-word

C-p 4 find-tag-other-window

C-p 4 C-o display-buffer

C-p 50 delete-frame

C-p 5 C-£ find-file-other—frame
Cpaig inverse-add-global-abbrev
Cpail inverse-add-mode-abbrev

Note that storing a new binding for C-p C-f actually works by changing an entry in ctl-x-map,
and this has the effect of changing the bindings of both C-p C-f and C-x C-f in the default

global map.

substitute-key-definition olddef newdef keymap &optional oldmap

Function

This function replaces olddef with newdef for any keys in keymap that were bound to
olddef. In other words, olddef is replaced with newdef wherever it appears. The function

returns nil.

For example, this redefines C-x C-f, if you do it in an XEmacs with standard bindings:

(substitute-key-definition

’find-file ’find-file-read-only (current-global-map))

If oldmap is non-nil, then its bindings determine which keys to rebind. The rebindings
still happen in newmap, not in oldmap. Thus, you can change one map under the control
of the bindings in another. For example,

(substitute-key-definition
’delete-backward-char ’my-funny-delete
my-map global-map)

Chapter 20: Keymaps 299

puts the special deletion command in my-map for whichever keys are globally bound to
the standard deletion command.

suppress-keymap keymap &optional nodigits Function
This function changes the contents of the full keymap keymap by making all the printing
characters undefined. More precisely, it binds them to the command undefined. This
makes ordinary insertion of text impossible. suppress-keymap returns nil.

If nodigits is nil, then suppress-keymap defines digits to run digit-argument, and - to
run negative-argument. Otherwise it makes them undefined like the rest of the printing
characters.

The suppress-keymap function does not make it impossible to modify a buffer, as it does
not suppress commands such as yank and quoted-insert. To prevent any modification
of a buffer, make it read-only (see Section 30.7 [Read Only Buffers], page 397).

Since this function modifies keymap, you would normally use it on a newly created keymap.
Operating on an existing keymap that is used for some other purpose is likely to cause
trouble; for example, suppressing global-map would make it impossible to use most of
XEmacs.

Most often, suppress-keymap is used to initialize local keymaps of modes such as Rmail
and Dired where insertion of text is not desirable and the buffer is read-only. Here is an
example taken from the file ‘emacs/lisp/dired.el’, showing how the local keymap for
Dired mode is set up:

(setq dired-mode-map (make-keymap))

(suppress-keymap dired-mode-map)

(define-key dired-mode-map "r" ’dired-rename-file)
(define-key dired-mode-map "\C-d" ’dired-flag-file-deleted)
(define-key dired-mode-map "d" ’dired-flag-file-deleted)
(define-key dired-mode-map "v" ’dired-view-file)
(define-key dired-mode-map "e" ’dired-find-file)
(define-key dired-mode-map "f" ’dired-find-file)

20.11 Commands for Binding Keys

This section describes some convenient interactive interfaces for changing key bindings. They
work by calling define-key.

People often use global-set-key in their ‘. emacs’ file for simple customization. For example,

(global-set-key "\C-x\C-\\" ’next-line)

or
(global-set-key [(control ?7x) (control ?\\)] ’next-line)

or
(global-set-key [?\C-x ?\C-\\] ’next-line)

redefines C-x C-\ to move down a line.
(global-set-key [(meta buttonl)] ’mouse-set-point)

redefines the first (leftmost) mouse button, typed with the Meta key, to set point where you
click.

300 XEmacs Lisp Reference Manual

global-set-key key definition Command
This function sets the binding of key in the current global map to definition.

(global-set-key key definition)

(define-key (current-global-map) key definition)

global-unset-key key Command
This function removes the binding of key from the current global map.

One use of this function is in preparation for defining a longer key that uses key as a
prefix—which would not be allowed if key has a non-prefix binding. For example:
(global-unset-key "\C-1")
= nil
(global-set-key "\C-1\C-1" ’redraw-display)
= nil
This function is implemented simply using define-key:

(global-unset-key key)

(define-key (current-global-map) key nil)

local-set-key key definition Command
This function sets the binding of key in the current local keymap to definition.

(local-set-key key definition)

(define-key (current-local-map) key definition)

local-unset-key key Command
This function removes the binding of key from the current local map.

(local-unset-key key)

(define-key (current-local-map) key nil)

20.12 Scanning Keymaps

This section describes functions used to scan all the current keymaps, or all keys within a
keymap, for the sake of printing help information.

accessible-keymaps keymap &optional prefix Function
This function returns a list of all the keymaps that can be accessed (via prefix keys) from
keymap. The value is an association list with elements of the form (key . map), where
key is a prefix key whose definition in keymap is map.

The elements of the alist are ordered so that the key increases in length. The first element
is always ([] . keymap), because the specified keymap is accessible from itself with a
prefix of no events.

If prefix is given, it should be a prefix key sequence; then accessible-keymaps includes
only the submaps whose prefixes start with prefix. These elements look just as they do
in the value of (accessible-keymaps); the only difference is that some elements are
omitted.

Chapter 20: Keymaps 301

In the example below, the returned alist indicates that the key C-x, which is displayed
as ‘[(control x)]’, is a prefix key whose definition is the keymap #<keymap ((control
x) #<keymap emacs-lisp-mode-map 8 entries 0x546>) 1 entry 0x8a2>. (The strange
notation for the keymap’s name indicates that this is an internal submap of emacs-1isp-
mode-map. This is because lisp-interaction-mode-map has set up emacs-lisp-mode-
map as its parent, and lisp-interaction-mode-map defines no key sequences beginning
with C-x.)
(current-local-map)
= #<keymap lisp-interaction-mode-map 5 entries 0x558>
(accessible-keymaps (current-local-map))
= (([] . #<keymap lisp-interaction-mode-map 5 entries 0x558>)
([(control x)]
#<keymap ((control x) #<keymap emacs-lisp-mode-map 8 entries 0x546>)
1 entry 0x8a2>))
The following example shows the results of calling accessible-keymaps on a large, com-
plex keymap. Notice how some keymaps were given explicit names using set-keymap-
name; those submaps without explicit names are given descriptive names indicating their
relationship to their enclosing keymap.

(accessible-keymaps (current-global-map))
= (([1 . #<keymap global-map 639 entries 0x221>)
([(control c)] . #<keymap mode-specific-command-prefix 1 entry 0x3cb>)
([(control h)] . #<keymap help-map 33 entries Ox4ec>)
([(control x)] . #<keymap Control-X-prefix 77 entries 0x3bf>)
([(meta escape)]
#<keymap ((meta escape) #<keymap global-map 639 entries 0x221>)
3 entries 0x3e0>)
([(meta control \[)]
#<keymap ((meta escape) #<keymap global-map 639 entries 0x221>)
3 entries 0x3e0>)
([£1] . #<keymap help-map 33 entries Oxdec>)
([(control x) \4] . #<keymap ctl-x-4-prefix 9 entries 0x3c5>)
([(control x) \5] . #<keymap ctl-x-5-prefix 8 entries 0x3c8>)
([(control x) \6] . #<keymap 13 entries 0x4d2>)
([(control x) a]
#<keymap (a #<keymap Control-X-prefix 77 entries 0x3bf>)
8 entries 0x3ef>)
([(control x) n] . #<keymap narrowing-prefix 3 entries 0x3dd>)
([(control x) r] . #<keymap rectangle-prefix 18 entries 0x3e9>)
([(control x) v] . #<keymap vc-prefix-map 13 entries 0x60e>)
([(control x) a il
#<keymap (i #<keymap (a #<keymap Control-X-prefix 77 entries 0x3bf>)
8 entries 0x3ef>)
2 entries 0x3£f5>))

map-keymap function keymap &optional sort-first Function

This function applies function to each element of KEYMAP. function will be called with two
arguments: a key-description list, and the binding. The order in which the elements of
the keymap are passed to the function is unspecified. If the function inserts new elements
into the keymap, it may or may not be called with them later. No element of the keymap
will ever be passed to the function more than once.

The function will not be called on elements of this keymap’s parents (see Section 20.4
[Inheritance and Keymaps|, page 286) or upon keymaps which are contained within this

302 XEmacs Lisp Reference Manual

keymap (multi-character definitions). It will be called on characters since they are
not really two-character sequences.

If the optional third argument sort-first is non-nil, then the elements of the keymap will
be passed to the mapper function in a canonical order. Otherwise, they will be passed in
hash (that is, random) order, which is faster.

keymap-fullness keymap Function
This function returns the number of bindings in the keymap.

where-is-internal definition &optional keymaps firstonly noindirect Function
event-or-keys
This function returns a list of key sequences (of any length) that are bound to definition
in a set of keymaps.
The argument definition can be any object; it is compared with all keymap entries using
eq.
KEYMAPS can be either a keymap (meaning search in that keymap and the current global

keymap) or a list of keymaps (meaning search in exactly those keymaps and no others).
If KEYMAPS is nil, search in the currently applicable maps for EVENT-OR-KEYS.

If keymap is a keymap, then the maps searched are keymap and the global keymap. If
keymap is a list of keymaps, then the maps searched are exactly those keymaps, and no
others. If keymap is nil, then the maps used are the current active keymaps for event-or-
keys (this is equivalent to specifying (current-keymaps event-or-keys) as the argument
to keymaps).

If firstonly is non-nil, then the value is a single vector representing the first key sequence
found, rather than a list of all possible key sequences.

If noindirect is non-nil, where-is-internal doesn’t follow indirect keymap bindings.
This makes it possible to search for an indirect definition itself.

This function is used by where-is (see section “Help” in The XEmacs Reference Manual).

(where-is-internal ’describe-function)
= ([(control h) d] [(control h) f] [f1 d] [f1 £f])

describe-bindings-internal map &optional all shadow prefix mouse-only-p Function

This function inserts (into the current buffer) a list of all defined keys and their definitions
in map. Optional second argument all says whether to include even “uninteresting” defi-
nitions, i.e. symbols with a non-nil suppress-keymap property. Third argument shadow
is a list of keymaps whose bindings shadow those of map; if a binding is present in any
shadowing map, it is not printed. Fourth argument prefix, if non-nil, should be a key se-
quence; only bindings which start with that key sequence will be printed. Fifth argument
mouse-only-p says to only print bindings for mouse clicks.

describe-bindings-internal is used to implement the help command describe-bindings.

describe-bindings prefix mouse-only-p Command

This function creates a listing of all defined keys and their definitions. It writes the listing

in a buffer named ‘*Help*’ and displays it in a window.

If prefix is non-nil, it should be a prefix key; then the listing includes only keys that start
with prefix.

When several characters with consecutive ASCII codes have the same definition, they are
shown together, as ‘firstchar. .lastchar’. In this instance, you need to know the ASCII
codes to understand which characters this means. For example, in the default global map,

the characters ‘(SPC) .. ~’ are described by a single line. is ASCII 32, ~ is ASCII

Chapter 20: Keymaps 303

126, and the characters between them include all the normal printing characters, (e.g.,
letters, digits, punctuation, etc.); all these characters are bound to self-insert-command.

If the second argument (prefix arg, interactively) is non-nil then only the mouse bindings

are displayed.

20.13 Other Keymap Functions

set-keymap-prompt keymap new-prompt Function
This function sets the “prompt” of keymap to string new-prompt, or nil if no prompt

is desired. The prompt is shown in the echo-area when reading a key-sequence to be
looked-up in this keymap.

keymap-prompt keymap &optional use-inherited Function
This function returns the “prompt” of the given keymap. If use-inherited is non-nil, any

parent keymaps will also be searched for a prompt.

304 XEmacs Lisp Reference Manual

Chapter 21: Menus 305

21 Menus

21.1 Format of Menus

A menu is described using a menu description, which is a list of menu items, keyword-value
pairs, strings, and submenus. The menu description specifies which items are present in the
menu, what function each item invokes, and whether the item is selectable or not. Pop-up
menus are directly described with a menu description, while menubars are described slightly
differently (see below).

The first element of a menu must be a string, which is the name of the menu. This is the
string that will be displayed in the parent menu or menubar, if any. This string is not displayed
in the menu itself, except in the case of the top level pop-up menu, where there is no parent. In
this case, the string will be displayed at the top of the menu if popup-menu-titles is non-nil.

Immediately following the first element there may optionally be up to four keyword-value
pairs, as follows:

:included form
This can be used to control the visibility of a menu. The form is evaluated and the
menu will be omitted if the result is nil.

:config symbol
This is an efficient shorthand for :included (memq symbol menubar-
configuration). See the variable menubar-configuration.

:filter function

A menu filter is used to sensitize or incrementally create a submenu only when it is
selected by the user and not every time the menubar is activated. The filter function
is passed the list of menu items in the submenu and must return a list of menu items
to be used for the menu. It is called only when the menu is about to be displayed,
so other menus may already be displayed. Vile and terrible things will happen if a
menu filter function changes the current buffer, window, or frame. It also should
not raise, lower, or iconify any frames. Basically, the filter function should have no
side-effects.

raccelerator key
A menu accelerator is a keystroke which can be pressed while the menu is visible
which will immediately activate the item. key must be a char or the symbol name
of a key. See Section 21.7 [Menu Accelerators|, page 312.
The rest of the menu consists of elements as follows:
e A menu item, which is a vector in the following form:
[name callback :keyword value :keyword value ...]

name is a string, the name of the menu item; it is the string to display on the menu. It is
filtered through the resource database, so it is possible for resources to override what string
is actually displayed.

callback is a form that will be invoked when the menu item is selected. If the callback of
a menu item is a symbol, then it must name a command. It will be invoked with call-
interactively. If it is a list, then it is evaluated with eval.

The valid keywords and their meanings are described below.

Note that for compatibility purposes, the form

306

XEmacs Lisp Reference Manual

[name callback active-p 1]
is also accepted and is equivalent to
[name callback :active active-p]
and the form
[name callback active-p suffix]
is accepted and is equivalent to
[name callback :active active-p :suffix suffix]
However, these older forms are deprecated and should generally not be used.

If an element of a menu is a string, then that string will be presented in the menu as
unselectable text.

If an element of a menu is a string consisting solely of hyphens, then that item will be
presented as a solid horizontal line.

If an element of a menu is a string beginning with ‘--:’, then a particular sort of horizontal
line will be displayed, as follows:

‘"-—:singleLine"’

A solid horizontal line. This is equivalent to a string consisting solely of hy-
phens.

‘"——:doubleLine"’
A solid double horizontal line.

--:singleDashedLine"’
A dashed horizontal line.

‘"——:doubleDashedLine"’
A dashed double horizontal line.

—--:noLine"’
No line (but a small space is left).

‘"——:shadowEtchedIn"’
A solid horizontal line with a 3-d recessed appearance.

--:shadowEtchedOut"’
A solid horizontal line with a 3-d pushed-out appearance.

‘"--:shadowDoubleEtchedIn"’
A solid double horizontal line with a 3-d recessed appearance.

‘"——:shadowDoubleEtchedOut"’
A solid double horizontal line with a 3-d pushed-out appearance.

‘"—-:shadowEtchedInDash"’
A dashed horizontal line with a 3-d recessed appearance.

[l

--:shadowEtchedOutDash"’
A dashed horizontal line with a 3-d pushed-out appearance.

‘"——:shadowDoubleEtchedInDash"’
A dashed double horizontal line with a 3-d recessed appearance.

‘"—-:shadowDoubleEtchedOutDash"’

A dashed double horizontal line with a 3-d pushed-out appearance.
If an element of a menu is a list, it is treated as a submenu. The name of that submenu
(the first element in the list) will be used as the name of the item representing this menu
on the parent.

Chapter 21: Menus 307

The possible keywords are as follows:

:active form
form will be evaluated when the menu that this item is a part of is about to be
displayed, and the item will be selectable only if the result is non-nil. If the item
is unselectable, it will usually be displayed grayed-out to indicate this.

:suffix form
form will be evaluated when the menu that this item is a part of is about to be
displayed, and the resulting string is appended to the displayed name. This provides
a convenient way of adding the name of a command’s “argument” to the menu, like
‘Kill Buffer NAME’.

:keys string
Normally, the keyboard equivalents of commands in menus are displayed when the
“callback” is a symbol. This can be used to specify keys for more complex menu
items. It is passed through substitute-command-keys first.

:style style
Specifies what kind of object this menu item is. style be one of the symbols

nil A normal menu item.
toggle A toggle button.
radio A radio button.
button A menubar button.

The only difference between toggle and radio buttons is how they are displayed.
But for consistency, a toggle button should be used when there is one option whose
value can be turned on or off, and radio buttons should be used when there is a
set of mutually exclusive options. When using a group of radio buttons, you should
arrange for no more than one to be marked as selected at a time.

:selected form
Meaningful only when style is toggle, radio or button. This specifies whether the
button will be in the selected or unselected state. form is evaluated, as for :active.

:included form
This can be used to control the visibility of a menu item. The form is evaluated and
the menu item is only displayed if the result is non-nil. Note that this is different
from :active: If :active evaluates to nil, the item will be displayed grayed out,
while if :included evaluates to nil, the item will be omitted entirely.

:config symbol
This is an efficient shorthand for :included (memq symbol menubar-
configuration). See the variable menubar-configuration.

:accelerator key
A menu accelerator is a keystroke which can be pressed while the menu is visible
which will immediately activate the item. key must be a char or the symbol name
of a key. See Section 21.7 [Menu Accelerators|, page 312.

menubar-configuration Variable
This variable holds a list of symbols, against which the value of the :config tag for each
menubar item will be compared. If a menubar item has a :config tag, then it is omitted
from the menubar if that tag is not a member of the menubar-configuration list.

For example:

308 XEmacs Lisp Reference Manual

("File“

:filter file-menu-filter ; file-menu-filter is a function that takes
; one argument (a list of menu items) and
; returns a list of menu items

["Save As..." write-filel

["Revert Buffer" revert-buffer :active (buffer-modified-p)]

["Read Only" toggle-read-only :style toggle :selected buffer-read-only]
)

21.2 Format of the Menubar

A menubar is a list of menus, menu items, and strings. The format is similar to that of a
menu, except:

e The first item need not be a string, and is not treated specially.
e A string consisting solely of hyphens is not treated specially.

e If an element of a menubar is nil, then it is used to represent the division between the
set of menubar items which are flush-left and those which are flush-right. (Note: this isn’t
completely implemented yet.)

21.3 Menubar

current-menubar Variable
This variable holds the description of the current menubar. This may be buffer-local.
When the menubar is changed, the function set-menubar-dirty-flag has to be called
in order for the menubar to be updated on the screen.

default-menubar Constant
This variable holds the menubar description of the menubar that is visible at startup.
This is the value that current-menubar has at startup.

set-menubar-dirty-flag Function
This function tells XEmacs that the menubar widget has to be updated. Changes to the
menubar will generally not be visible until this function is called.

The following convenience functions are provided for setting the menubar. They are equiva-
lent to doing the appropriate action to change current-menubar, and then calling set-menubar-
dirty-flag. Note that these functions copy their argument using copy-sequence.

set-menubar menubar Function
This function sets the default menubar to be menubar (see Section 21.1 [Menu Format],
page 305). This is the menubar that will be visible in buffers that have not defined their
own, buffer-local menubar.

set-buffer-menubar menubar Function
This function sets the buffer-local menubar to be menubar. This does not change the
menubar in any buffers other than the current one.

Miscellaneous:

Chapter 21: Menus 309

menubar-show-keybindings Variable
If true, the menubar will display keyboard equivalents. If false, only the command names
will be displayed.

activate-menubar-hook Variable
Function or functions called before a menubar menu is pulled down. These functions
are called with no arguments, and should interrogate and modify the value of current-
menubar as desired.

The functions on this hook are invoked after the mouse goes down, but before the menu
is mapped, and may be used to activate, deactivate, add, or delete items from the menus.
However, using a filter (with the :filter keyword in a menu description) is generally a
more efficient way of accomplishing the same thing, because the filter is invoked only when
the actual menu goes down. With a complex menu, there can be a quite noticeable and
sometimes aggravating delay if all menu modification is implemented using the activate-
menubar-hook. See above.

These functions may return the symbol t to assert that they have made no changes to the
menubar. If any other value is returned, the menubar is recomputed. If t is returned but
the menubar has been changed, then the changes may not show up right away. Returning
nil when the menubar has not changed is not so bad; more computation will be done,
but redisplay of the menubar will still be performed optimally.

menu-no-selection-hook Variable
Function or functions to call when a menu or dialog box is dismissed without a selection
having been made.

21.4 Modifying Menus

The following functions are provided to modify the menubar of one of its submenus. Note
that these functions modify the menu in-place, rather than copying it and making a new menu.

Some of these functions take a menu path, which is a list of strings identifying the menu to
be modified. For example, ("File") names the top-level “File” menu. ("File" "Foo") names
a hypothetical submenu of “File”.

Others take a menu item path, which is similar to a menu path but also specifies a particular
item to be modified. For example, ("File" "Save") means the menu item called “Save” under
the top-level “File” menu. ("Menu" "Foo" "Item") means the menu item called “Item” under
the “Foo” submenu of “Menu”.

add-submenu menu-path submenu &optional before Function
This function adds a menu to the menubar or one of its submenus. If the named menu
exists already, it is changed.

menu-path identifies the menu under which the new menu should be inserted. If menu-
path is nil, then the menu will be added to the menubar itself.
submenu is the new menu to add (see Section 21.1 [Menu Format], page 305).

before, if provided, is the name of a menu before which this menu should be added, if this
menu is not on its parent already. If the menu is already present, it will not be moved.

add-menu-button menu-path menu-leaf &optional before Function
This function adds a menu item to some menu, creating the menu first if necessary. If the
named item exists already, it is changed.

310 XEmacs Lisp Reference Manual

menu-path identifies the menu under which the new menu item should be inserted.
menu-leaf is a menubar leaf node (see Section 21.1 [Menu Format|, page 305).

before, if provided, is the name of a menu before which this item should be added, if this
item is not on the menu already. If the item is already present, it will not be moved.

delete-menu-item menu-item-path Function
This function removes the menu item specified by menu-item-path from the menu hierar-
chy.

enable-menu-item menu-item-path Function

This function makes the menu item specified by menu-item-path be selectable.

disable-menu-item menu-item-path Function
This function makes the menu item specified by menu-item-path be unselectable.

relabel-menu-item menu-item-path new-name Function
This function changes the string of the menu item specified by menu-item-path. new-name
is the string that the menu item will be printed as from now on.

The following function can be used to search for a particular item in a menubar specification,
given a path to the item.

find-menu-item menubar menu-item-path &optional parent Function
This function searches menubar for the item given by menu-item-path starting from parent
(nil means start at the top of menubar). This function returns (item . parent), where
parent is the immediate parent of the item found (a menu description), and item is either
a vector, list, or string, depending on the nature of the menu item.

This function signals an error if the item is not found.

The following deprecated functions are also documented, so that existing code can be under-
stood. You should not use these functions in new code.

add-menu menu-path menu-name menu-items &optional before Function
This function adds a menu to the menubar or one of its submenus. If the named menu
exists already, it is changed. This is obsolete; use add-submenu instead.

menu-path identifies the menu under which the new menu should be inserted. If menu-
path is nil, then the menu will be added to the menubar itself.

menu-name is the string naming the menu to be added; menu-items is a list of menu
items, strings, and submenus. These two arguments are the same as the first and following
elements of a menu description (see Section 21.1 [Menu Format|, page 305).

before, if provided, is the name of a menu before which this menu should be added, if this
menu is not on its parent already. If the menu is already present, it will not be moved.

add-menu-item menu-path item-name function enabled-p &optional before Function
This function adds a menu item to some menu, creating the menu first if necessary. If the
named item exists already, it is changed. This is obsolete; use add-menu-button instead.

menu-path identifies the menu under which the new menu item should be inserted. item-
name, function, and enabled-p are the first, second, and third elements of a menu item
vector (see Section 21.1 [Menu Format], page 305).

before, if provided, is the name of a menu item before which this item should be added, if
this item is not on the menu already. If the item is already present, it will not be moved.

Chapter 21: Menus 311

21.5 Menu Filters

The following filter functions are provided for use in default-menubar. You may want to
use them in your own menubar description.

file-menu-filter menu-items Function
This function changes the arguments and sensitivity of these File menu items:

‘Delete Buffer’
Has the name of the current buffer appended to it.

‘Print Buffer’
Has the name of the current buffer appended to it.

‘Pretty-Print Buffer’
Has the name of the current buffer appended to it.

‘Save Buffer’
Has the name of the current buffer appended to it, and is sensitive only when
the current buffer is modified.

‘Revert Buffer’
Has the name of the current buffer appended to it, and is sensitive only when
the current buffer has a file.

‘Delete Frame’
Sensitive only when there is more than one visible frame.

edit-menu-filter menu-items Function
This function changes the arguments and sensitivity of these Edit menu items:
‘Cut’ Sensitive only when XEmacs owns the primary X Selection (if zmacs-regions
is t, this is equivalent to saying that there is a region selected).
‘Copy’ Sensitive only when XEmacs owns the primary X Selection.
‘Clear’ Sensitive only when XEmacs owns the primary X Selection.
‘Paste’ Sensitive only when there is an owner for the X Clipboard Selection.
‘Undo’ Sensitive only when there is undo information. While in the midst of an undo,

this is changed to ‘Undo More’.

buffers-menu-filter menu-items Function
This function sets up the Buffers menu. See Section 21.8 [Buffers Menu|, page 314, for
more information.

21.6 Pop-Up Menus

popup-menu menu-desc Function
This function pops up a menu specified by menu-desc, which is a menu description (see
Section 21.1 [Menu Format|, page 305). The menu is displayed at the current mouse
position.

pPopup-menu-up-p Function
This function returns t if a pop-up menu is up, nil otherwise.

312 XEmacs Lisp Reference Manual

popup-menu-titles Variable
If true (the default), pop-up menus will have title bars at the top.

Some machinery is provided that attempts to provide a higher-level mechanism onto pop-up
menus. This only works if you do not redefine the binding for button3.

popup-mode-menu Command
This function pops up a menu of global and mode-specific commands. The menu is
computed by combining global-popup-menu and mode-popup-menu. This is the default
binding for button3. You should generally not change this binding.

global-popup-menu Variable
This holds the global popup menu. This is present in all modes. (This is nil by default.)

mode-popup-menu Variable
The mode-specific popup menu. Automatically buffer local. This is appended to the
default items in global-popup-menu.

default-popup-menu Constant
This holds the default value of mode-popup-menu.

activate-popup-menu-hook Variable
Function or functions run before a mode-specific popup menu is made visible. These
functions are called with no arguments, and should interrogate and modify the value of
global-popup-menu or mode-popup-menu as desired. Note: this hook is only run if you
use popup-mode-menu for activating the global and mode-specific commands; if you have
your own binding for button3, this hook won’t be run.

The following convenience functions are provided for displaying pop-up menus.

popup-buffer-menu event Function
This function pops up a copy of the ‘Buffers’ menu (from the menubar) where the mouse
is clicked.

popup-menubar-menu event Function

This function pops up a copy of menu that also appears in the menubar.

21.7 Menu Accelerators

Menu accelerators are keyboard shortcuts for accessing the menubar. Accelerator keys can
be specified for menus as well as for menu items. An accelerator key for a menu is used to
activate that menu when it appears as a submenu of another menu. An accelerator key for a
menu item is used to activate that item.

21.7.1 Creating Menu Accelerators

Menu accelerators are specified as part of the menubar format using the :accelerator tag to
specify a key or by placing "%_" in the menu or menu item name prior to the letter which
is to be used as the accelerator key. The advantage of the second method is that the menu
rendering code then knows to draw an underline under that character, which is the canonical
way of indicating an accelerator key to a user.

For example, the command

Chapter 21: Menus 313

(add-submenu nil ’("%_Test"
["One" (insert "1") :accelerator ?1 :active t]
["%_Two" (insert "2")]
["%_3" (insert "3")1))

will add a new menu to the top level menubar. The new menu can be reached by pressing
"t" while the top level menubar is active. When the menu is active, pressing "1" will activate
the first item and insert the character "1" into the buffer. Pressing "2" will activate the second
item and insert the character "2" into the buffer. Pressing "3" will activate the third item and
insert the character "3" into the buffer.

It is possible to activate the top level menubar itself using accelerator keys. See Section 21.7.3
[Menu Accelerator Functions], page 313.

21.7.2 Keyboard Menu Traversal

In addition to immediately activating a menu or menu item, the keyboard can be used to
traverse the menus without activating items. The keyboard arrow keys, the return key and the
escape key are defined to traverse the menus in a way that should be familiar to users of any of
a certain family of popular PC operating systems.

This behavior can be changed by modifying the bindings in menu-accelerator-map. At this
point, the online help is your best bet for more information about how to modify the menu
traversal keys.

21.7.3 Menu Accelerator Functions

accelerate-menu Function
Make the menubar immediately active and place the cursor on the left most entry in the
top level menu. Menu items can be selected as usual.

menu-accelerator-enabled Variable
Whether menu accelerator keys can cause the menubar to become active.

If menu-force or menu-fallback, then menu accelerator keys can be used to activate
the top level menu. Once the menubar becomes active, the accelerator keys can be used
regardless of the value of this variable.

menu-force is used to indicate that the menu accelerator key takes precedence over bind-
ings in the current keymap(s). menu-fallback means that bindings in the current keymap
take precedence over menu accelerator keys. Thus a top level menu with an accelerator
of "T" would be activated on a keypress of Meta-t if menu-accelerator-enabled is menu-
force. However, if menu-accelerator-enabled is menu-fallback, then Meta-t will not
activate the menubar and will instead run the function transpose-words, to which it is
normally bound.

The default value is nil.

See also menu-accelerator-modifiers and menu-accelerator-prefix.

menu-accelerator-map Variable
Keymap consulted to determine the commands to run in response to keypresses occurring
while the menubar is active. See Section 21.7.2 [Keyboard Menu Traversal|, page 313.

314 XEmacs Lisp Reference Manual

menu-accelerator-modifiers Variable

A list of modifier keys which must be pressed in addition to a valid menu accelerator in
order for the top level menu to be activated in response to a keystroke. The default value

of (meta) mirrors the usage of the alt key as a menu accelerator in popular PC operating
systems.

The modifier keys in menu-accelerator-modifiers must match exactly the modifiers present

in the keypress. The only exception is that the shift modifier is accepted in conjunction
with alphabetic keys even if it is not a menu accelerator modifier.

See also menu-accelerator-enabled and menu-accelerator-prefix.

menu-accelerator-prefix Variable
Prefix key(s) that must be typed before menu accelerators will be activated. Must be a
valid key descriptor.

The default value is nil.

(setq menu-accelerator-prefix 7\C-x)
(setq menu-accelerator-modifiers ’(meta control))
(setq menu-accelerator-enabled ’menu-force)
(add-submenu nil ’("%_Test"
["One" (insert "1") :accelerator 71 :active t]
["%_Two" (insert "2")]
["%_3" (insert "3")1))

will add the menu "Test" to the top level menubar. Pressing C-x followed by C-M-T will
activate the menubar and display the "Test" menu. Pressing C-M-T by itself will not activate
the menubar. Neither will pressing C-x followed by anything else.

21.8 Buffers Menu

The following options control how the ‘Buffers’ menu is displayed. This is a list of all (or a
subset of) the buffers currently in existence, and is updated dynamically.

buffers-menu-max-size User Option
This user option holds the maximum number of entries which may appear on the ‘Buffers’
menu. If this is 10, then only the ten most-recently-selected buffers will be shown. If this
isnil, then all buffers will be shown. Setting this to a large number or nil will slow down
menu responsiveness.

format-buffers-menu-line buffer Function
This function returns a string to represent buffer in the ‘Buffers’ menu. nil means the
buffer shouldn’t be listed. You can redefine this.

complex-buffers-menu-p User Option
If true, the ‘Buffers’ menu will contain several commands, as submenus of each buffer
line. If this is false, then there will be only one command: select that buffer.

buffers-menu-switch-to-buffer-function User Option
This user option holds the function to call to select a buffer from the ‘Buffers’ menu.
switch-to-buffer is a good choice, as is pop-to-buffer.

Chapter 22: Dialog Boxes 315

22 Dialog Boxes

22.1 Dialog Box Format

A dialog box description is a list.
e The first element of the list is a string to display in the dialog box.

e The rest of the elements are descriptions of the dialog box’s buttons. Each one is a vector
of three elements:

— The first element is the text of the button.
— The second element is the callback.
— The third element is t or nil, whether this button is selectable.
If the callback of a button is a symbol, then it must name a command. It will be invoked
with call-interactively. If it is a list, then it is evaluated with eval.

One (and only one) of the buttons may be nil. This marker means that all following buttons
should be flushright instead of flushleft.

The syntax, more precisely:

form := <something to pass to ‘eval’>

command := <a symbol or string, to pass to ‘call-interactively’>
callback := command | form

active-p := <t, nil, or a form to evaluate to decide whether this
button should be selectable>

name := <string>

partition := ’nil’

button := ’[’ name callback active-p ’]’

dialog := ’(’ name [button]+ [partition [button]+] ’)’

22.2 Dialog Box Functions

popup-dialog-box dbox-desc Function
This function pops up a dialog box. dbox-desc describes how the dialog box will appear
(see Section 22.1 [Dialog Box Format], page 315).

See Section 18.6 [Yes-or-No Queries|, page 249, for functions to ask a yes/no question using
a dialog box.

316 XEmacs Lisp Reference Manual

Chapter 23: Toolbar 317

23 Toolbar

23.1 Toolbar Intro

A toolbar is a bar of icons displayed along one edge of a frame. You can view a toolbar as
a series of menu shortcuts — the most common menu options can be accessed with a single click
rather than a series of clicks and/or drags to select the option from a menu. Consistent with
this, a help string (called the help-echo) describing what an icon in the toolbar (called a toolbar
button) does, is displayed in the minibuffer when the mouse is over the button.

In XEmacs, a toolbar can be displayed along any of the four edges of the frame, and two
or more different edges can be displaying toolbars simultaneously. The contents, thickness, and
visibility of the toolbars can be controlled separately, and the values can be per-buffer, per-frame,
etc., using specifiers (see Chapter 41 [Specifiers|, page 541).

Normally, there is one toolbar displayed in a frame. Usually, this is the standard toolbar,
but certain modes will override this and substitute their own toolbar. In some cases (e.g. the
VM package), a package will supply its own toolbar along a different edge from the standard
toolbar, so that both can be visible at once. This standard toolbar is usually positioned along
the top of the frame, but this can be changed using set-default-toolbar-position.

Note that, for each of the toolbar properties (contents, thickness, and visibility), there is a
separate specifier for each of the four toolbar positions (top, bottom, left, and right), and an
additional specifier for the “default” toolbar, i.e. the toolbar whose position is controlled by
set-default-toolbar-position. The way this works is that set-default-toolbar-position
arranges things so that the appropriate position-specific specifiers for the default position inherit
from the corresponding default specifiers. That way, if the position-specific specifier does not
give a value (which it usually doesn’t), then the value from the default specifier applies. If
you want to control the default toolbar, you just change the default specifiers, and everything
works. A package such as VM that wants to put its own toolbar in a different location from the
default just sets the position-specific specifiers, and if the user sets the default toolbar to the
same position, it will just not be visible.

23.2 Toolbar Descriptor Format

The contents of a toolbar are specified using a toolbar descriptor. The format of a toolbar
descriptor is a list of toolbar button descriptors. Each toolbar button descriptor is a vector in
one of the following formats:

e [glyph-list function enabled-p help]
e [:style 2d-or-3d]
o [:style 2d-or-3d :size width-or-height]
e [:size width-or-height :style 2d-or-3d]
Optionally, one of the toolbar button descriptors may be nil instead of a vector; this signifies

the division between the toolbar buttons that are to be displayed flush-left, and the buttons to
be displayed flush-right.

The first vector format above specifies a normal toolbar button; the others specify blank
areas in the toolbar.

For the first vector format:

318 XEmacs Lisp Reference Manual

e glyph-list should be a list of one to six glyphs (as created by make-glyph) or a symbol
whose value is such a list. The first glyph, which must be provided, is the glyph used to
display the toolbar button when it is in the “up” (not pressed) state. The optional second
glyph is for displaying the button when it is in the “down” (pressed) state. The optional
third glyph is for when the button is disabled. The last three glyphs are for displaying
the button in the “up”, “down”, and “disabled” states, respectively, but are used when the
user has called for captioned toolbar buttons (using toolbar-buttons-captioned-p). The
function toolbar-make-button-list is useful in creating these glyph lists.

e Even if you do not provide separate down-state and disabled-state glyphs, the user will still
get visual feedback to indicate which state the button is in. Buttons in the up-state are
displayed with a shadowed border that gives a raised appearance to the button. Buttons
in the down-state are displayed with shadows that give a recessed appearance. Buttons in
the disabled state are displayed with no shadows, giving a 2-d effect.

e If some of the toolbar glyphs are not provided, they inherit as follows:

UP: up

DOWN : down —> up

DISABLED: disabled -> up

CAP-UP: cap-up —> up

CAP-DOWN : cap-down -> cap-up —> down —-> up
CAP-DISABLED: cap-disabled -> cap-up -> disabled -> up

e The second element function is a function to be called when the toolbar button is activated
(i.e. when the mouse is released over the toolbar button, if the press occurred in the toolbar).
It can be any form accepted by call-interactively, since this is how it is invoked.

e The third element enabled-p specifies whether the toolbar button is enabled (disabled but-
tons do nothing when they are activated, and are displayed differently; see above). It should
be either a boolean or a form that evaluates to a boolean.

e The fourth element help, if non-nil, should be a string. This string is displayed in the echo
area when the mouse passes over the toolbar button.

For the other vector formats (specifying blank areas of the toolbar):

e 2d-or-3d should be one of the symbols 2d or 3d, indicating whether the area is displayed
with shadows (giving it a raised, 3-d appearance) or without shadows (giving it a flat
appearance).

e width-or-height specifies the length, in pixels, of the blank area. If omitted, it defaults to a
device-specific value (8 pixels for X devices).

toolbar-make-button-list up &optional down disabled cap-up cap-down Function
cap-disabled
This function calls make-glyph on each arg and returns a list of the results. This is useful
for setting the first argument of a toolbar button descriptor (typically, the result of this
function is assigned to a symbol, which is specified as the first argument of the toolbar
button descriptor).

check-toolbar-button-syntax button &optional noerror Function
Verify the syntax of entry button in a toolbar description list. If you want to verify the
syntax of a toolbar description list as a whole, use check-valid-instantiator with a
specifier type of toolbar.

23.3 Specifying the Toolbar

Chapter 23: Toolbar 319

In order to specify the contents of a toolbar, set one of the specifier variables default-
toolbar, top-toolbar, bottom-toolbar, left-toolbar, or right-toolbar. These are speci-
fiers, which means you set them with set-specifier and query them with specifier-specs
or specifier-instance. You will get an error if you try to set them using setq. The valid
instantiators for these specifiers are toolbar descriptors, as described above. See Chapter 41
[Specifiers|, page 541, for more information.

Most of the time, you will set default-toolbar, which allows the user to choose where the
toolbar should go.

default-toolbar Specifier
The position of this toolbar is specified in the function default-toolbar-position. If the
corresponding position-specific toolbar (e.g. top-toolbar if default-toolbar-position
is top) does not specify a toolbar in a particular domain, then the value of default-
toolbar in that domain, of any, will be used instead.

Note that the toolbar at any particular position will not be displayed unless its thickness
(width or height, depending on orientation) is non-zero and its visibility status is true. The
thickness is controlled by the specifiers top-toolbar-height, bottom-toolbar-height, left-
toolbar-width, and right-toolbar-width, and the visibility status is controlled by the spec-
ifiers top-toolbar-visible-p, bottom-toolbar-visible-p, left-toolbar-visible-p, and
right-toolbar-visible-p (see Section 23.4 [Other Toolbar Variables|, page 320).

set-default-toolbar-position position Function

This function sets the position that the default-toolbar will be displayed at. Valid
positions are the symbols top, bottom, left and right. What this actually does is set
the fallback specifier for the position-specific specifier corresponding to the given posi-
tion to default-toolbar, and set the fallbacks for the other position-specific specifiers
to nil. It also does the same thing for the position-specific thickness and visibility spec-
ifiers, which inherit from one of default-toolbar-height or default-toolbar-width,
and from default-toolbar-visible-p, respectively (see Section 23.4 [Other Toolbar
Variables|, page 320).

default-toolbar-position Function
This function returns the position that the default-toolbar will be displayed at.

You can also explicitly set a toolbar at a particular position. When redisplay determines
what to display at a particular position in a particular domain (i.e. window), it first consults
the position-specific toolbar. If that does not yield a toolbar descriptor, the default-toolbar
is consulted if default-toolbar-position indicates this position.

top-toolbar Specifier
Specifier for the toolbar at the top of the frame.

bottom-toolbar Specifier
Specifier for the toolbar at the bottom of the frame.

left-toolbar Specifier
Specifier for the toolbar at the left edge of the frame.

right-toolbar Specifier
Specifier for the toolbar at the right edge of the frame.

320 XEmacs Lisp Reference Manual

toolbar-specifier-p object Function
This function returns non-nil if object is a toolbar specifier. Toolbar specifiers are the
actual objects contained in the toolbar variables described above, and their valid instan-
tiators are toolbar descriptors (see Section 23.2 [Toolbar Descriptor Format|, page 317).

23.4 Other Toolbar Variables

The variables to control the toolbar thickness, visibility status, and captioned status are all
specifiers. See Chapter 41 [Specifiers], page 541.

default-toolbar-height Specifier
This specifies the height of the default toolbar, if it’s oriented horizontally. The position
of the default toolbar is specified by the function set-default-toolbar-position. If
the corresponding position-specific toolbar thickness specifier (e.g. top-toolbar-height
if default-toolbar-position is top) does not specify a thickness in a particular domain
(a window or a frame), then the value of default-toolbar-height or default-toolbar-
width (depending on the toolbar orientation) in that domain, if any, will be used instead.

default-toolbar-width Specifier
This specifies the width of the default toolbar, if it’s oriented vertically. This behaves like
default-toolbar-height.

Note that default-toolbar-height is only used when default-toolbar-position is top
or bottom, and default-toolbar-width is only used when default-toolbar-positionis left
or right.

top-toolbar-height Specifier
This specifies the height of the top toolbar.

bottom-toolbar-height Specifier
This specifies the height of the bottom toolbar.

left-toolbar-width Specifier
This specifies the width of the left toolbar.

right-toolbar-width Specifier
This specifies the width of the right toolbar.

Note that all of the position-specific toolbar thickness specifiers have a fallback value of zero
when they do not correspond to the default toolbar. Therefore, you will have to set a non-zero
thickness value if you want a position-specific toolbar to be displayed.

default-toolbar-visible-p Specifier
This specifies whether the default toolbar is visible. The position of the default toolbar is
specified by the function set-default-toolbar-position. If the corresponding position-
specific toolbar visibility specifier (e.g. top-toolbar-visible-p if default-toolbar-
position is top) does not specify a visible-p value in a particular domain (a window or
a frame), then the value of default-toolbar-visible-p in that domain, if any, will be
used instead.

top-toolbar-visible-p Specifier
This specifies whether the top toolbar is visible.

Chapter 23: Toolbar 321

bottom-toolbar-visible-p Specifier
This specifies whether the bottom toolbar is visible.

left-toolbar-visible-p Specifier
This specifies whether the left toolbar is visible.

right-toolbar-visible-p Specifier
This specifies whether the right toolbar is visible.

default-toolbar-visible-p and all of the position-specific toolbar visibility specifiers have
a fallback value of true.

Internally, toolbar thickness and visibility specifiers are instantiated in both window and
frame domains, for different purposes. The value in the domain of a frame’s selected window
specifies the actual toolbar thickness or visibility that you will see in that frame. The value in
the domain of a frame itself specifies the toolbar thickness or visibility that is used in frame
geometry calculations.

Thus, for example, if you set the frame width to 80 characters and the left toolbar width
for that frame to 68 pixels, then the frame will be sized to fit 80 characters plus a 68-pixel left
toolbar. If you then set the left toolbar width to 0 for a particular buffer (or if that buffer does
not specify a left toolbar or has a nil value specified for left-toolbar-visible-p), you will
find that, when that buffer is displayed in the selected window, the window will have a width
of 86 or 87 characters — the frame is sized for a 68-pixel left toolbar but the selected window
specifies that the left toolbar is not visible, so it is expanded to take up the slack.

toolbar-buttons-captioned-p Specifier
Whether toolbar buttons are captioned. This affects which glyphs from a toolbar button
descriptor are chosen. See Section 23.2 [Toolbar Descriptor Format|, page 317.

You can also reset the toolbar to what it was when XEmacs started up.

initial-toolbar-spec Constant
The toolbar descriptor used to initialize default-toolbar at startup.

322 XEmacs Lisp Reference Manual

Chapter 24: scrollbars 323

24 scrollbars

Not yet documented.

324 XEmacs Lisp Reference Manual

Chapter 25: Drag and Drop 325

25 Drag and Drop

WARNING: the Drag'n’Drop API is still under development and the interface may change!
The current implementation is considered experimental.

Drag'n’drop is a way to transfer information between multiple applications. To do this
several GUIs define their own protocols. Examples are OffiX, CDE, Motif, KDE, MSWindows,
GNOME, and many more. To catch all these protocols, XEmacs provides a generic API.

One prime idea behind the API is to use a data interface that is transparent for all systems.
The author thinks that this is best archived by using URL and MIME data, cause any internet
enabled system must support these for email already. XEmacs also already provides powerful
interfaces to support these types of data (tm and w3).

25.1 Supported Protocols

The current release of XEmacs only support a small set of Drag’n’drop protocols. Some of
these only support limited options available in the API.

25.1.1 OftiX DND

WARNING: If you compile in OffiX, you may not be able to use multiple X displays suc-
cessfully. If the two servers are from different vendors, the results may be unpredictable.

The OffiX Drag’n’Drop protocol is part of a X API/Widget library created by Cesar Crusius.
It is based on X-Atoms and ClientMessage events, and works with any X platform supporting
them.

OffiX is supported if ’offix is member of the variable dragdrop-protocols, or the feature ’offix
is defined.

Unfortunately it uses it’s own data types. Examples are: File, Files, Exe, Link, URL, MIME.
The API tries to choose the right type for the data that is dragged from XEmacs (well, not yet...).

XEmacs supports both MIME and URL drags and drops using this API. No application
interaction is possible while dragging is in progress.

For information about the OffiX project have a look at http://leb.net/~offix/

25.1.2 CDE dt

CDE stands for Common Desktop Environment. It is based on the Motif widget library. It’s
drag’n’drop protocol is also an abstraction of the Motif protocol (so it might be possible, that
XEmacs will also support the Motif protocol soon).

CDE has three different types: file, buffer, and text. XEmacs only uses file and buffer drags.
The API will disallow full URL drags, only file method URLSs are passed through.

Buffer drags are always converted to plain text.

25.1.3 MSWindows OLE

Only allows file drags and drops.

326 XEmacs Lisp Reference Manual

25.1.4 Loose ends

The following protocols will be supported soon: Xdnd, Motif, Xde (if I get some specs), KDE
OffiX (if KDE can find XEmacs windows).

In particular Xdnd will be one of the protocols that can benefit from the XEmacs API, cause
it also uses MIME types to encode dragged data.

25.2 Drop Interface

For each activated low-level protocol, a internal routine will catch incoming drops and convert
them to a dragdrop-drop type misc-user-event.

This misc-user-event has its function argument set to dragdrop-drop-dispatch and the
object contains the data of the drop (converted to URL/MIME specific data). This function will
search the variable experimental-dragdrop-drop-functions for a function that can handle
the dropped data.

To modify the drop behavior, the user can modify the variable experimental-dragdrop-
drop-functions. Each element of this list specifies a possible handler for dropped data. The
first one that can handle the data will return t and exit. Another possibility is to set a extent-
property with the same name. Extents are checked prior to the variable.

The customization group drag-n-drop shows all variables of user interest.

25.3 Drag Interface

This describes the drag API (not implemented yet).

Chapter 26: Major and Minor Modes 327

26 Major and Minor Modes

A mode is a set of definitions that customize XEmacs and can be turned on and off while you
edit. There are two varieties of modes: major modes, which are mutually exclusive and used for
editing particular kinds of text, and minor modes, which provide features that users can enable
individually.

This chapter describes how to write both major and minor modes, how to indicate them in the
modeline, and how they run hooks supplied by the user. For related topics such as keymaps and
syntax tables, see Chapter 20 [Keymaps|, page 285, and Chapter 38 [Syntax Tables|, page 513.

26.1 Major Modes

Major modes specialize XEmacs for editing particular kinds of text. Each buffer has only
one major mode at a time.

The least specialized major mode is called Fundamental mode. This mode has no mode-
specific definitions or variable settings, so each XEmacs command behaves in its default manner,
and each option is in its default state. All other major modes redefine various keys and options.
For example, Lisp Interaction mode provides special key bindings for (eval-print-last-
sexp), (lisp-indent-1line), and other keys.

When you need to write several editing commands to help you perform a specialized editing
task, creating a new major mode is usually a good idea. In practice, writing a major mode is
easy (in contrast to writing a minor mode, which is often difficult).

If the new mode is similar to an old one, it is often unwise to modify the old one to serve two
purposes, since it may become harder to use and maintain. Instead, copy and rename an existing
major mode definition and alter the copy—or define a derived mode (see Section 26.1.5 [Derived
Modes|, page 335). For example, Rmail Edit mode, which is in ‘emacs/lisp/rmailedit.el’,
is a major mode that is very similar to Text mode except that it provides three additional
commands. Its definition is distinct from that of Text mode, but was derived from it.

Rmail Edit mode is an example of a case where one piece of text is put temporarily into a
different major mode so it can be edited in a different way (with ordinary XEmacs commands
rather than Rmail). In such cases, the temporary major mode usually has a command to switch
back to the buffer’s usual mode (Rmail mode, in this case). You might be tempted to present
the temporary redefinitions inside a recursive edit and restore the usual ones when the user
exits; but this is a bad idea because it constrains the user’s options when it is done in more than
one buffer: recursive edits must be exited most-recently-entered first. Using alternative major
modes avoids this limitation. See Section 19.10 [Recursive Editing], page 281.

The standard XEmacs Lisp library directory contains the code for several major modes, in
files including ‘text-mode.el’, ‘texinfo.el’, ‘lisp-mode.el’, ‘c-mode.el’, and ‘rmail.el’.
You can look at these libraries to see how modes are written. Text mode is perhaps the simplest
major mode aside from Fundamental mode. Rmail mode is a complicated and specialized mode.

26.1.1 Major Mode Conventions

The code for existing major modes follows various coding conventions, including conventions
for local keymap and syntax table initialization, global names, and hooks. Please follow these
conventions when you define a new major mode:

328

XEmacs Lisp Reference Manual

Define a command whose name ends in ‘-mode’, with no arguments, that switches to the

new mode in the current buffer. This command should set up the keymap, syntax table,
and local variables in an existing buffer without changing the buffer’s text.

Write a documentation string for this command that describes the special commands avail-
able in this mode. C-h m (describe-mode) in your mode will display this string.

The documentation string may include the special documentation substrings, ‘\[com-
mand]’, ‘\{keymap}’, and ‘\<keymap>’, that enable the documentation to adapt automat-
ically to the user’s own key bindings. See Section 27.3 [Keys in Documentation|, page 348.

The major mode command should start by calling kill-all-local-variables. This is
what gets rid of the local variables of the major mode previously in effect.

The major mode command should set the variable major-mode to the major mode command
symbol. This is how describe-mode discovers which documentation to print.

The major mode command should set the variable mode-name to the “pretty” name of the
mode, as a string. This appears in the mode line.

Since all global names are in the same name space, all the global variables, constants, and
functions that are part of the mode should have names that start with the major mode
name (or with an abbreviation of it if the name is long). See Section A.1 [Style Tips|,
page 685.

The major mode should usually have its own keymap, which is used as the local keymap
in all buffers in that mode. The major mode function should call use-local-map to install
this local map. See Section 20.7 [Active Keymaps|, page 290, for more information.

This keymap should be kept in a global variable named modename-mode-map. Normally
the library that defines the mode sets this variable.

The mode may have its own syntax table or may share one with other related modes. If it
has its own syntax table, it should store this in a variable named modename-mode-syntax-
table. See Chapter 38 [Syntax Tables], page 513.

The mode may have its own abbrev table or may share one with other related modes. If it
has its own abbrev table, it should store this in a variable named modename-mode-abbrev-
table. See Section 39.2 [Abbrev Tables|, page 523.

Use defvar to set mode-related variables, so that they are not reinitialized if they already
have a value. (Such reinitialization could discard customizations made by the user.)

To make a buffer-local binding for an Emacs customization variable, use make-local-
variable in the major mode command, not make-variable-buffer-local. The latter
function would make the variable local to every buffer in which it is subsequently set, which
would affect buffers that do not use this mode. It is undesirable for a mode to have such
global effects. See Section 10.9 [Buffer-Local Variables]|, page 141.

It’s ok to use make-variable-buffer-local, if you wish, for a variable used only within a
single Lisp package.

Each major mode should have a mode hook named modename-mode-hook. The major
mode command should run that hook, with run-hooks, as the very last thing it does. See
Section 26.4 [Hooks]|, page 342.

The major mode command may also run the hooks of some more basic modes. For example,
indented-text-mode runs text-mode-hook as well as indented-text-mode-hook. It may
run these other hooks immediately before the mode’s own hook (that is, after everything
else), or it may run them earlier.

If something special should be done if the user switches a buffer from this mode to any
other major mode, the mode can set a local value for change-major-mode-hook.

If this mode is appropriate only for specially-prepared text, then the major mode command
symbol should have a property named mode-class with value special, put on as follows:

Chapter 26: Major and Minor Modes 329

(put ’funny-mode ’mode-class ’special)

This tells XEmacs that new buffers created while the current buffer has Funny mode should
not inherit Funny mode. Modes such as Dired, Rmail, and Buffer List use this feature.

e If you want to make the new mode the default for files with certain recognizable names,
add an element to auto-mode-alist to select the mode for those file names. If you define
the mode command to autoload, you should add this element in the same file that calls
autoload. Otherwise, it is sufficient to add the element in the file that contains the mode
definition. See Section 26.1.3 [Auto Major Mode], page 332.

e In the documentation, you should provide a sample autoload form and an example of how
to add to auto-mode-alist, that users can include in their ‘.emacs’ files.

e The top-level forms in the file defining the mode should be written so that they may be
evaluated more than once without adverse consequences. Even if you never load the file
more than once, someone else will.

change-major-mode-hook Variable
This normal hook is run by kill-all-local-variables before it does anything else.
This gives major modes a way to arrange for something special to be done if the user
switches to a different major mode. For best results, make this variable buffer-local, so
that it will disappear after doing its job and will not interfere with the subsequent major
mode. See Section 26.4 [Hooks|, page 342.

26.1.2 Major Mode Examples

Text mode is perhaps the simplest mode besides Fundamental mode. Here are excerpts from
‘text-mode.el’ that illustrate many of the conventions listed above:

;; Create mode-specific tables.
(defvar text-mode-syntax-table nil
"Syntax table used while in text mode.")

(if text-mode-syntax-table
O ; Do not change the table if it is already set up.
(setq text-mode-syntax-table (make-syntax-table))
(modify-syntax-entry ?\" ". " text-mode-syntax-table)
(modify-syntax-entry 7\\ ". " text-mode-syntax-table)
(modify-syntax-entry 7’ "w " text-mode-syntax-table))

(defvar text-mode-abbrev-table nil
"Abbrev table used while in text mode.")
(define-abbrev-table ’text-mode-abbrev-table ())

(defvar text-mode-map nil) ; Create a mode-specific keymap.

(if text-mode-map
O ; Do not change the keymap if it is already set up.
(setq text-mode-map (make-sparse-keymap))
(define-key text-mode-map "\t" ’tab-to-tab-stop)
(define-key text-mode-map "\es" ’center-line)
(define-key text-mode-map "\eS" ’center-paragraph))

Here is the complete major mode function definition for Text mode:

(defun text-mode ()
"Major mode for editing text intended for humans to read.
Special commands: \\{text-mode-map}

330

XEmacs Lisp Reference Manual

Turning on text-mode runs the hook ‘text-mode-hook’."

(interactive)

(kill-all-local-variables)

(use-local-map text-mode-map) ; This provides the local keymap.
(setq mode-name "Text") ; This name goes into the modeline.
(setq major-mode ’text-mode) ; This is how describe-mode

; finds the doc string to print.

(setq local-abbrev-table text-mode-abbrev-table)
(set-syntax-table text-mode-syntax-table)
(run-hooks ’text-mode-hook)) ; Finally, this permits the user to

; customize the mode with a hook.

The three Lisp modes (Lisp mode, Emacs Lisp mode, and Lisp Interaction mode) have more
features than Text mode and the code is correspondingly more complicated. Here are excerpts
from ‘lisp-mode.el’ that illustrate how these modes are written.

; ;5 Create mode-specific table variables.

(defvar lisp-mode-syntax-table nil "")
(defvar emacs-lisp-mode-syntax-table nil "")
(defvar lisp-mode-abbrev-table nil "")

(if (not emacs-lisp-mode-syntax-table) ; Do not change the table

; if it is already set.

(Let ((1 0))
(setq emacs-lisp-mode-syntax-table (make-syntax-table))

;5 Set syntax of chars up to 0 to class of chars that are

;5 part of symbol names but not words.

;5 (The number 0 is 48 in the ASCII character set.)

(while (< i 70)
(modify-syntax-entry i "_ " emacs-lisp-mode-syntax-table)
(setq 1 (1+ 1)))

;5 Set the syntax for other characters.

(modify-syntax-entry 7 " " emacs-lisp-mode-syntax-table)
(modify-syntax-entry 7\t " " emacs-lisp-mode-syntax-table)
(modify-syntax-entry ?\("() " emacs-lisp-mode-syntax-table)

(modify-syntax-entry ?\) ")(" emacs-lisp-mode-syntax-table)

cea))

; ;5 Create an abbrev table for lisp-mode.
(define-abbrev-table ’lisp-mode-abbrev-table ())

Much code is shared among the three Lisp modes. The following function sets various vari-
ables; it is called by each of the major Lisp mode functions:

(defun lisp-mode-variables (lisp-syntax)
;5 The lisp-syntax argument is nil in Emacs Lisp mode,
s and t in the other two Lisp modes.
(cond (lisp-syntax

(if

(not lisp-mode-syntax-table)

;5 The Emacs Lisp mode syntax table always exists, but
;5 the Lisp Mode syntax table is created the first time a
s mode that needs it is called. This is to save space.

Chapter 26: Major and Minor Modes 331

(progn (setq lisp-mode-syntax-table
(copy-syntax-table emacs-lisp-mode-syntax-table))

; ;5 Change some entries for Lisp mode.

(modify-syntax-entry ?\| "\" "
lisp-mode-syntax-table)

(modify-syntax-entry ?\["_ "
lisp-mode-syntax-table)

(modify-syntax-entry ?\] "_ "
lisp-mode-syntax-table)))

(set-syntax-table lisp-mode-syntax-table)))
(setq local-abbrev-table lisp-mode-abbrev-table)

)

Functions such as forward-paragraph use the value of the paragraph-start variable. Since
Lisp code is different from ordinary text, the paragraph-start variable needs to be set specially
to handle Lisp. Also, comments are indented in a special fashion in Lisp and the Lisp modes
need their own mode-specific comment-indent-function. The code to set these variables is the
rest of lisp-mode-variables.

(make-local-variable ’paragraph-start)

;3 Having °’ is not clean, but page-delimiter

; ;3 has them too, and removing those is a pain.

(setq paragraph-start (concat "“$\\|" page-delimiter))

(make-local-variable ’comment-indent-function)
(setq comment-indent-function ’lisp-comment-indent))

Each of the different Lisp modes has a slightly different keymap. For example, Lisp mode
binds C-c C-1 to run-1lisp, but the other Lisp modes do not. However, all Lisp modes have
some commands in common. The following function adds these common commands to a given
keymap.

(defun lisp-mode-commands (map)
(define-key map "\e\C-q" ’indent-sexp)
(define-key map "\177" ’backward-delete-char-untabify)
(define-key map "\t" ’lisp-indent-line))

Here is an example of using 1isp-mode-commands to initialize a keymap, as part of the code
for Emacs Lisp mode. First we declare a variable with defvar to hold the mode-specific keymap.
When this defvar executes, it sets the variable to nil if it was void. Then we set up the keymap
if the variable is nil.

This code avoids changing the keymap or the variable if it is already set up. This lets the
user customize the keymap.

(defvar emacs-lisp-mode-map () "")
(if emacs-lisp-mode-map
O
(setq emacs-lisp-mode-map (make-sparse-keymap))
(define-key emacs-lisp-mode-map "\e\C-x" ’eval-defun)
(lisp-mode-commands emacs-lisp-mode-map))

Finally, here is the complete major mode function definition for Emacs Lisp mode.

332 XEmacs Lisp Reference Manual

(defun emacs-lisp-mode ()

"Major mode for editing Lisp code to run in XEmacs.
Commands :
Delete converts tabs to spaces as it moves back.
Blank lines separate paragraphs. Semicolons start comments.
\\{emacs-1isp-mode-map}
Entry to this mode runs the hook ‘emacs-lisp-mode-hook’."

(interactive)
(kill-all-local-variables)
(use-local-map emacs-lisp-mode-map) ; This provides the local keymap.
(set-syntax-table emacs-lisp-mode-syntax-table)
(setq major-mode ’emacs-lisp-mode) ; This is how describe-mode

; finds out what to describe.
(setq mode-name "Emacs-Lisp") ; This goes into the modeline.
(lisp-mode-variables nil) ; This defines various variables.
(run-hooks ’emacs-lisp-mode-hook)) ; This permits the user to use a

; hook to customize the mode.

26.1.3 How XEmacs Chooses a Major Mode

Based on information in the file name or in the file itself, XEmacs automatically selects a
major mode for the new buffer when a file is visited.

fundamental-mode Command
Fundamental mode is a major mode that is not specialized for anything in particular.
Other major modes are defined in effect by comparison with this one—their definitions
say what to change, starting from Fundamental mode. The fundamental-mode function
does not run any hooks; you're not supposed to customize it. (If you want Emacs to
behave differently in Fundamental mode, change the global state of Emacs.)

normal-mode &optional find-file Command
This function establishes the proper major mode and local variable bindings for the current
buffer. First it calls set-auto-mode, then it runs hack-local-variables to parse, and
bind or evaluate as appropriate, any local variables.

If the find-file argument to normal-mode is non-nil, normal-mode assumes that the find-
file function is calling it. In this case, it may process a local variables list at the end of
the file and in the ‘-*-’ line. The variable enable-local-variables controls whether to
do so.

If you run normal-mode interactively, the argument find-file is normally nil. In this
case, normal-mode unconditionally processes any local variables list. See section “Local
Variables in Files” in The XEmacs Reference Manual, for the syntax of the local variables
section of a file.

normal-mode uses condition-case around the call to the major mode function, so errors
are caught and reported as a ‘File mode specification error’, followed by the original
error message.

enable-local-variables User Option
This variable controls processing of local variables lists in files being visited. A value of t
means process the local variables lists unconditionally; nil means ignore them; anything
else means ask the user what to do for each file. The default value is t.

Chapter 26: Major and Minor Modes 333

ignored-local-variables Variable
This variable holds a list of variables that should not be set by a local variables list. Any
value specified for one of these variables is ignored.

In addition to this list, any variable whose name has a non-nil risky-local-variable
property is also ignored.

enable-local-eval User Option
This variable controls processing of ‘Eval:’ in local variables lists in files being visited.
A value of t means process them unconditionally; nil means ignore them; anything else
means ask the user what to do for each file. The default value is maybe.

set-auto-mode Function
This function selects the major mode that is appropriate for the current buffer. It may
base its decision on the value of the ‘~=x-"line, on the visited file name (using auto-mode-
alist), or on the value of a local variable. However, this function does not look for the
‘mode:’ local variable near the end of a file; the hack-local-variables function does
that. See section “How Major Modes are Chosen” in The XEmacs Reference Manual.

default-major-mode User Option
This variable holds the default major mode for new buffers. The standard value is
fundamental-mode.

If the value of default-major-mode is nil, XEmacs uses the (previously) current buffer’s
major mode for the major mode of a new buffer. However, if the major mode symbol has a
mode-class property with value special, then it is not used for new buffers; Fundamental
mode is used instead. The modes that have this property are those such as Dired and
Rmail that are useful only with text that has been specially prepared.

set-buffer-major-mode buffer Function
This function sets the major mode of buffer to the value of default-major-mode. If that
variable is nil, it uses the current buffer’s major mode (if that is suitable).
The low-level primitives for creating buffers do not use this function, but medium-level

commands such as switch-to-buffer and find-file-noselect use it whenever they
create buffers.

initial-major-mode Variable
The value of this variable determines the major mode of the initial ‘*scratch#*’ buffer.
The value should be a symbol that is a major mode command name. The default value is
lisp-interaction-mode.

auto-mode-alist Variable
This variable contains an association list of file name patterns (regular expressions; see
Section 37.2 [Regular Expressions|, page 496) and corresponding major mode functions.
Usually, the file name patterns test for suffixes, such as ‘.el” and ‘.c’, but this need not
be the case. An ordinary element of the alist looks like (regexp . mode-function).
For example,

(("~/tmp/fol/" . text-mode)

("\\.texinfo\\’" . texinfo-mode)
("\\.texi\\’" . texinfo-mode)
("\\.el\\’" . emacs-lisp-mode)

("M\\.c\\’" . c-mode)
("M\\.h\\’" . c-mode)
)

334

interpreter-mode-alist

hack-local-variables &optional force

XEmacs Lisp Reference Manual

When you visit a file whose expanded file name (see Section 28.8.4 [File Name Expansion],
page 371) matches a regexp, set-auto-mode calls the corresponding mode-function. This
feature enables XEmacs to select the proper major mode for most files.

If an element of auto-mode-alist has the form (regexp function t), then after calling
function, XEmacs searches auto-mode-alist again for a match against the portion of the
file name that did not match before.

This match-again feature is useful for uncompression packages: an entry of the form
("\\.gz\\’" . function) can uncompress the file and then put the uncompressed file in
the proper mode according to the name sans ‘.gz’.

Here is an example of how to prepend several pattern pairs to auto-mode-alist. (You
might use this sort of expression in your ‘.emacs’ file.)

(setq auto-mode-alist

(append
;; File name starts with a dot.
P(("/\\.["/1*\\’" . fundamental-mode)
;; File name has no dot.
("[~\\./]1*\\’" . fundamental-mode)

;3 File name ends in “.C’.
("M\.C\\’" . c++-mode))
auto-mode-alist))

This variable specifies major modes to use for scripts that specify a command interpreter
in an ‘#!’ line. Its value is a list of elements of the form (interpreter . mode); for example,
("perl" . perl-mode) is one element present by default. The element says to use mode
mode if the file specifies interpreter.

This variable is applicable only when the auto-mode-alist does not indicate which major
mode to use.

This function parses, and binds or evaluates as appropriate, any local variables for the
current buffer.

The handling of enable-local-variables documented for normal-mode actually takes
place here. The argument force usually comes from the argument find-file given to normal-
mode.

26.1.4 Getting Help about a Major Mode

The describe-mode function is used to provide information about major modes. It is nor-
mally called with C-h m. The describe-mode function uses the value of major-mode, which is
why every major mode function needs to set the major-mode variable.

describe-mode

This function displays the documentation of the current major mode.

The describe-mode function calls the documentation function using the value of major-
mode as an argument. Thus, it displays the documentation string of the major mode
function. (See Section 27.2 [Accessing Documentation|, page 346.)

Variable

Function

Command

Chapter 26: Major and Minor Modes 335

major-mode Variable
This variable holds the symbol for the current buffer’s major mode. This symbol should
have a function definition that is the command to switch to that major mode. The
describe-mode function uses the documentation string of the function as the documen-
tation of the major mode.

26.1.5 Defining Derived Modes

It’s often useful to define a new major mode in terms of an existing one. An easy way to do
this is to use define-derived-mode.

define-derived-mode variant parent name docstring body. . . Macro
This construct defines variant as a major mode command, using name as the string form
of the mode name.

The new command variant is defined to call the function parent, then override certain
aspects of that parent mode:

e The new mode has its own keymap, named variant-map. define-derived-mode
initializes this map to inherit from parent-map, if it is not already set.

e The new mode has its own syntax table, kept in the variable variant-syntax-table.
define-derived-mode initializes this variable by copying parent-syntax-table, if it
is not already set.

e The new mode has its own abbrev table, kept in the variable variant-abbrev-table.
define-derived-mode initializes this variable by copying parent-abbrev-table, if it
is not already set.

e The new mode has its own mode hook, variant-hook, which it runs in standard fashion

as the very last thing that it does. (The new mode also runs the mode hook of parent
as part of calling parent.)

In addition, you can specify how to override other aspects of parent with body. The
command variant evaluates the forms in body after setting up all its usual overrides, just
before running variant-hook.

The argument docstring specifies the documentation string for the new mode. If you omit
docstring, define-derived-mode generates a documentation string.

Here is a hypothetical example:

(define-derived-mode hypertext-mode
text-mode "Hypertext"
"Major mode for hypertext.
\\{hypertext-mode-mapl}"
(setq case-fold-search nil))

(define-key hypertext-mode-map
[down-mouse-3] ’do-hyper-link)

26.2 Minor Modes

A minor mode provides features that users may enable or disable independently of the choice
of major mode. Minor modes can be enabled individually or in combination. Minor modes
would be better named “Generally available, optional feature modes” except that such a name
is unwieldy.

336 XEmacs Lisp Reference Manual

A minor mode is not usually a modification of single major mode. For example, Auto Fill
mode may be used in any major mode that permits text insertion. To be general, a minor mode
must be effectively independent of the things major modes do.

A minor mode is often much more difficult to implement than a major mode. One reason is
that you should be able to activate and deactivate minor modes in any order. A minor mode
should be able to have its desired effect regardless of the major mode and regardless of the other
minor modes in effect.

Often the biggest problem in implementing a minor mode is finding a way to insert the
necessary hook into the rest of XEmacs. Minor mode keymaps make this easier than it used to
be.

26.2.1 Conventions for Writing Minor Modes

There are conventions for writing minor modes just as there are for major modes. Several
of the major mode conventions apply to minor modes as well: those regarding the name of the
mode initialization function, the names of global symbols, and the use of keymaps and other
tables.

In addition, there are several conventions that are specific to minor modes.

e Make a variable whose name ends in ‘-mode’ to represent the minor mode. Its value should
enable or disable the mode (nil to disable; anything else to enable.) We call this the mode
variable.

This variable is used in conjunction with the minor-mode-alist to display the minor mode
name in the modeline. It can also enable or disable a minor mode keymap. Individual
commands or hooks can also check the variable’s value.
If you want the minor mode to be enabled separately in each buffer, make the variable
buffer-local.
e Define a command whose name is the same as the mode variable. Its job is to enable and

disable the mode by setting the variable.
The command should accept one optional argument. If the argument is nil, it should toggle
the mode (turn it on if it is off, and off if it is on). Otherwise, it should turn the mode on
if the argument is a positive integer, a symbol other than nil or -, or a list whose CAR is
such an integer or symbol; it should turn the mode off otherwise.
Here is an example taken from the definition of transient-mark-mode. It shows the use of
transient-mark-mode as a variable that enables or disables the mode’s behavior, and also
shows the proper way to toggle, enable or disable the minor mode based on the raw prefix
argument value.

(setq transient-mark-mode

(if (null arg) (not transient-mark-mode)
(> (prefix-numeric-value arg) 0)))
e Add an element to minor-mode-alist for each minor mode (see Section 26.3.2 [Modeline

Variables|, page 339). This element should be a list of the following form:

(mode-variable string)
Here mode-variable is the variable that controls enabling of the minor mode, and string is
a short string, starting with a space, to represent the mode in the modeline. These strings
must be short so that there is room for several of them at once.
When you add an element to minor-mode-alist, use assq to check for an existing element,
to avoid duplication. For example:

(or (assq ’leif-mode minor-mode-alist)

(setq minor-mode-alist
(cons ’(leif-mode " Leif") minor-mode-alist)))

Chapter 26: Major and Minor Modes 337

26.2.2 Keymaps and Minor Modes

FEach minor mode can have its own keymap, which is active when the mode is enabled. To
set up a keymap for a minor mode, add an element to the alist minor-mode-map-alist. See
Section 20.7 [Active Keymaps|, page 290.

One use of minor mode keymaps is to modify the behavior of certain self-inserting characters
so that they do something else as well as self-insert. In general, this is the only way to do that,
since the facilities for customizing self-insert-command are limited to special cases (designed
for abbrevs and Auto Fill mode). (Do not try substituting your own definition of self-insert-
command for the standard one. The editor command loop handles this function specially.)

26.3 Modeline Format

Each Emacs window (aside from minibuffer windows) includes a modeline, which displays
status information about the buffer displayed in the window. The modeline contains information
about the buffer, such as its name, associated file, depth of recursive editing, and the major and
minor modes.

This section describes how the contents of the modeline are controlled. It is in the chapter on
modes because much of the information displayed in the modeline relates to the enabled major
and minor modes.

modeline-format is a buffer-local variable that holds a template used to display the modeline
of the current buffer. All windows for the same buffer use the same modeline-format and their
modelines appear the same (except for scrolling percentages and line numbers).

The modeline of a window is normally updated whenever a different buffer is shown in the
window, or when the buffer’s modified-status changes from nil to t or vice-versa. If you modify
any of the variables referenced by modeline-format (see Section 26.3.2 [Modeline Variables],
page 339), you may want to force an update of the modeline so as to display the new information.

redraw-modeline &optional all Function
Force redisplay of the current buffer’s modeline. If all is non-nil, then force redisplay of
all modelines.

The modeline is usually displayed in inverse video. This is controlled using the modeline
face. See Section 42.1 [Faces], page 555.

26.3.1 The Data Structure of the Modeline

The modeline contents are controlled by a data structure of lists, strings, symbols, and
numbers kept in the buffer-local variable mode-line-format. The data structure is called a
modeline construct, and it is built in recursive fashion out of simpler modeline constructs.
The same data structure is used for constructing frame titles (see Section 32.3 [Frame Titles|,
page 429).

modeline-format Variable
The value of this variable is a modeline construct with overall responsibility for the mod-
eline format. The value of this variable controls which other variables are used to form
the modeline text, and where they appear.

338 XEmacs Lisp Reference Manual

A modeline construct may be as simple as a fixed string of text, but it usually specifies how
to use other variables to construct the text. Many of these variables are themselves defined to
have modeline constructs as their values.

The default value of modeline-format incorporates the values of variables such as mode-
name and minor-mode-alist. Because of this, very few modes need to alter modeline-format.
For most purposes, it is sufficient to alter the variables referenced by modeline-format.

A modeline construct may be a list, a symbol, or a string. If the value is a list, each element
may be a list, a symbol, or a string.

string A string as a modeline construct is displayed verbatim in the mode line except for
%-constructs. Decimal digits after the ‘%’ specify the field width for space filling on
the right (i.e., the data is left justified). See Section 26.3.3 [%-Constructs|, page 341.

symbol A symbol as a modeline construct stands for its value. The value of symbol is used
as a modeline construct, in place of symbol. However, the symbols t and nil are
ignored; so is any symbol whose value is void.

There is one exception: if the value of symbol is a string, it is displayed verbatim:
the J%-constructs are not recognized.

(string rest...) or (list rest...)
A list whose first element is a string or list means to process all the elements re-
cursively and concatenate the results. This is the most common form of mode line
construct.

(symbol then else)
A list whose first element is a symbol is a conditional. Its meaning depends on the
value of symbol. If the value is non-nil, the second element, then, is processed
recursively as a modeline element. But if the value of symbol is nil, the third
element, else, is processed recursively. You may omit else; then the mode line
element displays nothing if the value of symbol is nil.

(width rest. . .)
A list whose first element is an integer specifies truncation or padding of the results
of rest. The remaining elements rest are processed recursively as modeline constructs
and concatenated together. Then the result is space filled (if width is positive) or
truncated (to —width columns, if width is negative) on the right.

For example, the usual way to show what percentage of a buffer is above the top of
the window is to use a list like this: (=3 "%p").

If you do alter modeline-format itself, the new value should use the same variables that
appear in the default value (see Section 26.3.2 [Modeline Variables|, page 339), rather than
duplicating their contents or displaying the information in another fashion. This way, cus-
tomizations made by the user or by Lisp programs (such as display-time and major modes)
via changes to those variables remain effective.

Here is an example of a modeline-format that might be useful for shell-mode, since it
contains the hostname and default directory.

(setq modeline-format

(list "
’modeline-modified
ll%b__ll
(getenv "HOST") ; One element is not constant.

n.n

’default-directory

’global-mode-string

Chapter 26: Major and Minor Modes 339

n %[(ll
’mode-name
’modeline-process
’minor-mode-alist

ll%nll

n)%] —_———n

> (line-number-mode "L%1--")
) (_3 . n%pu)

Il_%_“))

26.3.2 Variables Used in the Modeline

This section describes variables incorporated by the standard value of modeline-format into
the text of the mode line. There is nothing inherently special about these variables; any other
variables could have the same effects on the modeline if modeline-format were changed to use
them.

modeline-modified Variable
This variable holds the value of the modeline construct that displays whether the current

buffer is modified.

The default value of modeline-modified is ("--%1*%1+-"). This means that the mode-
line displays ‘=—**-" if the buffer is modified, ‘-—--- " if the buffer is not modified, ‘-=%%-’
if the buffer is read only, and ‘--%*--"if the buffer is read only and modified.

Changing this variable does not force an update of the modeline.

modeline-buffer-identification Variable
This variable identifies the buffer being displayed in the window. Its default value is ("%F:
%17b"), which means that it usually displays ‘Emacs:’ followed by seventeen characters of
the buffer name. (In a terminal frame, it displays the frame name instead of ‘Emacs’; this
has the effect of showing the frame number.) You may want to change this in modes such
as Rmail that do not behave like a “normal” XEmacs.

global-mode-string Variable
This variable holds a modeline spec that appears in the mode line by default, just after
the buffer name. The command display-time sets global-mode-string to refer to
the variable display-time-string, which holds a string containing the time and load
information.

The ‘%M construct substitutes the value of global-mode-string, but this is obsolete,
since the variable is included directly in the modeline.

mode-name Variable
This buffer-local variable holds the “pretty” name of the current buffer’s major mode.
FEach major mode should set this variable so tha