The X Keyboard Extension:
Protocol Specification

Protocol Version 1.0 / Document Revision 1.0
X Consortium Standard

X Version 11, Release 6.4

Erik Fortune
Silicon Graphics, Inc.

Copyright © 1995, 1996 X Consortium Inc.

Copyright © 1995, 1996 Silicon Graphics Inc.
Copyright © 1995, 1996 Hewlett-Packard Company
Copyright © 1995, 1996 Digital EqQuipment Corporation

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
associated documentation files (the “Software”), to deal in the Software without restriction,
including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do
S0, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial
portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGE-
MENT. IN NO EVENT SHALL THE X CONSORTIUM BE LIABLE FOR ANY CLAIM,
DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR
THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Except as contained in this notice, the names of the X Consortium, Silicon Graphics Inc.,
Hewlett-Packard Company, and Digital Equipment Corporation shall not be used in advertising or
otherwise to promote the sale, use or other dealings in this Software without prior written authori-
zation.

Acknowledgments

| am grateful for all of the comments and suggestions | have received over the years. | could not
possibly list everyone who has helped, but a few people have gone well above and beyond the call
of duty and simply must be listed here.

My managers here at SGI, Tom Paquin (now at Netscape) and Gianni Mariani were wonderful.
Rather than insisting on some relatively quick, specialized proprietary solution to the keyboard
problems we were having, both Tom and Gianni understood the importance of solving them in a
general way and for the community as a whole. That was a difficult position to take and it was
even harder to maintain when the scope of the project expanded beyond anything we imagined
was possible. Gianni and Tom were unflagging in their support and their desire to “do the right
thing” despite the schedule and budget pressure that intervened from time to time.

Will Walker, at Digital Equipment Corporation, has been a longtime supporter of XKB. His help
and input was essential to ensure that the extension as a whole fits and works together well. His
focus was AccessX but the entire extension has benefited from his input and hard work. Without
his unflagging good cheer and willingness to lend a hand, XKB would not be where it is today.

Matt Landau, at the X Consortium, stood behind XKB during some tough spots in the release and
standardization process. Without Matt’s support, XKB would likely not be a standard for a long
time to come. When it became clear that we had too much to do for the amount of time we had
remaining, Matt did a fantastic job of finding people to help finish the work needed for standard-
ization.

One of those people was George Sachs, at Hewlett-Packard, who jumped in to help out. His help
was essential in getting the extension into this release. Another was Donna Converse, who helped
figure out how to explain all of this stuff to someone who hadn’'t had their head buried in it for
years.

Amber Benson and Gary Aitken were simply phenomenal. They jumped into a huge and compli-
cated project with good cheer and unbelievable energy. They were “up to speed” and contributing
within days. | stand in awe of the amount that they managed to achieve in such a short time.
Thanks to Gary and Amber, the XKB library specification is a work of art and a thousand times
easier to use and more useful than it would otherwise be.

| truly cannot express my gratitude to all of you, without whom this would not have been possible.
Erik Fortune

Silicon Graphics, Inc.
5 February 1996

The X Keyboard Extension Protocol Specification

O T O Y=Y oY1= PR 1
1.1 Conventions and ASSUMPLIONSuuuviiiiiiieeeeeesis it reeee e e s s s sssanrre e rreeeeeeesassnnrrnrnreraeeees 1
2.0 KEYDOAIT SEALEuuueiiieiii ettt e e e e e e e eeeaeee 2
21 Locking and Latching Modifiers and GrOUPSccooruriiieiiiiiieeiiiee et 2
2.2 Fundamental Components of XKB Keyboard Statecoocccvvvieeiieie e, 2
2.2.1 Computing Effective Modifier and Groupoccueeiiiiiiiiiieiniiiiee i 3
2.2.2 Computing A State Field from an XKB Stateccccccevevivviiieieeeree e 3
2.3 Derived Components of XKB Keyboard State...........coooiiiiiiiiiiiiiiiiieeeccee e 3
2.3.1 Server Internal Modifiers and Ignore Locks Behavior................oovvvvivviiiiviincinnnnn. 4
2.4 Compatibility Components of Keyboard State............cooiiiieiiiiiiieieeee e 4
GO Y (] ¢ (U= VN 1Y/ [0 Yo [1T £ R 5
3.1 MOAIfIEr DEFINITIONS ...t e e e e e e e e e e e e s aeebe e ees 6
3.1.1 Inactive Modifier DefiNitiONScccuiiiiiiiiiiiiiiiee e 7
3.2 Virtual Modifier MaPPINGoeeeeeieiie e e 7
4.0 Global Keyboard CONrolSooviiiiiiiiiiiiiie et e e e e e e e e eeeeeannens 7
4.1 The RepeatKeys CONLIOloooi ittt a e e 7
4.1.1 The PerKeyRepeat CONLrolueiiiiiiiiiiiiiiiiieeie et 8
4.1.2 Detectable AULOIEPEAL...... ..o e 8
4.2 THE SIOWKEYS CONIOL ...ceiiiiiiiiiee ittt et e e s snneeeeeas 8
4.3 The BoUNCEKEYS CONLIOluiiiiiiiiiiiee e e e e e e e s e s s rr e e e e e e e e e e e e anns 8
4.4 The StCKYKEYS CONLIOLo eeaeeaerarnne 9
4.5 The MOUSEKEYS CONIOL.....ciiiiiiiiiiiiii ittt e e e nnneeees 9
4.6 The MOUSEKEYSACCEI CONLIONuiiiiiiiiiee et e e e e e e s e e e e eaee s 10
4.6.1 Relative POINtEr MOUIONcoiiiiiiiiiiiiiiee st e e 10
4.6.2 Absolute POINtEr MOLION.........ooiiiiiiiieeiiiiee e 10
4.7 The AcCCEeSSXKEYS CONIOL........coiiiiiiiieeeeee ae s 10
4.8 The AccessSXTIMEOUt CONLIOL.........cueiiiiiiiii e e e 11
49 The AccessSXFeedbDack CONLIOL..........oiuiiiii it e e s e e 11
4.10 The Overlayl and Overlay2 CONtrolSuvuviiiiiiiiiiiiieie e 12
411 “Boolean” Controls and The EnabledControls Control.............cccueveeeiieeeiiiiiiiiiiiieeeeeenn 12
412 Automatic Reset 0f BOOIEaN CONLIOIS..........uuiieiiiiiiiee it 12
5.0 Key EVeNnt ProCeSSING OVEIVIEW........uuiiiiiieeeeeeeie ettt s e e e e e e e e e e e eeeeaeeeennnnes 13
6.0 Key Event Processing in the SerVer ... 14
6.1 Applying Global CoNtrolSccuviiiiiiii e e e 14
6.2 LGS}V == 0 F= 1Y/ o 14
6.3 Y ACTIONS ...ttt ettt e e ot e e s e e e e e e bt e e e e e e e e 15
6.4 Delivering a Key or Button Event to @ ClieNt...........coooiiiiiiiiieircee e e e 22
6.4.1 XKB Interactions With Core Protocol Grabsc.ccocuveiiiiiiiiieiiiiiieee e 22
7.0 Key Event Processing in the CleNt..........ooooo i 23
7.1 NoOtation and TEIMINOIOGY........uueiieiiiiit ettt e e e 23
7.2 Determining the KeySym Associated with a Key Event...........cccccevveveeeiiiiicciiiieeeee e, 24
T.2. 1 KEBY TS ittt ettt e e e et e et e e e e e e e e r e e e e e e e e 24
7.2.2 Key SYMBOI MAP ...cvieiiiiiiie et e e e e e e e e e e e e nnnees 25
7.3 Transforming the KeySym Associated with a Key EVent...........ccccocviiiiiiiiiiiiiiiieeeeeeeeee, 26
7.4 Client Map EXamPIe......oe e 27

11/6/97 Protocol Version 1.0/Document Revision 1.0 TOC-1

The X Keyboard Extension Protocol Specification

8.0
9.0

10.0

11.0

12.0

13.0

14.0
15.0

SYMDBDONIC NAIMES ...ttt e e e e e e e e e e e e e e e s e 28
Keyboard INQICALOrSuuuiiiiii i e e e e e e 29
9.1 Global Information ADOUL INAICALOISueiiiiiiieiiii e 29
9.2 Per-Indicator INfOrmMatioN ... 30
9.2.1 INAICALOTN IMBPS ...ttt ettt e s et e e s e b e e s e nnb e e e e 30
Keyboard BeIIS..........ooooeiiiiiie e 33
10.1 Client Notification 0f BellS ..o 33
10.2 Disabling Server Generated BellSoooiiiiiiiiiiiiii e 33
10.3 Generating Named BeIISccoooiiiiiiieiiieee e e e ae s 33
10.4 Generating Optional Named BellSoooiiiiiiiiii e 33
10.5 Forcing a Server Generated Belloiiiiiiiiiii e 34
Keyboard GEOMELIYccooiiiiieeeee et e e e e e e e e e e e e e e ee e 34
111 Shapes and OULIINESueiiiiiiiee et e e e e e e e e s eee s 35
11.2 Y= Tox 1T LT PPRRPRR 35
11.3 D ToToTo F= 1o K3 PSP PUPPPPRPTPPRRN 36
114 Keyboard Geometry EXamMPIEooo ittt 37
Interactions Between XKB and the Core ProtoColcccceeeiiiiiiiieeeiiiiiiiececiiiens 38
12.1 Group CompatiDIlity IMAPeeeveeeeeeeeeee e e e s e e e e e e e e s s s r e e e e e e e e e ann 38
12.1.1 Setting a Passive Grab for an XKB State..........cccccvvieiiieeiii i 39
12.2 Changing the Keyboard Mapping Using the Core ProtoCol.............ooooiiiiiiiiiiiiiiiiniis 39
12.2.1 Explicit Keyboard Mapping COMPONENLS.uuuiiiiiiiieeiiiiiiiiiieeeeee e e e e e 39
12.2.2 AsSIgNING SYMDOIS TO GrOUPS ...eeeeeiiiieeiiiiiiitiiieet et et 40
12.2.3 Assigning Types To Groups of Symbols for a Key ..o, 41
12.2.4 AsSIgNING ACHIONS TO KEYS... oottt 42
12.2.5 Updating Everything EISe ... 43
12.3 Effects of XKB on Core ProtoCOl EVENES........ccoiiiiiiiiiiiiiieeee e 43
12.4 Effect of XKB on Core ProtoCol REQUESES.........uiiiieieiiiiiiiiiiiieeir e e e e e e e seiivnaeeee e e e e e e e e 44
12.5 Sending EVENLS t0 ClENTS......uuiiiiii i s e e e e e e e e e e e e e e e aaaeaeaees 45
The Server Database of Keyboard CoOmponentscccccvveeieiiiiiiiiiiiiiiiiiiiieee 45
13.1 (070 g T o ToT 0 T=T 0 1A N\ F= T 0 0= SRS 45
13.2 Partial Components and Combining Multiple Components...........ccccvveeeieeieieeniiiniiiiiieee, 46
13.3 COMPONENT HINES.....eiiiiiiei et e s et e e e e e e e e e nenes a7
13.4 (=) o To T= 1o I @Fo] '] oo T =1 o1 £ S 47
13.4.1 The Keycodes COMPONENT.......uuiiiiiiiiiiiie ittt ettt e ettt e e e e e snbaeeeessnneeees 47
13.4.2 The TYPes COMPONENTccceeiiiiieiieeee e e e seecreteerr e e e e e e s s s s e e eeeeesessannnnneeeeees a7
13.4.3 The Compatibility Map COMPONENL........cccoiiiiiiiiiiiiiee e 48
13.4.4 The Symbols COMPONENL.......cccoiiiiiciiiiiiiie e e e e ae e e e 48
13.4.5 The Geometry COMPONENL......cciiiiiiieiiiiiiie ettt et e e e snbaee e e e nnereas 48
135 COMPIELE KEYMEAPS ...ttt ettt et e e e e e e e e s bbbt e e e e e e e e e e s e e aannbeeeees 49
Replacing the Keyboard “On-the-FIy” ... 49
Interactions Between XKB and the X Input EXteNSIoNouvviviiiiiiiieeeeeeeenn, 49
15.1 Using XKB Functions with Input Extension Keyboardsccccuviiieeiiiiiiiininiiiiiieee, 50
15.2 Pointer and Device BULtON ACLHIONScc.uuiiiiiiiieiee ettt e e e e e e e e e e e e e e eneees 50
15.3 Indicator Maps for EXtENSION DEVICESuuiiiieieiii it e e e e e eee s 51
15.4 Indicator Names for EXtENSION DEVICESccuiiiiiiiiiiiiiiiieiiee e 51

11/6/97 Protocol Version 1.0/Document Revision 1.0 TOC-2

The X Keyboard Extension Protocol Specification

16.0 XKB ProtOCOI REQUESTScceiiiieiiiiiiiiiiiiiee e e e e e e e e e ettt ss s s e e e e e e e e e e e eeeeeeensnnnnns 51
16.1 0] £ PP PP PP PPPPTPPPR 51
G700 O R (=) Vo o T o I o) £ PP 52
16.1.2 Side-EffeCtS Of EITOrS......oiiiiiiiiii et 52
16.2 COMIMON TYPES. .ttt et et e e e e e e e e et ettt e et et eeaeae e ae b et e b e e e e e e e e e e e e e eeeeaeeenees 52
16.3 REGUESTS ...ttt e e e e et e e e e e e n et er e e e e e e s 56
16.3.1 Initializing the X Keyboard EXIENSION.........coocviiiiiiiiiiieeiiiieee e 56
16.3.2 SeIECHNG EVENIS ..ottt e 57
16.3.3 Generating Named Keyboard BellSoccueiiiiiiiiiiiii e 58
16.3.4 Querying and Changing Keyboard Stateccccceiiiiiiiiiiiiiieie e 59
16.3.5 Querying and Changing Keyboard CONtrolS...........cccoocuvieeiiiiieiieniiiiiee e 61
16.3.6 Querying and Changing the Keyboard Mappingcccceecuveveeiiiiiereeiniiieee e 66
16.3.7 Querying and Changing the Compatibility Map.........c.ccccoviiiiieiiiiiiiiiiieeene 72
16.3.8 Querying and Changing INAICALOrSc.uueieiiiiiiiiie it 74
16.3.9 Querying and Changing Symbolic Names...........ccccooiiiiieiiiiiiieiiieeee e 78
16.3.10 Querying and Changing Keyboard GEOMEtrYccoveeeriiiieeieniiiiieeeeiiiieeeeee 82
16.3.11 Querying and Changing Per-Client FIagscccooiiiiiiiiiiiiiiie e 84
16.3.12 Using the Server’s Database of Keyboard Components............ccceveeevivveeeenninnen. 85
16.3.13 Querying and Changing Input EXtension DeVICES............cccvvveeriiiiereeniiiieee e 89
16.3.14 Debugging the X Keyboard EXIENSIONceviiiiiiiiieiiiiiiee e 92
16.4 Y=Y 1 £ 93
16.4.1 Tracking Keyboard Replacement.........cuvieeeiiiiiiiiiiiiiiiiee e e e e e e 93
16.4.2 Tracking Keyboard Mapping Changesccccuviiiiiiieeeiis e eee e e 95
16.4.3 Tracking Keyboard State Changes.........cuivveeeiiiiiiiiiiiiiieiee e ee e e e e 96
16.4.4 Tracking Keyboard Control Changes..........cceeeeiiiiiciiiiiiiiieeee e cesieieeeee e 97
16.4.5 Tracking Keyboard Indicator State Changescccccccvveeeei i 98
16.4.6 Tracking Keyboard Indicator Map Changes.........ccccevveeeeeiiiiiciiiiiiieeeee e 98
16.4.7 Tracking Keyboard Name Changescccovvicciiiiiiiieiie et e e e e e e 99
16.4.8 Tracking Compatibility Map Changes........ccceovviiiiiiriiiiiiiiee et 100
16.4.9 Tracking Application Bell REQUESESuuviiiiiieeeeiiiiiiiieee e 101
16.4.10 Tracking Messages Generated by Key ACtiONSccevvvveeeiiiiiiiiiiiiiienieeeeeen 102
16.4.11 Tracking Changes to AccessX State and KEYScccceevvvivivciviniiriieeeeeeiiniiinnns 102
16.4.12 Tracking Changes To EXtension DEVICES...........cccccvvviiiriiieee e ccinieeee e e e e 103

Appendix A. Default Symbol Transformations A-1

1.0 Interpreting the Control MOAIfIer............uuvueiiiiii e A-1
2.0 Interpreting the LOCK MOAIfIEF.........cooovuiiiiiiie e A-1
21 Locale-Sensitive CapitaliZationeeeiiiiiiiei e A-1
2.2 Locale-Insensitive CapitaliZationcceviveeiiiiiiiiiiiiieec e A-1

2.2.1 Capitalization Rules for Latin-1 KeYSYMS........cccvueiiiiieeeeiiiiiciiinieeeee e e e e e A-2

2.2.2 Capitalization Rules for Latin-2 KEYSYMS.........ccuveiiiieeeeeiisiiiiiinieeeeee e e e e A-2

2.2.3 Capitalization Rules for Latin-3 KEYSYMS.........ccvveiiiieeeeeiisiiiiineeeeeee e e e A-2

2.2.4 Capitalization Rules for Latin-4 KeYSYMS........cccuvviiiieeeeeiisiiiiiineeeeeeeeee e A-2

2.2.5 Capitalization Rules for Cyrillic KEYSYMScoovviiiviiiiiiiriee e A-3

2.2.6 Capitalization Rules for Greek KEYSYMS........cccoviviiciiiiiiiiiiieee e cssvivneeee e e A-3

2.2.7 Capitalization Rules for Other KEYSYMScevvvvieeiiiiiiiiiieiieeeee e A-4

Appendix B. Canonical Key Types B-1

1.0 CanoniCal KEY TYPEScccoiiiiiieeeeeite e et e e e ettt e e e e e e e e e e e e e e e eeeeeesaannnns B-1
The ONE_LEVEL KEY TYPEevveiiiriiiiiiieieieeeieiss ettt B-1

1.1

11/6/97

Protocol Version 1.0/Document Revision 1.0 TOC-3

The X Keyboard Extension Protocol Specification

1.2 The TWO_LEVEL KEY Ty P, .ttt ettt B-1
1.3 The ALPHABETIC KEY TYPE ...eiiiiiiiiiiiieeei ettt e e e s et e e e e e e e e e s s ennnbnaeeeeaaaeens B-1
14 The KEYPAD KEY TYPE ..uuutiiiiiiiiiee e e i ieieitttieeee et e e e e e e s sssaatteaeeeeaaaeeesssannnstnsneeeeeeeaessesannnnnns B-1

Appendix C. New KeySyms C-1

1.0 NEW K BY SYIMIS ...ttt ittt ettt e e et e e e et e e e et e e e et e e et e e e eaaneeeees C-1
1.1 KeySyms Used by the ISO9995 Standard..............oooeviiiiiiiiiiiiiiicirs i C-1
1.2 KeySyms Used to Control The Core POINLETccoociiiiiiiiiiiici e C-2
1.3 KeySyms Used to Change Keyboard ControlS..........cccevvvveeeiiiiiiiieiiiiieieee e C-2
1.4 KeySyms Used TO CoNtrol T SEIVETuuuuuuiiiieis e C-3
15 KeySyms for Non-Spacing DiacritiCal KEYS..........occuueiiiiiiiiiiiiiiiiiee e C-3

Appendix D. Protocol Encoding D-1

1.0 SYNACHC CONVENTIONS.....uuiiiiiiiiiiiiiiiieee e e e e e e e e e e e e e e r e e e e e e e e e e e e e e e e e e aaanns D-1
2.0 (7o) 01 00T 0 T 1Y/ 013 PP D-2
3.0 1 (0] TP D-7
4.0 KEY ACHIONS. ...ttt e e e e e e e e e e e e et e e e e e e e e e e e e e e e n D-8
5.0 KEY BENAVIOIS.....ccooiiiieee e D-12
6.0 REQUESTS ... ettt D-13
7.0 Y] g PSPPI D-32

11/6/97 Protocol Version 1.0/Document Revision 1.0 TOC-4

The X Keyboard Extension Protocol Specification

1.0 Overview

This extension provides a number of new capabilities and controls for text keyboards.

The core X protocol specifies the ways that$hgt , Control andLock modifi-

ers and the modifiers bound to tMede_switch or Num_Lock keysyms interact to

generate keysyms and characters. The core protocol also allows users to specify that a
key affects one or more modifiers. This behavior is simple and fairly flexible, but it

has a number of limitations that make it difficult or impossible to properly support

many common varieties of keyboard behavior. The limitations of core protocol sup-
port for keyboards include:

» Use of a single, uniform, four-symbol mapping for all keyboard keys makes it difficult
to properly support keyboard overlays, PC-style break keys or keyboards that comply
with 1ISO9995 or a host of other national and international standards.

» Use of a modifier to specify a second keyboard group has side-effects that wreak havoc
with client grabs and X toolkit translations and limit us to two keyboard groups.

» Poorly specified locking key behavior requires X servers to look for a few “magic” key-
syms to determine which keys should lock when pressed. This leads to incompatibili-
ties between X servers with no way for clients to detect implementation differences.

» Poorly specified capitalization and control behavior requires modifications to X library
source code to support new character sets or locales and can lead to incompatibilities
between system-wide and X library capitalization behavior.

» Limited interactions between modifiers specified by the core protocol make many com-
mon keyboard behaviors difficult or impossible to implement. For example, there is no
reliable way to indicate whether or not using shift should “cancel” the lock modifier.

» The lack of any explicit descriptions for indicators, most modifiers and other aspects of
the keyboard appearance requires clients that wish to clearly describe the keyboard to a
user to resort to a mishmash of prior knowledge and heuristics.

This extension makes it possible to clearly and explicitly specify most aspects of key-
board behavior on a per-key basis. It adds the notion of a numeric keyboard group to
the global keyboard state and provides mechanisms to more closely track the logical
and physical state of the keyboard. For keyboard control clients, this extension pro-
vides descriptions and symbolic names for many aspects of keyboard appearance and
behavior. It also includes a number of keyboard controls designed to make keyboards
more accessible to people with movement impairments.

The X Keyboard Extension essentially replaces the core protocol definition of a key-
board. The following sections describe the new capabilities of the extension and the
effect of the extension on core protocol requests, events and errors.

1.1 Conventions and Assumptions
This document uses the syntactic conventions, common types, and errors defined in
sections two through four of the specification of the X Window System Protocol. This
document assumes familiarity with the fundamental concepts of X, especially those
related to the way that X handles keyboards. Readers who are not familiar with the
meaning or use of keycodes, keysyms or modifiers should consult (at least) the first
five chapters of the protocol specification of the X Window System before continuing.

11/6/97 Protocol Version 1.0/Document Revision 1.0 1

The X Keyboard Extension Protocol Specification

2.0

2.1

2.2

Keyboard State

The core protocol description of keyboard state consists of migdhifiers(Shift
Lock , Control , andMod1-Mod5). A modifier reports the state of one or modifier
keys, which are similar to qualifier keys as defined by the ISO9995 standard:

Qualifier key A key whose operation has no immediate effect, but which, for as long as it is
held down, modifies the effect of other keys. A qualifier key may be, for
example, a shift key or a control key.

Whenever a modifier key is physically or logically depressed, the modifier it controls
is set in the keyboard state. The protocol implies that certain modifier keys lock (i.e.
affect modifier state after they have been physically released) but does not explicitly
discuss locking keys or their behavior. The current modifier state is reported to clients
in a number of core protocol events and can be determined usiQgéing-

Pointer request.

The XKB extension retains the eight “real” modifiers defined by the core protocol but
extends the core protocol notionkafyboard statéo include up to foukeysym groups
as defined by the 1ISO9995 standard:

Group: A logical state of a keyboard providing access to a collection of characters. A
group usually contains a set of characters which logically belong together and
which may be arranged on several shift levels within that group.

For example, keyboard group can be used to select between multiple alphabets on a
single keyboard, or to access less-commonly used symbols within a character set.

Locking and Latching Modifiers and Groups

With the core protocol, there is no way to tell whether a modifier is set due to a lock or
because the user is actually holding down a key; this can make for a clumsy user-inter-
face as locked modifiers or group state interfere with accelerators and translations.

XKB adds explicit support for locking and latching modifiers and groups. Locked
modifiers or groups apply to all future key events until they are explicitly changed.
Latched modifiers or groups apply only to the next key event that does not change
keyboard state.

Fundamental Components of XKB Keyboard State
The fundamental components of XKB keyboard state include:

The locked modifiers and group

The latched modifiers and group

The base modifiers and group (for which keys are physically or logically down)

The effective modifiers and group (the cumulative effect of the base, locked and latched
modifier and group states).

» State of the core pointer buttons.

The latched and locked state of modifiers and groups can be changed in response to
keyboard activity or under application control using XtéLatchLockState

request. The base modifier, base group and pointer button states always reflect the log-
ical state of the keyboard and pointer and chamyein response to keyboard or

pointer activity.

11/6/97

Protocol Version 1.0/Document Revision 1.0 2

The X Keyboard Extension Protocol Specification

221

2.2.2

2.3

Computing Effective Modifier and Group

The effective modifiers and group report the cumulative effects of the base, latched
and locked modifiers and group respectively, and cannot be directly changed. Note
that the effective modifiers and effective group are computed differently.

The effective modifiers are simply the bitwise union of the base, latched and locked
modifiers.

The effective group is the arithmetic sum of the base, latched and locked groups. The
locked and effective keyboard group must fall in the raaigeipl -Group4 , so they
are adjusted into range as specified by the gl@balipsWrap control as follows:

» If the RedirectintoRange flag is set, the four least significant bits of the groups
wrap control specify the index of a group to which all illegal groups correspond. If the
specified group is also out of range, all illegal groups m&roopl .

» Ifthe ClampintoRange flag is set, out-of-range groups correspond to the nearest
legal group. Effective groups larger than the highest supported group are mapped to the
highest supported group; effective groups less @raupl are mapped tGroupl .

For example, a key with two groups of symbols Besup2 type and symbols if the
global effective group is eith&roup3 or Group4 .

» If neither flag is set, group is wrapped into range using integer modulus. For example, a
key with two groups of symbols for which groups wrap Besupl symbols if the
global effective group i&roup3 or Group2 symbols if the global effective group is
Group4 .

The base and latched keyboard groups are unrestricted eight-bit integer values and are
not affected by th&roupsWrap control.

Computing A State Field from an XKB State

Many events report the keyboard state in a sisgitefield. Using XKB, a state field
combines modifiers, group and the pointer button state into a single sixteen bit value
as follows:

» Bits 0 through 7 (the least significant eight bits) of the effective state comprise a mask
of type KEYMASK which reports the state modifiers.

» Bits 8 through 12 comprise a mask of type BUTMASK which reports pointer button
state.

» Bits 13 and 14 are interpreted as a two-bit unsigned numeric value and report the state
keyboard group.

» Bit 15 (the most significant bit) is reserved and must be zero.

It is possible to assemble a state field from any of the components of the XKB key-
board state. For example, the effective keyboard state would be assembled as
described above using the effective keyboard group, the effective keyboard modifiers
and the pointer button state.

Derived Components of XKB Keyboard State

In addition to the fundamental state components, XKB keeps track of and reports a
number of state components which are derived from the fundamental components but
stored and reported separately to make it easier to track changes in the keyboard state.
These derived components are updated automatically whenever any of the fundamen-
tal components change but cannot be changed directly.

11/6/97

Protocol Version 1.0/Document Revision 1.0 3

The X Keyboard Extension Protocol Specification

231

2.4

The first pair of derived state components control the way that passive grabs are acti-
vated and the way that modifiers are reported in core protocol events that report state.
The server uses ttgerverinternalModifiers , IgnoreLocksModifiers
andlgnoreGroupLock controls, described in section 2.3.1, to derive these two
states as follows:

» The lookup state is the state used to determine the symbols associated with a key event
and consists of the effective state minus any server internal modifiers.

» The grab state is the state used to decide whether a particular event triggers a passive
grab and consists of the lookup state minus any members of the ignore locks modifiers
that are not either latched or logically depressed. If the ignore group locks control is
set, the grab state does not include the effects of any locked groups.

Server Internal Modifiers and Ignore Locks Behavior
The core protocol does not provide any way to exclude certain modifiers from client
events, so there is no way to set up a modifier which affects only the server.

The modifiers specified in the mask of finéernalMods control are not reported

in any core protocol events, are not used to determine grabs and are not used to calcu-
late compatibility state for XKB-unaware clients. Server internal modifiers affect only
the action applied when a key is pressed.

The core protocol does not provide any way to exclude certain modifiers from grab
calculations, so locking modifiers often have unanticipated and unfortunate side-
effects. XKB provides another mask which can help avoid some of these problems.

The locked state of the modifiers specified in mask ofghereLockMods control

is not reported in most core protocol events and is not used to activate grabs. The only
core events which include the locked state of the modifiers in the ignore locks mask
are key press and release events that do not activate a passive grab and which do not
occur while a grab is active. If thgnoreGroupLock control is set, the locked

state of the keyboard group is not considered when activating passive grabs.

Without XKB, the passive grab set by a translation @ligrtKeyPress>space)

does not trigger if any modifiers other than those specified by the translation are set,
with the result that many user interface components do not react when either Num
Lock or when the secondary keyboard group are active. The ignore locks mask and the
ignore group locks control make it possible to avoid this behavior without exhaus-
tively grabbing every possible modifier combination.

Compatibility Components of Keyboard State

The core protocol interpretation of keyboard modifiers does not include direct support
for multiple groups, so XKB reports the effective keyboard group to XKB-aware cli-
ents using some of the reserved bits in the state field of some core protocol events, as
described in section 2.2.2.

This modified state field would not be interpreted correctly by XKB-unaware clients,
so XKB provides group compatibility mappingsee section 12.1) which remaps the
keyboard group into a core modifier mask that has similar effects, when possible.
XKB maintains three compatibility state components that are used to make non-XKB
clients work as well as possible:

» Thecompatibility statecorresponds to the effective modifier and effective group state.

11/6/97

Protocol Version 1.0/Document Revision 1.0 4

The X Keyboard Extension Protocol Specification

3.0

» Thecompatibility lookup statés the core-protocol equivalent of the lookup state.
» Thecompatibility grab statés the nearest core-protocol equivalent of the grab state.

Compatibility states are essentially the corresponding XKB state, but with keyboard
group possibly encoded as one or more modifiers; section 12.1 describes the group
compatibility map, which specifies the modifier(s) that correspond to each keyboard

group.

The compatibility state reported to XKB-unaware clients for any given core protocol
event is computed from the modifier state that XKB-capable clients would see for that
same event. For example, if the ignore group locks control is set and group 2 is locked,
the modifier bound tMode_switch is not reported in any event except (Device)Key-
Press and (Device)KeyRelease events that do not trigger a passive grab.

Note Referring to clients as “XKB-capable” is somewhat misleading in this context. The
sample implementation of XKB invisibly extends the X library to use the keyboard
extension if it is present. This means that most clients can take advantage of all of
XKB without modification, but it also means that the XKB state can be reported to cli-
ents that have not explicitly requested the keyboard extension. Cliendg¢iaty
interpret the state field of core protocol events or that interpret the keymap directly
may be affected by some of the XKB differences; clients that use library or toolkit
routines to interpret keyboard events automatically use all of the XKB features.

XKB-aware clients can query the keyboard state at any time or request immediate
notification of a change to any of the fundamental or derived components of the key-
board state.

Virtual Modifiers

The core protocol specifies that certain keysyms, when bound to modifiers, affect the
rules of keycode to keysym interpretation for all keys; for example, When Lock

is bound to some modifier, that modifier is used to choose shifted or unshifted state for
the numeric keypad keys. The core protocol does not provide a convenient way to
determine the mapping of modifier bits, in particiard1 throughMod5, to keysyms

such aNum_Lock andMode_switch. Clients must retrieve and search the modifier

map to determine the keycodes bound to each modifier, and then retrieve and search
the keyboard mapping to determine the keysyms bound to the keycodes. They must
repeat this process for all modifiers whenever any part of the modifier mapping is
changed.

XKB provides a set of sixteen named virtual modifiers, each of which can be bound to
any set of the eight “real” modifierSkift , Lock , Control andModl1-Mod5 as

reported in the keyboard state). This makes it easier for applications and keyboard lay-
out designers to specify to the function a modifier key or data structure should fulfill
without having to worry about which modifier is bound to a particular keysym.

The use of a single, server-driven mechanism for reporting changes to all data struc-
tures makes it easier for clients to stay synchronized. For example, the core protocol
specifies a special interpretation for the modifier bound toitime_Lock key. When-

ever any keys or modifiers are rebound, every application has to check the keyboard
mapping to make sure that the bindingNlom_Lock has not changed. Mum_Lock is
remapped when XKB is in use, the keyboard description is automatically updated to

11/6/97

Protocol Version 1.0/Document Revision 1.0 5

The X Keyboard Extension Protocol Specification

3.1

reflect the new binding, and clients are notified immediately and explicitly if there is a
change they need to consider.

The separation of function from physical modifier bindings also makes it easier to
specify more clearly the intent of a binding. X servers do not all assign modifiers the
same way — for exampl&lum_Lock might be bound t&od2 for one vendor and to
Mod4 for another. This makes it cumbersome to automatically remap the keyboard to
a desired configuration without some kind of prior knowledge about the keyboard lay-
out and bindings. With XKB, applications simply use virtual modifiers to specify the
behavior they want, without regard for the actual physical bindings in effect.

XKB puts most aspects of the keyboard under user or program control, so it is even
more important to clearly and uniformly refer to modifiers by function.

Modifier Definitions

Use anXKB modifier definitiorio specify the modifiers affected by any XKB control

or data structure. An XKB modifier definition consists of a set of real modifiers, a set
of virtual modifiers, and an effective mask. The mask is derived from the real and vir-
tual modifiers and cannot be explicitly changed — it contains all of the real modifiers
specified in the definitioplus any real modifiers that are bound to the virtual modifi-
ers specified in the definition. For example, this modifier definition specifies the
numeric lock modifier if thé&lum_Lock keysym is not bound to any real modifier:

{ real_mods= None, virtual_mods= NumLock, mask= None }
If we assignMod2 to theNum_Lock key, the definition changes to:
{ real_mods= None, virtual_mods= NumLock, mask= Mod2 }

Using this kind of modifier definition makes it easy to specify the desired behavior in
such a way that XKB can automatically update all of the data structures that make up a
keymap to reflect user or application specified changes in any one aspect of the key-
map.

The use of modifier definitions also makes it possible to unambiguously specify the
reason that a modifier is of interest. On a system for whichltl@ndMeta keysyms
are bound to the same modifier, the following definitions behave identically:

{ real_mods= None, virtual_mods= Alt, mask= Mod1 }
{ real_mods= None, virtual_mods= Meta, mask= Mod1 }

If we rebind one of the modifiers, the modifier definitions automatically reflect the
change:

{ real_mods= None, virtual_mods= Alt, mask= Mod1 }
{ real_mods= None, virtual_mods= Meta, mask= Mod4 }

Without the level of indirection provided by virtual modifier maps and modifier defi-
nitions, we would have no way to tell which of the two definitions is concerned with
Alt and which is concerned wiMeta.

11/6/97

Protocol Version 1.0/Document Revision 1.0 6

The X Keyboard Extension Protocol Specification

3.1.1

3.2

4.0

4.1

Inactive Modifier Definitions
Some XKB structures ignore modifier definitions in which the virtual modifiers are
unbound. Consider this example:

if (state matches { Shift }) Do OneThing;
if (state matches { Shift+NumLock }) Do Another;

If the NumLock virtual modifier is not bound to any real modifiers, these effective
masks for these two cases are identical (i.e. they contairbbifty). When it is
essential to distinguish between OneThing and Another, XKB considers only those
modifier definitions for which all virtual modifiers are bound.

Virtual Modifier Mapping

XKB maintains avirtual modifier mappingwhich lists the virtual modifiers associ-

ated with each key. The real modifiers bound to a virtual modifier always include all
of the modifiers bound to any of the keys that specify that virtual modifier in their vir-
tual modifier mapping.

For example, iMod3is bound to th&lum_Lock key by the core protocol modifier
mapping, and thsBlumLock virtual modifier is bound to theljum_Lock key by the
virtual modifier mappingMod3 is added to the set of modifiers associated with the
NumLock virtual modifier.

The virtual modifier mapping is normally updated automatically whenever actions are
assigned to keys (see section 12.2 for details) and few applications should need to
change the virtual modifier mapping explicitly.

Global Keyboard Controls

The X Keyboard Extension supports a numbeglobal key controlswhich affect the

way that XKB handles the keyboard as a whole. Many of these controls make the key-
board rréore accessible to the physically impaired and are based on the AccessDOS
package.

The RepeatKeys Control

The core protocol only allows control over whether or not the entire keyboard or indi-
vidual keys should autorepeat when held down.Répeatkeys control extends this
capability by adding control over the delay until a key begins to repeat and the rate at
which it repeatsRepeatKeys is also coupled with the core autorepeat control,
changes to one are always reflected in the other.

TheRepeatKeys control has two parameters. Tégtorepeat delagpecifies the

delay between the initial press of an autorepeating key and the first generated repeat
event in milliseconds. Thaeutorepeat intervaspecifies the delay between all subse-
guent generated repeat events in milliseconds.

1. AccessDOS provides access to the DOS operating system for people with physical impairments and was devel-
oped by the Trace R&D Center at the University of Wisconsin. For more information on AccessDOS, contact the
Trace R&D Center, Waisman Center and Department of Industrial Engineering, University of Wisconsin-Madison
WI 53705-2280. Phone: 608-262-6966. e-mail: info@trace.wisc.edu.

11/6/97

Protocol Version 1.0/Document Revision 1.0 7

The X Keyboard Extension Protocol Specification

41.1

4.1.2

4.2

4.3

The PerKeyRepeat Control

WhenRepeatKeys are active, th®erKeyRepeat control specifies whether or
not individual keys should autorepeat when held down. XKB provideRdheey-
Repeat for convenience only, and it always parallelsdbéo-repeatdield of the
core protocolGetKeyboardControl request — changes to one are always
reflected in the other.

Detectable Autorepeat

The X server usually generates both press and release events whenever an autorepeat-
ing key is held down. If an XKB-aware client enablesDia¢ectableAutore-

peat per-client option for a keyboard, the server sends that client a key release event
only when the key iphysicallyreleased. For example, holding down a key to generate
three characters without detectable autorepeat yields:

Press- Release- Press— Release- Press- Release
If detectable autorepeat is enabled, the client instead receives:
Press- Press- Press- Release

Note that only clients that request detectable autorepeat are affected; other clients con-
tinue to receive both press and release events for autorepeating keys. Also note that
support for detectable autorepeat is optional; servers are not required to support detect-
able autorepeat, but they must correctly report whether or not it is supported.

Section 16.3.11 describes tkkbPerClientFlags request, which reports or
changes values for all of the per-client flags, and which lists the per-client flags that
are supported.

The SlowKeys Control

Some users often bump keys accidentally while moving their hand or typing stick
toward the key they want. Usually, the keys that are bumped accidentally are hit only
for a very short period of time. TI8owKeys control helps filter these accidental

bumps by telling the server to wait a specified period, calle8ltheKeys acceptance

delay, before delivering key events. If the key is released before this period elapses, no
key events are generated. The user can then bump any number of keys on their way to
the one they want without generating unwanted characters. Once they have reached
the key they want, they can then hold it long enouglsfowKeys to accept it.

TheSlowKeys control has one parameter; $lew keys delagpecifies the length of
time, in milliseconds, that a key must be held down before it is accepted.

WhenSlowKeys are active, the X Keyboard Extension reports the initial press,
acceptance, rejection or release of any key to interested clientsdasiegs XNo-
tify events. ThéccessXNotify event is described in more detail in section
16.4.

The BounceKeys Control

Some people with physical impairments accidentally “bounce” on a key when they
press it. That is, they press it once, then accidentally press it again immediately. The
BounceKeys control temporarily disables a key after it has been pressed, effectively
“debouncing” the keyboard.

11/6/97

Protocol Version 1.0/Document Revision 1.0 8

The X Keyboard Extension Protocol Specification

TheBounceKeys has a single parameter. TBeunceKeys delagpecifies the period
of time, in milliseconds, that the key is disabled after it is pressed.

WhenBounceKeys are active, the server reports the acceptance or rejection of any
key to interested clients by sendingfAstessXNotify event. TheAccessXNo-
tify eventis described in more detail in section 16.4.

4.4 The StickyKeys Control
Some people find it difficult or impossible to press two keys at onceSiitle
yKeys control makes it easier for them to type by changing the behavior of the modi-
fier keys. WhersstickyKeys are enabled, a modifier is latched when the user
presses it just once, so the user can first press a modifier, release it, then press another
key. For example, to get an exclamation point (!) on a PC-style keyboard, the user can
press theshift key, release it, then press thkey.

By default,StickyKeys also allows users to lock modifier keys without requiring
special locking keys. The user can press a modifier twice in a row to lock it, and then
unlock it by pressing it one more time.

Modifiers are automatically unlatched when the user presses a non-modifier key. For
instance, to enter the sequeisdeft +Ctrl +Z the user could press and release the
Shift key to latch thé&hift modifier, then press and release @ key to latch the
Control modifier — theCtrl key is a modifier key, so pressing it does not unlatch
theShift modifier, but leaves both tf&hift andControl modifiers latched,

instead. When the user presseszlkey, it will be as though the user pressed

Shift +Ctrl +Z simultaneously. Thg key is not a modifier key, so tighift and
Control modifiers are unlatched after the event is generated.

A locked a modifier remains in effect until the user unlocks it. For example, to enter
the sequence (“XKB”) on a PC-style keyboard with a typical US/ASCII layout, the
user could press and release $hét key twice to lock th&hift modifier. Then,

when the user presses the, x, k, b, ‘, and0 keys in sequence, it will generate
(“XKB”). To unlock theShift modifier, the user can press and releasstiifekey.

Two option flags modify the behavior of tB¢ickyKeys control:
If the XkbAX_TwoKeys flag is set, XKB automatically turi&ickyKeys off if the
user presses two or more keys at once. This serves to automatically disable StickyKeys
when a user who does not require sticky keys is using the keyboard.

» TheXkbAX_LatchToLock controls the locking behavior 8tickyKeys ; the
StickyKeys control only locks modifiers as described above if the
XkbAX_LatchToLock flag is set.

4.5 The MouseKeys Control
The MouseKeys control lets a user control all the mouse functions from the key-
board. WherMouseKeys are enabled, all keys witlouseKeys actions bound to
them generate core pointer events instead of normal key press and release events.

TheMouseKeys control has a single parameter, theuse keys default buttomhich
specifies the core pointer button to be used by mouse keys actions that do not explic-
itly specify a button.

11/6/97 Protocol Version 1.0/Document Revision 1.0 9

The X Keyboard Extension Protocol Specification

4.6

4.6.1

4.6.2

4.7

The MouseKeysAccel Control

If the MouseKeysAccel control is enabled, the effect of a pointer motion action
changes as a key is held down. Tineuse keys delapecifies the amount of time
between the initial key press and the first repeated motion evenndlse keys inter-

val specifies the amount of time between repeated mouse keys everggeght®
maximum acceleratiofield specifies the total number of events before the key is trav-
elling at maximum speed. Tmeaximum acceleratiofield specifies the maximum
acceleration. Theurveparameter controls the ramp used to reach maximum accelera-
tion.

WhenMouseKeys are active and 8A_MovePtr key action (see section 6.3) is
activated, a pointer motion event is generated immediaté¥jouiseKeysAccel is

enabled and if acceleration is enabled for the key in question, a second event is gener-
ated aftemouse keys delayilliseconds, and additional events are generated every
mouse keys intervatilliseconds for as long as the key is held down.

Relative Pointer Motion

If the SA_MovePtr action specifies relative motion, events are generated as follows:
The initial event always moves the cursor the distance specified in the action; after
steps to maximum acceleratiements have been generated, all subsequent events
move the pointer the distance specified in the action timesdxenum acceleration.
Events after the first but before maximum acceleration has been achieved are acceler-
ated according to the formula:

d(step = action_deltax u max_accel O

% urveFactor
Qﬁteps to mas¥rveFactof] steff

Whereaction_deltais the offset specified by the mouse keys acheg_acceand
steps_to_maare parameters to tivouseKeysAccel ctrl, and the curveFactor is
computed using thelouseKeysAccel curveparameter as follows:

rv
curveFactor(curveF % curve

1000

With the result that aurveof O causes the distance moved to increase linearly from
action_deltato (max_accek action_delfe, and the minimum legalurveof -1000 causes

all events after the first move @mitax_accelA negativecurvecauses an initial sharp
increase in acceleration which tapers off, while a positive curve yields a slower initial
increase in acceleration followed by a sharp increase as the number of pointer events
generated by the action approackiEeps_to_max

Absolute Pointer Motion

If an SA_MovePtr action specifies an absolute position for one of the coordinates

but still allows acceleration, all repeated events contain any absolute coordinates spec-
ified in the action.

The AccessXKeys Control
If AccessXKeys is enabled many controls can also be turned on or off from the key-
board by entering the following standard key sequences:

» Holding down a shift key by itself for eight seconds togglesSibe/Keys control.

11/6/97

Protocol Version 1.0/Document Revision 1.0 10

The X Keyboard Extension Protocol Specification

4.8

4.9

» Pressing and releasing a shift key five times in a row without any intervening key
events and with less than 30 seconds delay between consecutive presses toggles the
state of theStickyKeys control.

» Simultaneously operating two or more modifier keys deactivateStitie/Keys
control.

Some of these key sequences optionally generate audible feedback of the change in
state, as described in section 4.9, or caikd®\ccessXNotify events as described
in section 16.4.

The AccessXTimeout Control

In environments where computers are shared, features s8tbhwdseys present a
problem: ifSlowKeys is on, the keyboard can appear to be unresponsive because
keys have no effect unless they are held for a certain period of time. To help address
this problem, XKB provides aAccessXTimeout control to automatically change

the value of any global controls or AccessX options if the keyboard is idle for a speci-
fied period of time.

The AccessXTimeout control has a number of parameters which affect the duration of
the timeout and the features changed when the timeout expires.

TheAccessX Timeotield specifies the number of seconds the keyboard must be idle
before the global controls and AccessX options are modifiedAtbessX Options
Maskfield specifies which values in tiiecessX Optioneld are to be changed, and
the AccessX Options Valuéigld specifies the new values for those options. The
AccessX Controls Masileld specifies which controls are to be changed in the global
set ofenabled controlsand theAccessX Controls Valudigld specifies the new val-

ues for those controls.

The AccessXFeedback Control

If AccessXFeedback is enabled, special beep-codes indicate changes in keyboard
controls (or some key events whglowKeys or StickyKeys are active). Many

beep codes sound as multiple tones, but XKB reports a s{kbiBellNotify

event for the entire sequence of tones.

All feedback tones are governed by thalibleBell control. Individual feedback
tones can be explicitly enabled or disabled usingttessX options mask set to
deactivate after an idle period using #oeessX timeout options ma3KB defines
the following feedback tones:

Feedback Name Bell Name Default Sound Indicates
FeatureFB AX_FeatureOn rising tone Keyboard control enabled
AX_FeatureOff falling tone Keyboard control disabled
AX_FeatureChange two tones Several controls changed state
IndicatorFB AX_IndicatorOn high tone Indicator Lit
AX_IndicatorOff low tone Indicator Extinguished
AX_IndicatorChange two high tones Several indicators changed state
SlowWarnFB AX_SlowKeysWarning three high tones Shift key held for four seconds
SKPressFB AX_SlowKeyPress single tone Key press vBlbevKeys are on
SKReleaseFB AX_SlowKeyRelease single tone Key release GlulgKeys are on
SKAcceptFB AX_SlowKeyAccept single tone Key event accepte8lbwKeys
SKRejectFB AX_SlowKeyReject low tone Key event rejecteSlpwKeys

11/6/97

Protocol Version 1.0/Document Revision 1.0 11

The X Keyboard Extension Protocol Specification

4.10

411

412

Feedback Name Bell Name Default Sound Indicates
StickyKeysFB ~ AX_StickyLatch low tone thenModifier latched byStickyKeys
high tone
AX_StickyLock high tone Modifier locked b8tickyKeys
AX_StickyUnlock low tone Modifier unlocked b$tickyKeys

BKRejectFB AX_BounceKeysReject lowtone Key event rejecteBdynceKeys

Implementations that cannot generate continuous tones may generate multiple beeps
instead of falling and rising tones; for example, they can generate a high-pitched beep
followed by a low-pitched beep instead of a continuous falling tone.

If the physical keyboard bell is not very capable, attempts to simulate a continuous
tone with multiple bells can sound horrible. SetfhanbBellFB AccessX option to
inform the server that the keyboard bell is not very capable and that XKB should use
only simple bell combinations. Keyboard capabilities vary wildly, so the sounds gen-
erated for the individual bells when tBeimbBellFB option is set are implementa-

tion specific.

The Overlayl and Overlay2 Controls

A keyboard overlay allows some subset of the keyboard to report alternate keycodes
when the overlay is enabled. For example a keyboard overlay can be used to simulate
a numeric or editing keypad on keyboard that does not actually have one by generating
alternate of keycodes for some keys when the overlay is enabled. This technique is
very common on portable computers and embedded systems with small keyboards.

XKB includes direct support for two keyboard overlays, usingherlayl and

Overlay2 controls. WherDverlayl is enabled, all of the keys that are members

of the first keyboard overlay generate an alternate keycode. ®emtay2 is

enabled, all of the keys that are members of the second keyboard overlay generate an
alternate keycode.

To specify the overlay to which a key belongs and the alternate keycode it should gen-
erate when that overlay is enabled, assign it eithekBheOverlayl or
KB_Overlay2 key behaviors, as described in section 6.2.

“Boolean” Controls and The EnabledControls Control

All of the controls described above, along with gwelibleBell control (described

in section 10.2) and thgnoreGroupLock control (described in section 2.3.1)
comprise thdoolean controlsin addition to any parameters listed in the descriptions
of the individual controls, the boolean controls can be individually enabled or disabled
by changing the value of tlienabledControls control.

The followingnon-boolearcontrols are always active and cannot be changed using
theEnabledControls control or specified in any context that accepts only bool-
ean controlsGroupsWrap (section 2.2.1)}nabledControls , InternalMods
(section 2.3.1), anlfjnoreLockMods (section 2.3.1) anBerKeyRepeat (sec-

tion 4.1)

Automatic Reset of Boolean Controls

Theauto-reset controlare a per-client value which consist of two masks that can con-
tain any of the boolean controls (see section 4.11). Whenever the client exits for any
reason, any boolean controls specified inahi-reset masére set to the correspond-

11/6/97

Protocol Version 1.0/Document Revision 1.0 12

The X Keyboard Extension Protocol Specification

5.0

ing value from theauto-reset valuemask. This makes it possible for clients to “clean
up after themselves” automatically, even if abnormally terminated.

For example, a client that replace the keyboard bell with some other audible cue might
want to turn off theAudibleBell control (section 10.2) to prevent the server from
also generating a sound and thus avoid cacophony. If the client were to exit without
resetting théAudibleBell control, the user would be left without any feedback at

all. SettingAudibleBell in both the auto-reset mask and auto-reset values guaran-
tees that the audible bell will be turned back on when the client exits.

Key Event Processing Overview

There are three steps to processing each key event in the X server, and at least three in
the client. This section describes each of these steps briefly; the following sections
describe each step in more detail.

1. First, the server applies global keyboard controls to determine whether the key event
should be processed immediately, deferred, or ignored. For examfiowiceys
control can cause a key event to be deferred until the slow keys delay has elapsed while
theRepeatKeys control can cause multiple X events from a single physical key press
if the key is held down for an extended period. The global keyboard controls affect all
of the keys on the keyboard and are described in section 4.0.

2. Next, the server applies per-key behavior. Per key-behavior can be used to simulate or indi-
cate some special kinds of key behavior. For example, keyboard overlays, in which a key
generates an alternate keycode under certain circumstances, can be implemented using per-
key behavior. Every key has a single behavior, so the effect of key behavior does not
depend on keyboard modifier or group state, though it might depend on global keyboard
controls. Per-key behaviors are described in detail in section 6.2.

3. Finally, the server applies key actions. Logically, every keysym on the keyboard has some
action associated with it. The key action tells the server what to do when an event which
yields the corresponding keysym is generated. Key actions might change or suppress the
event, generate some other event, or change some aspect of the server. Key actions are
described in section 6.3.

If the global controls, per-key behavior and key action combine to cause a key event,
the client which receives the event processes it in several steps.

1. First the client extracts the effective keyboard group and a set of modifiers from the
state field of the event. See section 2.2.2 for details.

2. Using the modifiers and effective keyboard group, the client selects a symbol from the list
of keysyms bound to the key. Section 7.2 discusses symbol selection.

3. If necessary, the client transforms the symbol and resulting string using any modifiers that
are “left over” from the process of looking up a symbol. For example, ifdble modifier
is left over, the resulting keysym is capitalized according to the capitalization rules speci-
fied by the system. See section 7.3 for a more detailed discussion of the transformations
defined by XKB.

4. Finally, the client uses the keysym and remaining modifiers in an application-specific way.
For example, applications based on the X toolkit might apply translations based on the
symbol and modifiers reported by the first three steps.

11/6/97

Protocol Version 1.0/Document Revision 1.0 13

The X Keyboard Extension Protocol Specification

6.0

6.1

6.2

Key Event Processing in the Server

This section describes the steps involved in processing a key event within the server
when XKB is present. Key events can be generated due to keyboard activity and
passed to XKB by the DDX layer, or they can be synthesized by another extension,
such as XTEST.

Applying Global Controls

When the X Keyboard Extension receives a key event, it first checks the global key
controls to decide whether to process the event immediately or at all. The global key
controls which might affect the event, in descending order of priority, are:

» If a key is pressed while tlBounceKeys control is enabled, the extension generates
the event only if the key is active. When a key is released, the server deactivates the key
and starts &ounce keys timeawith an interval specified by the debounce delay.

If the bounce keys timer expires or if some other key is pressed before the timer
expires, the server reactivates the corresponding key and deactivates the timer. Neither
expiration nor deactivation of a bounce keys timer causes an event.

» If the SlowKeys control is enabled, the extension sestoav keys timewith an inter-
val specified by the slow keys delay, but does not process the key event immediately.
The corresponding key release deactivates this timer.

If the slow keys timer expires, the server generates a key press for the corresponding
key, sends aXkbAccessXNotify and deactivates the timer.

» The extension processes key press events normally whether or RejpiatKeys
control is active, but iRepeatKeys are enabled and per-key autorepeat is enabled
for the event key, the extension processes key press events normally, but it also initiates
anautorepeat timewith an interval specified by the autorepeat delay. The correspond-
ing key release deactivates the timer.

If the autorepeat timer expires, the server generates a key release and a key press for the
corresponding key and reschedules the timer according to the autorepeat interval.

Key events are processed by each global control in turn: BabeceKeys control
accepts a key evergJowKeys considers it. Onc8lowKeys allows or synthesizes
an event, th®epeatKeys control acts on it.

Key Behavior

Once an event is accepted by all of the controls or generated by a timer, the server
checks the per-key behavior of the corresponding key. This extension currently
defines the following key behaviors:

Behavior Effect
KB_Default Press and release events are processed normally.
KB_Lock If a key is logically up (i.e. the corresponding bit of the core key map

is cleared) when it is pressed, the key press is processed normally
and the corresponding release is ignored. If the key is logically down
when pressed, the key press is ignored but the corresponding release
is processed normally.

11/6/97

Protocol Version 1.0/Document Revision 1.0 14

The X Keyboard Extension Protocol Specification

Behavior Effect

KB_RadioGroup If another member of the radio group specifiedngexis logically
flags: CARDS8 down when a key is pressed, the server synthesizes a key release for
index: CARD8 the member that is logically down and then processes the new key

press event normally.

If the key itself is logically down when pressed, the key press event
is ignored, but the processing of the corresponding key release
depends on the value of tR&AllowNone bit inflags If it is set,

the key release is processed normally; otherwise the key release is
also ignored.

All other key release events are ignored.

KB_Overlayl If the Overlayl control is enabled, events from this key are
key: KEYCODE reported as if they came from the key specifiekkiyn Otherwise,
press and release events are processed normally.

KB_Overlay?2 If the Overlay2 control is enabled, events from this key are
key: KEYCODE reported as if they came from the key specifiekieyn Otherwise,
press and release events are processed normally.

The X server uses key behavior to determine whether to process or filter out any given
key event; key behavior is independent of keyboard modifier or group state (each key
has exactly one behavior.

Key behaviors can be used to simulate any of these types of keys or to indicate an
unmodifiable physical, electrical or software driver characteristic of a key. An
optionalpermanentlag can modify any of the supported behaviors and indicates that
behavior describes an unalterable physical, electrical or software aspect of the key-
board. Permanent behaviors cannot be changed or set XkliBetMap request.
Thepermanentlag indicates a characteristic of the underlying system that XKB can-
not affect, so XKB treats all permanent behaviors as if they KBréefault and

does not filter key events described in the table above.

6.3 Key Actions
Once the server has applied the global controls and per-key behavior and has decided
to process a key event, it appllesy actiongo determine the effects of the key on the
internal state of the server. A key action consists of an operator and some optional
data. XKB supports actions which:
» change base, latched or locked modifiers or group
* move the core pointer or simulate core pointer button events
» change most aspects of keyboard behavior
» terminate or suspend the server
» send a message to interested clients
* simulate events on other keys
Each key has an optional list of actions. If present, this list parallels the list of symbols
associated with the key (i.e. it has one action per symbol associated with the key). For
key press events, the server looks up the action to be applied from this list using the
key symbol mapping associated with the event key, just as a client looks up symbols
as described in section 7.2; if the event key does not have any actions, the server uses
theSA_NoAction event for that key regardless of modifier or group state.
Key actions have essentially two halves; the effects on the server when the key is
pressed and the effects when the key is released. The action applied for a key press

11/6/97 Protocol Version 1.0/Document Revision 1.0 15

The X Keyboard Extension Protocol Specification

event determines the further actions, if any, that are applied to the corresponding
release event or to events that occur while the key is held down. Clients can change the
actions associated with a key while the key is down without changing the action
applied next time the key is released; subsequent press-release pairs will use the newly
bound key action.

Most actions directly change the state of the keyboard or server; some actions also
modify other actions that occur simultaneously with them. Two actions occur simulta-
neously if the keys which invoke the actions are both logically down at the same time,
regardless of the order in which they are pressed or delay between the activation of
one and the other.

Most actions which affect keyboard modifier state accept a modifier definition (see
section 3.0) nameghodsand a boolean flag nameeModMapmmong their argu-

ments. These two fields combine to specify the modifiers affected by the action as fol-
lows: If useModMagps True , the action sets any modifiers bound by the modifier
mapping to the key that initiated the action; otherwise, the action sets the modifiers
specified bymods For brevity in the text of the following definitions, we refer to this
combination ouseModMapmndmodsas the “action modifiers.”

The X Keyboard Extension supports the following actions:

Action Effect
SA _NoAction » No direct effect, thougBA_NoAction events may change
the effect of other server actions (see below).
SA_SetMods » Key press adds any action modifiers to the keyboard's base
mods: MOD_DEF modifiers
useModMap: BOOL < Key release clears any action modifiers in the keyboard’s base
clearLocks: BOOL modifiers, provided that no other key which affects the same

modifiers is logically down.
* If no keys were operated simultaneously with this key and
clearLocksis set, release unlocks any action modifiers.

SA LatchMods » Key press and release events have the same effect as for
mods: MOD_DEF SA_SetMods; if no keys were operated simultaneously with
useModMap: BOOL the latching modifier key, key release events have the following
clearLocks: BOOL additional effects:
latchToLock: BOOL « Modifiers that were unlocked duediearLockshave no further

effect.

« If latchToLockis set, key release locks and then unlatches any
remaining action modifiers that are already latched.

* Finally, key release latches any action modifiers that were not
used by thelearLocksor latchToLockflags.

SA LockMods » Key press sets the base and possibly the locked state of any
mods: MOD_DEF action modifiers. IhoLockis True , only the base state is
useModMap: BOOL changed.
noLock: BOOL » For key release events, clears any action maodifiers in the key-
noUnlock: BOOL board’s base modifiers, provided that no other key which

affects the same modifiers is downn&fUnlockis False and
any of the action modifiers were locked before the correspond-
ing key press occurred, key release unlocks them.

11/6/97

Protocol Version 1.0/Document Revision 1.0 16

The X Keyboard Extension

Protocol Specification

Action Effect
SA_SetGroup If groupAbsolutés set, key press events change the base key-
group: INT8 board group tgroup, otherwise, they adgroupto the base

groupAbsolute: BOOL
clearLocks: BOOL

SA_LatchGroup
group: INT8
groupAbsolute: BOOL
clearLocks: BOOL
latchToLock: BOOL

SA_LockGroup
group: INT8
groupAbsolute: BOOL

SA_MovePtr
X, y¥: INT16
noAccel: BOOL
absoluteX: BOOL
absoluteY: BOOL

keyboard group. In either case, the resulting effective keyboard
group is brought back into range depending on the value of the
GroupsWrap control for the keyboard.

If an SA_ISOLock key is pressed while this key is held down,
key release has no effect, otherwise it cancels the effects of the
press.

If no keys were operated simultaneously with this key and
clearLocksis set, key release also sets the locked keyboard
group toGroupl .

Key press and release events have the same effect as an
SA_SetGroup action; if no keys were operated simulta-
neously with the latching group key and thearLocksflag

was not set or had no effect, key release has the following addi-
tional effects:

If latchToLockis set and the latched keyboard group is
non-zero, the key release adds the delta applied by the corre-
sponding key press to the locked keyboard group and subtracts
it from the latched keyboard group. The locked and effective
keyboard group are brought back into range according to the
value of the globaGroupsWrap control for the keyboard.
Otherwise, key release adds the key press delta to the latched
keyboard group.

If groupAbsolutds set, key press sets the locked keyboard
group togroup. Otherwise, key press adgmupto the locked
keyboard group. In either case, the resulting locked and effec-
tive group is brought back into range depending on the value of
the GroupsWrap control for the keyboard.

Key release has no effect.

If MouseKeys are not enabled, this action behaves like
SA_NoAction , otherwise this action cancels any pending
repeat key timers for this key and has the following additional
effects.

Key press generates a core poinetionNotify event

instead of the usu#leyPress . If absoluteXs True , X speci-

fies the new pointer X coordinate, otherwise added to the
current pointer X coordinatapsoluteYandy specify the new

Y coordinate in the same way.

If noAccelis False , and theMouseKeysAccel keyboard
control is enabled, key press also initiates the mouse keys timer
for this key; every time this timer expires, the cursor moves
again. The distance the cursor moves in these subsequent
events is determined by the mouse keys acceleration as
described in section 4.6.

Key release disables the mouse keys timer (if it was initiated by
the corresponding key press) but has no other effect and is
ignored (does not generate an event of any type).

11/6/97 Protocol Version 1.0/Document Revision 1.0 17

The X Keyboard Extension

Protocol Specification

Action

Effect

SA_PtrBtn
button: CARDS
count: CARDS8
useDfltBtn: BOOL

SA_LockPtrBtn
button: BUTTON
noLock: BOOL
noUnlock: BOOL
useDfltBtn; BOOL

SA_SetPtrDflt
affect: CARDS
value: CARDS
dfltBtnAbs: BOOL

If MouseKeys are not enabled, this action behaves like

SA _NoAction .

If useDfltBtnis set, the event is generated for the current
default core button. Otherwise, the event is generated for the
button specified biutton

If the mouse button specified for this action is logically down,
the key press and corresponding release are ignored and have
no effect.

Otherwise, key press causes one or more core pointer button
events instead of the usual key pressolintis 0, key press
generates a singlButtonPress event; ifcountis greater

than0, key press generatesuntpairs ofButtonPress and
ButtonRelease events.

If countis O, key release generates a core poiBtétonRe-

lease which matches the event generated by the correspond-
ing key press; if count is non-zero, key release does not cause a
ButtonRelease event. Key release never causes a key
release event.

If MouseKeys are not enabled, this action behaves like
SA_NoAction .

Otherwise, if the button specified bgeDfltBtnandbuttonis

not locked, key press causeButtonPress instead of a key
press and locks the button. If the button is already locked or if
noLockis True , key press is ignored and has no effect.

If the corresponding key press was ignored, andifnlockis
False , key release generateBattonRelease event

instead of a key release event and unlocks the specified button.
If the corresponding key press locked a button, key release is
ignored and has no effect.

If MouseKeys are not enabled, this action behaves like
SA_NoAction .

Otherwise, both key press and key release are ignored, but key
press changes the pointer value specifiedff|ctto value as
follows:

If whichis SA_AffectDfltBtn , valueanddfltBtnAbsspec-

ify the default pointer button used by the various pointer
actions as follow: IfifltBtnAbss True, value specifies the but-
ton to be used, otherwisegluespecifies the amount to be

added to the current default button. In either case, illegal button
choices are wrapped back into range.

11/6/97

Protocol Version 1.0/Document Revision 1.0 18

The X Keyboard Extension

Protocol Specification

Action Effect

SA _ISOLock .
dfltisGroup False
mods MOD_DEF
useModMap BOOL .
noLock BOOL
noUnlock BOOL
noAffectMods BOOL
noAffectGrg BOOL .
noAffectPtr BOOL
noAffectCtrls BOOL

or .
dfitisGroup True
groud INT8
groupAbsoluteBOOL
noAffectMods BOOL
noAffectGrg BOOL
noAffectPtr BOOL .
noAffectCtrls BOOL

SA TerminateServer

SA_SwitchScreen .
num: INT8
switchApp: BOOL
screenAbs: BOOL

SA_SetControls .

controls:
KB_BOOLCTRLMASK

SA_LockControls .

controls:
KB_BOOLCTRLMASK

noLock: BOOL

noUnlock: BOOL

If dfltisGroupis True , key press sets the base group specified
by groupAbsoluteandgroup. Otherwise, key press sets the
action modifiers in the keyboard’s base modifiers.

Key release clears the base modifiers or group that were set by
the key press; it may have additional effects if no other appro-
priate actions occur simultaneously with 8& SOLock
operation.

If noAffectModss False , anySA_SetMods or

SA_LatchMods actions that occur simultaneously with the
ISOLock action are treated &\ LockMods instead.

If noAffectGrpis False , anySA_ SetGroup or

SA LatchGroup actions that occur simultaneously with this
action are treated &A LockGroup actions instead.

If noAffectPtris False , SA_PtrBtn actions that occur
simultaneously with th8A_ISOLock action are treated as
SA_LockPtrBtn actions instead.

If noAffectCtrlsis False , anySA_SetControls actions

that occur simultaneously with ti8A ISOLock action are
treated aSA_LockControls actions instead.

If no other actions were transformed by 8% 1SOLock

action, key release locks the group or modifiers specified by the
action arguments.

Key press terminates the server. Key release is ignored.
This action is optional; servers are free to ignore it. If ignored,
it behaves likesSA_NoAction .

If the server supports this action and multiple screens or dis-
plays (either virtual or real), this action changes to the active
screen indicated byumandscreenAbslf screenAbss True |,

num specifies the index of the new screen; otherwise, num
specifies an offset from the current screen to the new screen.
If switchAppis False , it should switch to another screen on
the same server. Otherwise it should switch to another X server
or application which shares the same physical display.

This action is optional; servers are free to ignore the action or
any of its flags if they do not support the requested behavior. If
the action is ignored, it behaves |li8A&_NoAction , other-

wise neither key press nor release generate an event.

Key press enables any boolean controls that are specified in
controlsand not already enabled at the time of the key press.
Key release disables any controls that were enabled by the cor-
responding key press. This action can cadaControls-

Notify events.

If noLockis False , key press locks and enables any controls
that are specified ioontrolsand not already locked at the time
of the key press.

« If noUnlockis False , key release unlocks and disables any

controls that are specified @ontrolsand were not enabled at
the time of the corresponding key press.

11/6/97 Protocol Version 1.0/Document Revision 1.0 19

The X Keyboard Extension

Protocol Specification

Action Effect

SA ActionMessage :
pressMsg: BOOL
releaseMsg: BOOL
genEvent: BOOL .
message: STRING

SA RedirectKey .
newKey: KEYCODE
modsMask: KEYMASK
mods: KEYMASK
vmodsMask: CARD16
vmods: CARD16

SA DeviceBtn .
count: CARDS
button: BUTTON
device: CARDS

if pressMsgs True , key press generates #kbAction-

Message event which reports the keycode, event type and the
contents ofnessage

If releaseMsgs True , key release generatesXékbAction-

Message event which reports the keycode, event type and
contents ofnessage

If genEventis True , both press and release generate key press
and key release events, regardless of whether they also cause an
XkbActionMessage

Key press causes a key press event for the key specified by
newKeyinstead of for the actual key. The state reported in this
event reports of the current effective modifiers changed as fol-
low: Any real modifiers specified modsMaslare set to corre-
sponding values frortmods Any real modifiers bound to the
virtual modifiers specified immodsMaslare either set or

cleared, depending on the corresponding valueniads If the

real and virtual modifier definitions specify conflicting values

for a single modifier, the real modifier definition has priority.

Key release causes a key release event for the key specified by
newKey the state field for this event consists of the effective
keyboard modifiers at the time of the release, changed as
described above.

TheSA Redirectkey action normally redirects to another

key on the same device as the key or button which caused the
event, unless that device does not belong to the input extension
KEYCLASS, in which case this action causes an event on the
core keyboard device.

Thedevicefield specifies the ID of an extension device; the
buttonfield specifies the index of a button on that device. If the
button specified by this action is logically down, the key press
and corresponding release are ignored and have no effect. If the
device or button specified by this action are illegal, this action
behaves lik&sSA_NoAction .

Otherwise, key press causes one or more input extension device
button events instead of the usual key press evestultitis O,

key press generates a sinBleviceButtonPress event; if
countis greater thaf, key press generatesuntpairs of
DeviceButtonPress andDeviceButtonRelease

events.

If countis O, key release generates an input extenBievi-
ceButtonRelease which matches the event generated by
the corresponding key press; if count is non-zero, key release
does not causel@eviceButtonRelease event. Key

release never causes a key release event.

11/6/97 Protocol Version 1.0/Document Revision 1.0 20

The X Keyboard Extension Protocol Specification

Action Effect
SA _LockDeviceBtn » Thedevicefield specifies the ID of an extension device; the
button: BUTTON buttonfield specifies the index of a button on that device. If the
device: CARDS device or button specified by this action are illegal, it behaves
noLock: BOOL like SA_NoAction .
noUnlock: BOOL » Otherwise, if the specified button is not locked amlfockis

False , key press causes an input extengeniceBut-
tonPress event instead of a key press event and locks the
button. If the button is already locked ondLockis True ,
key press is ignored and has no effect.

* If the corresponding key press was ignored, andlifnlockis
False , key release generates an input extendBievice-
ButtonRelease event instead of a core protocol or input
extension key release event and unlocks the specified button. If
the corresponding key press locked a button, key release is
ignored and has no effect.

SA DeviceValuator » Thedevicefield specifies the ID of an extension devical
device CARDS andval2 specify valuators on that device déviceis illegal or
vallWhat SA_DVOP if neithervall norval2 specifies a legal valuator, this action
vall: CARD8 behaves likesSA_NoAction .
vallValue INT8 * If valn specifies a legal valuator amdinWhatis not
vallScaleO...7 SA_IgnoreVal |, the specified value is adjusted as specified
val2What BOOL by valnWhat
val2: CARDS8 « If vainWhatis SA_SetValMin , valn is set to its minimum
val2Value INT8 legal value.
val2ScaleO0...7 « If valnWhatis SA_SetValCenter ,valn is centered (to

(max-min)/2).

« If valnWhatis SA_SetValMax , valn is set to its maximum
legal value.

« if valnWhatis SA_SetValRelative , valnvaluex 2anScale jg
added tovaln.

« if valnWhatis SA_SetValAbsolute ,valnis setto
valnValuex 2ainScale,

* lllegal values foISA_SetValRelative or
SA SetValAbsolute are clamped into range.

If StickyKeys are enabled, aBA_SetMods andSA_SetGroup actions act like
SA_LatchMods andSA_LatchGroup respectively. If thé.atchToLock
AccessX option is set, either action behaves as if botBAh&€learLocks and

SA LatchToLock flags are set.

Actions which cause an event from another key or from a button on another device
immediately generate the specified event. These actions do not consider the behavior
or actions (if any) that are bound to the key or button to which the event is redirected.

Core events generated by server actions contain the keyboard state that was in effect at
the time the key event occurred; the reported state does not reflect any changes in state
that occur as a result of the actions bound to the key event that caused them.

Events sent to clients that have not issuekblUseExtension request contain a
compatibility state in place of the actual XKB keyboard state. See section 12.3 for a
description of this compatibility mapping.

11/6/97 Protocol Version 1.0/Document Revision 1.0 21

The X Keyboard Extension Protocol Specification

6.4

6.4.1

Delivering a Key or Button Event to a Client

The window and client that receive core protocol and input extension key or button
events are determined using the focus policy, window hierarchy and passive grabs as
specified by the core protocol and the input extension, with the following changes:

» A passive grab triggers if the modifier state specified in the grab matches the grab com-
patibility state (described in section 2.4). Clients can choose to use the XKB grab state
instead by setting therabsUseXKBState per-client flag. This flag affects all pas-
sive grabs that are requested by the client which sets it but does not affect passive grabs
that are set by any other client.

» The state field of events which trigger a passive grab reports the XKB or compatibility
grab state in effect at the time the grab is triggered; the state field of the corresponding
release event reports the corresponding grab state in effect when the key or button is
released.

» If the LookupStateWhenGrabbed per-client flag is set, all key or button events
that occur while a keyboard or pointer grab is active contain the XKB or compatibility
lookup state, depending on the value of@rabsUseXKBState per-client flag. If
LookupStateWhenGrabbed is not set, they include the XKB or compatibility grab
state, instead.

» Otherwise, the state field of events that do not trigger a passive grab report is derived
from the XKB effective modifiers and group, as described in section 2.2.2.

» If a key release event is the result of an autorepeating key that is being held down, and
the client to which the event is reported has requested detectable autorepeat (see sec-
tion 4.1.2), the event is not delivered to the client.

The following section explains the intent of the XKB interactions with core protocol
grabs and the reason that the per-client flags are needed.

XKB Interactions With Core Protocol Grabs

XKB provides the separate lookup and grab states to help work around some difficul-
ties with the way the core protocol specifies passive grabs. Unfortunately, many cli-
ents work around those problems differently, and the way that XKB handles grabs and
reports keyboard state can sometimes interact with those client workarounds in unex-
pected and unpleasant ways.

To provide more reasonable behavior for clients that are aware of XKB without caus-
ing problems for clients that are unaware of XKB, this extension provides two per-cli-
ent flags that specify the way that XKB and the core protocol should interact.

» The largest problems arise from the fact that an XKB state field encodes an explicit
keyboard group in bits 13-14 (as described in section 2.2.2), while pre-XKB clients use
one of the eight keyboard modifiers to select an alternate keyboard group. To make
existing clients behave reasonably, XKB normally uses the compatibility grab state
instead of the XKB grab state to determine whether or not a passive grab is triggered.
XKB-aware clients can set tligrabsUseXKBState per-client flag to indicate that
they are specifying passive grabs using an XKB state.

» Some toolkits start an active grab when a passive grab is triggered, in order to have
more control over the conditions under which the grab is terminated. Unfortunately, the
fact that XKB reports a different state in events that trigger or terminate grabs means
that this grab simulation can fail to terminate the grab under some conditions. To work
around this problem, XKB normally reports the grab state in all events whenever a grab

11/6/97

Protocol Version 1.0/Document Revision 1.0 22

The X Keyboard Extension Protocol Specification

7.0

7.1

is active. Clients which do not use active grabs like this can skbtheipState-
WhenGrabbed per-client flag in order to receive the same state component whether or
not a grab is active.

TheGrabsUseXKBState per-client flag also applies to the state of events sent while
a grab is active. If it is set, events during a grab contain the XKB lookup or grab state;
by default, events during a grab contain the compatibility lookup or grab state.

The state used to trigger a passive grab is controlled by the settingGrbthstJs-
eXKBState per-client flag at the time the grab is registered. Changing this flag does
not affect existing passive grabs.

Key Event Processing in the Client

The XKB client mapfor a keyboard is the collection of information a client needs to
interpret key events that come from that keyboard. It contains a globaldest tyfpes
described in section 7.2.1, and an arrakeyf symbol mag each of which describes
the symbols bound to one particular key and the rules to be used to interpret those
symbols.

Notation and Terminology

XKB associates a two-dimensional array of symbols with each key. Symbols are
addressed by keyboard group (see section 2.0) and shift level, where level is defined as
in the 1ISO9995 standard:

Level: One of several states (normally 2 or 3) which govern which graphic character
is produced when a graphic key is actuated. In certain cases the level may also
affect function keys.

Note that shift level is derived from the modifier state, but not necessarily in the same
way for all keys. For example, ti$hift modifier selects shift level 2 on most keys,

but for keypad keys the modifier boundNtom_Lock (i.e. theNumLock virtual mod-

ifier) also selects shift level 2.gray symbols on a key

We use the notationrkn to specify the position of a symbol on a key or in memory:

N

g gitgzi L1 L2 L1 12 L1 L2

- = GlalA

z GaLl=z ajA|= |k

= GoL2 = [E Glea |E Gl @2
Group -

Physical Key Symbols XKB Symbols Core Symbols

The gray characters indicate symbols that are implied or expected but are not actually
engraved on the key.

Note Unfortunately, the “natural” orientation of symbols on a key and the natural orienta-
tion in memory are reversed from one another, so keyboard group refers to a column
on the key and a row in memory. There’s no real help for it, but we try to minimize
confusion by using “group” and “level” (or “shift level”) to refer to symbols regard-
less of context.

11/6/97

Protocol Version 1.0/Document Revision 1.0 23

The X Keyboard Extension Protocol Specification

7.2

7.2.1

Determining the KeySym Associated with a Key Event
To look up the symbol associated with an XKB key event, we need to know the group
and shift level that correspond to the event.

Group is reported in bits 13-14 of the state field of the key event, as described in sec-
tion 2.2.2. The keyboard group reported in the event might be out-of-range for any
particular key because the number of groups can vary from key to key. The XKB
description of each key containgm@up infofield which is interpreted identically to

the global groups wrap control (see section 2.2.1) and which specifies the interpreta-
tion of groups that are out-of-range for that key.

Once we have determined the group to be used for the event, we have to determine the
shift level. The description of a key includekey typefor each group of symbols

bound to the key. Given the modifiers from the key event, this key type yields a shift
level and a set of “leftover” modifiers, as described in section 7.2.1 below.

Finally, we can use the effective group and the shift level returned by the type of that
group to look up a symbol in a two-dimensional array of symbols associated with the
key.

Key Types

Each entry of a key typetmapfield specifies the shift level that corresponds to some
XKB modifier definition; any combination of modifiers that is not explicitly listed
somewhere in the map yields shift level one. Map entries which specify unbound vir-
tual modifiers (see section 3.1.1) are not considered; each entry contains an automati-
cally-updatedactivefield which indicates whether or not it should be used.

Each key type includes a few fields that are derived from the contents of the map and
which report some commonly used values so they don’t have to be constantly recalcu-
lated. ThenumLeveldield contains the highest shift level reported by any of its map
entries; XKB usesumLeveldo insure that the array of symbols bound to a key is

large enough (the number of levels reported by a key type is also referred to as its
width). Themodifiersfield reports all real modifiers considered by any of the map
entries for the type. BotmodifiersandnumLevelsre updated automatically by XKB

and neither can be changed explicitly.

Any modifiers specified imodifiersare normallyjconsumedsee section 7.3), which

means that they are not considered during any of the later stages of event processing.
For those rare occasions that a modsteouldbe considered despite having been used

to look up a symbol, key types include an optigrakervefield. If apreservdist is

present, each entry corresponds to one of the key type’s map entries and lists the mod-
ifiers that shoulahotbe consumed if the matching map entry is used to determine shift
level.

For example, the following key type implements caps lock as defined by the core pro-
tocol (using the second symbol bound to the key):

type “ALPHABETIC” {
modifiers = Shift+Lock;
map[Shift]= Level2;
map|[Lock]= Level2;
map[Shift+Lock]= Level2;

11/6/97

Protocol Version 1.0/Document Revision 1.0 24

The X Keyboard Extension Protocol Specification

The problem with this kind of definition is that we could assign completely unrelated
symbols to the two shift levels, and “Caps Lock” would choose the second symbol.
Another definition for alphabetic keys uses system routines to capitalize the keysym:

type “ALPHABETIC” {
modifiers= Shift;
map[Shift]= Level2;

When caps lock is applied using this definition, we take the symbol from shift level
one and capitalize it using system-specific capitalization rules. If shift and caps lock
are both set, we take the symbol from shift level two and try to capitalize it, which usu-
ally has no effect.

The following key type implements shift-cancels-caps lock behavior for alphabetic
keys:

type “ALPHABETIC” {
modifiers = Shift+Lock;
map[Shift] = Level2;
preserve[Lock]= Lock;

Consider the four possible states that can affect alphabetic keys: no modifiers, shift
alone, caps lock alone or shift and caps lock together. The map contains no explicit
entry forNone (no modifiers), so if no modifiers are set, any group with this type
returns the first keysym. The map entry &hift reportsLevel2 , so any group

with this type returns the second symbol wB&ift is set. There is no map entry for
Lock alone, but the type specifies that tlwek modifier should be preserved in this
case, shock alone returns the first symbol in the group but first applies the capitali-
zation transformation, yielding the capital form of the symbol. In the final case, there
is no map entry foshift+Lock | so it returns the first symbol in the group; there is
no preserve entry, so theck modifier is consumed and the symbol is not capital-
ized.

7.2.2 Key Symbol Map
Thekey symbol mafor a key contains all of the information that a client needs to pro-
cess events generated by that key. Each key symbol mapping reports:

The number of groups of symbols bound to the keynGroups

The treatment of out-of-range grougsdupinfg.

The index of the key type to for eapbssiblegroup kt_index[MaxKbdGroup3]

The width of the widest type associated with the kggupsWidth.

The two-dimensional (numGroupsgroupsWidth) array of symbols bound to the key.

It is legal for a key to have zero groups, in which case it also has zero symbols and all
events from that key yieldoSymbol. The array of key types is of fixed width and is
large enough to hold key types for the maximum legal number of griapspd-

Groups , currently four); if a key has fewer thddaxKbdGroups groups, the extra

key types are reported but ignored. TneupsWidthield cannot be explicitly

changed; it is updated automatically whenever the symbols or set of types bound to a
key are changed.

11/6/97 Protocol Version 1.0/Document Revision 1.0 25

The X Keyboard Extension Protocol Specification

7.3

If, when looking up a symbol, the effective keyboard group is out-of-range for the key,
thegrouplnfofield of the key symbol map specifies the rules for determining the cor-
responding legal group as follows:

» If the RedirectintoRange flag is set, the two least significant bitggobuplinfo
specify the index of a group to which all illegal groups correspond. If the specified
group is also out of range, all illegal groups ma@toupl .

» If ClampintoRange flag is set, out-of-range groups correspond to the nearest legal
group. Effective groups larger than the highest supported group are mapped to the high-
est supported group; effective groups less taeoupl are mapped t&roupl . For
example, a key with two groups of symbols usesup2 type and symbols if the glo-
bal effective group is eith€roup3 or Group4 .

» If neither flag is set, group is wrapped into range using integer modulus. For example, a
key with two groups of symbols for which groups wrap Besupl symbols if the
global effective group i§roup3 or Group2 symbols if the global effective group is
Group4 .

The client map contains an array of key symbol mappings, with one entry for each key
between the minimum and maximum legal keycodes, inclusive. All keycodes which
fall in that range have key symbol mappings, whether or not any key actually yields
that code.

Transforming the KeySym Associated with a Key Event

Any modifiers that were not used to look up the keysym, or which were explicitly pre-
served, might indicate further transformations to be performed on the keysym or the
character string that is derived from it. For example, ILibek modifier is set, the

symbol and corresponding string should be capitalized according to the locale-sensi-
tive capitalization rules specified by the system. If@oatrol modifier is set, the
keysym is not affected, but the corresponding character should be converted to a con-
trol character as described in Appendix A.

This extension specifies the transformations to be applied whé&otiteol or
Lock modifiers are active but were not used to determine the keysym to be used:

Modifier Transformation

Control Report the control character associated with the symbol. This exten-
sion defines the control characters associated with the ASCII alpha-
betic characters (both upper and lower case) and for a small set of
punctuation characters (see Appendix A). Applications are free to
associate control characters with any symbols that are not specified
by this extension.

Lock Capitalize the symbol either according to capitalization rules appro-
priate to the application locale or using the capitalization rules
defined by this extension (see Appendix A).

Interpretation of other modifiers is application dependent.

Note This definition of capitalization is fundamentally different from the core protocol’s,
which uses the lock modifier to select from the symbols bound to the key. Consider
key 9 in the example keyboard on page 27; the core protocol provides no way to gen-
erate the capital form of either symbol bound to this key. XKB specifies that we first
look up the symbol and then capitalize, so XKB yields the capital form of the two
symbols when caps lock is active.

11/6/97

Protocol Version 1.0/Document Revision 1.0 26

The X Keyboard Extension Protocol Specification

XKB specifies the behavior dfock andControl , but interpretation of other modi-
fiers is left to the application.

7.4 Client Map Example
Consider a simple, if unlikely, keyboard with the following keys (gray characters indi-
cate symbols that are implied or expected but are not actually engraved on the key):

? 1 Num Enter
B\ End Lock

Keycode: 8 9 10 11 12 13 15

Q e A E
0

Key: @ ’

The core protocol represents this keyboard as a simple array with one row per key and
four columns (the widest key, key 10, determines the width of the entire array).

Key G1lL1 G1L2 G2L1 G2L2
8 Q NoSymbol at NoSymbol
9 odiaeresis egrave NoSymbol NoSymbol
10 A NoSymbol £ NoSymbol
11 ssharp question backslash questiondown
12 KP_End KP_1 NoSymbol NoSymbol
13 Num_Lock NoSymbol NoSymbol NoSymbol
14 NoSymbol NoSymbol NoSymbol NoSymbol
15 Return NoSymbol NoSymbol NoSymbol

The row to be used for a given key event is determined by keycode; the column to be
used is determined by the symbols bound to the key, the stateSifithe andLock
Modifiers and the state of the modifiers bound toNben_Lock andMode_switch

keys as specified by the core protocol.

The XKB description of this keyboard consists of six key symbol maps, each of which
specifies the types and symbols associated with each keyboard group for one key:

Key = Group: Type L1 L2

8 | G1:ALPHABETIC q Q
G2:0ONE_LEVEL @ NoSymbol

9 |GLTWO_LEVEL| odiaeresis egrave

10 | G1:ALPHABETIC a A
G2:ALPHABETIC ae AE

11 |G1:TWO_LEVEL ssharp question
G2:ONE LEVEL backslash questiondown

12 Gl;KEyEAD KP_End KP_1

13 | G1:ONE_LEVEL | Num_Lock

14 | No Groups

15 | G1:ONE_LEVEL Return

The keycode reported in a key event determines the row to be used for that event; the
effective keyboard group determines the list of symbols and key type to be used. The
key type determines which symbol is chosen from the list.

11/6/97 Protocol Version 1.0/Document Revision 1.0 27

The X Keyboard Extension Protocol Specification

8.0

Section 7.2 details the procedure to map from a key event to a symbol and/or a string.

Symbolic Names

The core protocol does not provide any information to clients other than that actually
used to interpret events. This makes it difficult to write a client which presents the
keyboard to a user in an easy-to-understand way. Such applications have to examine
the vendor string and keycodes to determine the type of keyboard connected to the
server and have to examine keysyms and modifier mappings to determine the effects
of most modifiers (th&hift ,Lock andControl modifiers are defined by the core
protocol but no semantics are implied for any other modifiers).

This extension provides such applications with symbolic names for most components
of the keyboard extension and a description of the physical layout of the keyboard.

Thekeycodesiame describes the range and meaning of the keycodes returned by the
keyboard in question; tHeeyboard geometngame describes the physical location,

size and shape of the various keys on the keyboard. As an example to distinguish
between these two names, consider function keys on PC-compatible keyboards. Func-
tion keys are sometimes above the main keyboard and sometimes to the left of the
main keyboard, but the same keycode is used for the key that is logitathgardless

of physical position. Thus, all PC-compatible keyboards might share a keycodes name
but different geometry names.

Note The keycodes name is intended to be a very general description of the keycodes
returned by a keyboard; A single keycodes name might cover keyboards with differing
numbers of keys provided that the keys that all keys have the same semantics when
present. For example, 101 and 102 key PC keyboards might use the same name.
Applications can use the keyboard geometry to determine which subset of the named
keyboard type is in use.

Thesymbolsname identifies the symbols bound to the keys. The symbols name is a
human or application-readable description of the intended locale or usage of the key-
board with these symbols. Thaysical symbolaame describes the symbols actually
engraved on the keyboard, which might be different than the symbols currently being
used.

Thetypesname provides some information about the set of key types that can be asso-
ciated with the keyboard keys. Tbempathame provides some information about the
rules used to bind actions to keys changed using core protocol requests.

Thecompattypes keycodessymbolsandgeometrynames typically correspond to the
keyboard components from which the current keyboard description was assembled.
These components are stored individually in the server’s database of keyboard compo-
nents, described in section 13.0, and can be combined to assemble a complete key-
board description.

Each key has a four-byte symbolic name. The key name links keys with similar func-
tions or in similar positions on keyboards that report different scan déelesliases

allow the keyboard layout designer to assign multiple names to a single key, to make it
easier to refer to keys using either their posigotheir “function.”

For example, consider the common keyboard customizations:

11/6/97

Protocol Version 1.0/Document Revision 1.0 28

The X Keyboard Extension Protocol Specification

9.0

9.1

» Set the “key to the left of the letter a” to be a control key.
» Change the “caps lock” key, wherever it might be, to a control key.

If we specify key names by position, the first customization is simple but the second is
impossible; if we specify key names by function, the second customization is simple
but the first is impossible. Using key aliases, we can specify both function and position
for “troublesome” keys, and both customizations are straightforward.

Key aliases can be specified both in the symbolic names component and in the key-
board geometry (see section 11.0). Both sets of aliases are always valid, but key alias
definitions in the keyboard geometry have priority; if both symbolic names and geom-
etry include aliases, applications should consider the definitions from the geometry
before considering the definitions from the symbolic names section.

XKB provides symbolic names for each of the four keyboard groups, sixteen virtual
modifiers, thirty-two keyboard indicators, and ugMaxRadioGroups (32) radio
groups.

XKB allows keyboard layout designers or editors to assign names to each key type and
to each of the levels in a key type. For example, the second position on an alphabetic
key might be called the “Caps” level while the second position on a numeric keypad
key might be called the “Num Lock” level.

Keyboard Indicators

Although the core X protocol supports thirty-two LEDs on a keyboard, it does not pro-
vide any way to link the state of the LEDs and the logical state of the keyboard. For
example, most keyboards have a “Caps Lock” LED, but X does not provide any stan-
dard way to make the LED automatically follow the logical state of the modifier
bound to theCaps Lock key.

The core protocol also gives no way to determine which bits ilethenasKield of

the keyboard state map to the particular LEDs on the keyboard. For example, X does
not provide a method for a client to determine which bit to set itethenasko turn

on the “Scroll Lock” LED, or even if the keyboard has a “Scroll Lock” LED.

Most X servers implement some kind of automatic behavior for one or more of the
keyboard LEDs, but the details of that automatic behavior are implementation-specific
and can be difficult or impossible to control.

XKB provides indicator names and programmable indicators to help solve these prob-
lems. Using XKB, clients can determine the names of the various indicators, deter-
mine and control the way that the individual indicators should be updated to reflect
keyboard changes, and determine which of the 32 keyboard indicators reported by the
protocol are actually present on the keyboard. Clients may also request immediate
notification of changes to the state of any subset of the keyboard indicators, which
makes it straightforward to provide an on-screen “virtual” LED panel.

Global Information About Indicators
XKB provides only two pieces of information about the indicators as a group.

Thephysical indicatorsnask reports which of the 32 logical keyboard indicators sup-
ported by the core protocol and XKB corresponds to some actual indicator on the key-

11/6/97

Protocol Version 1.0/Document Revision 1.0 29

The X Keyboard Extension Protocol Specification

9.2

9.21

board itself. Because the physical indicators mask describes a physical characteristic
of the keyboard, it cannot be directly changed under program control. It is possible,
however, for the set of physical indicators to be change if a new keyboard is attached
or if a completely new keyboard description is loaded by#iesetKeyboard-
ByNamerequest (see section 16.3.12).

Theindicator statemask reports the current state of the 32 logical keyboard indica-
tors. This field and the core protocol indicator state (as reported gdtneaskfield
of the core protocabetKeyboardControl request) are always identical.

Per-Indicator Information

Each of the thirty-two keyboard indicators has a symbolic name, of type ATOM. The
XkbGetNames request reports the symbolic names for all keyboard components,
including the indicators. Use thkbSetNames request to change symbolic names.
Both requests are described in section 16.3.9.

Indicator Maps
XKB also provides aimdicator mapfor each of the thirty-two keyboard indicators; an
indicator map specifies:

The conditions under which the keyboard modifier state affects the indicator.

The conditions under which the keyboard group state affects the indicator.

The conditions under which the state of the boolean controls affects the indicator.
The effect (if any) of attempts to explicitly change the state of the indicator using the
core protocoBetKeyboardControl request.

If IM_NoAutomatic is set in thdlagsfield of an indicator map, that indicator never
changes in response to changes in keyboard state or controls, regardless of the values
for the other fields of the indicator maplM_NoAutomatic is not set irflags the

other fields of the indicator map specify the automatic changes to the indicator in
response to changes in the keyboard state or controls.

Thewhich_groupsand thegroupsfields of an indicator map determine how the key-
board group state affects the corresponding indicatorwhieh_groupdield controls
the interpretation afjroupsand may contain any one of the following values:

Value Interpretation of the Groups Field
IM_UseNone Thegroupsfield and the current keyboard group state are ignored.
IM_UseBase If groupsis non-zero, the indicator is lit whenever the base keyboard

group is non-zero. kfroupsis zero, the indicator is lit whenever the
base keyboard group is zero.

IM_UseLatched If groupsis non-zero, the indicator is lit whenever the latched key-

board group is non-zero. gfoupsis zero, the indicator is lit when-
ever the latched keyboard group is zero.

IM_UseLocked Thegroupsfield is interpreted as a mask. The indicator is lit when
the current locked keyboard group matches one of the bits that are
set ingroups

IM_UseEffective Thegroupsfield is interpreted as a mask. The indicator is lit when
the current effective keyboard group matches one of the bits that are
set ingroups

Thewhich_modsandmodsfields of an indicator map determine how the state of the
keyboard modifiers affect the corresponding indicator. mbdsfield is an XKB

11/6/97

Protocol Version 1.0/Document Revision 1.0 30

The X Keyboard Extension Protocol Specification

modifier definition, as described in section 3.1, which can specify both real and virtual
modifiers. The mods field takes effect even if some or all of the virtual indicators
specified inmodsare unbound.

Thewhich_modsdield can specify one or more components of the XKB keyboard
state. The corresponding indicator is lit whenever any of the real modifiers specified in
themaskfield of themodsmodifier definition are also set in any of the current key-
board state components specified byihéch_modsThewhich_moddield may have

any combination of the following values:

Value Keyboard State Component To Be Considered
IM_UseBase Base modifier state
IM_UseLatched Latched modifier state
IM_UseLocked Locked modifier state
IM_UseEffective Effective modifier state
IM_UseCompat Modifier compatibility state

Thecontrolsfield specifies a subset of the boolean keyboard controls (see section
4.11). The indicator is lit whenever any of the boolean controls specifamhtrols
are enabled.

An indicator is lit whenever any of the conditions specified by its indicator map are
met, unless overridden by thd_NoAutomatic flag (described above) or an
explicit indicator change (described below).

Effects of Explicit Changes on Indicators
If the IM_NoExplicit flag is set in an indicator map, attempts to change the state
of the indicator are ignored.

If both IM_NoEXxplicit andIM_NoAutomatic are both absent from an indicator
map, requests to change the state of the indicator are honored but might be immedi-
ately superseded by automatic changes to the indicator state which reflect changes to
keyboard state or controls.

If the IM_LEDDriveskB flag is set and theM_NoExplicit flag is not, the key-

board state and controls are changed to reflect the other fields of the indicator map, as
described in the remainder of this section. Attempts to explicitly change the value of
an indicator for whichM_LEDDriveskKB is absent or for whichM_NoEXxplicit

is present do not affect keyboard state or controls.

The effect on group state of changing an explicit indicator which drives the keyboard
is determined by the value which_groupsandgroups as follows:

which_groups New State Effect on Keyboard Group State

IM_UseNone, or On or Off No Effect

IM_UseBase

IM_UseLatched On Thegroupsfield is treated as a group mask. The key-

board group latch is changed to the lowest numbered
group specified iigroups if groupsis empty, the key-
board group latch is changed to zero.

11/6/97

Protocol Version 1.0/Document Revision 1.0 31

The X Keyboard Extension Protocol Specification

which_groups New State Effect on Keyboard Group State

IM_UseLatched Off Thgroupsfield is treated as a group mask. If the indi-
cator is explicitly extinguished, keyboard group latch is
changed to the lowest numbered group not specified in
groups if groupsis zero, the keyboard group latch is set
to the index of the highest legal keyboard group.

IM_UselLocked ,or On If thegroupsmask is empty, group is not changed, oth-
IM_UseEffective erwise the locked keyboard group is changed to the low-
est numbered group specifiedgroups
IM_UselLocked , or Off Locked keyboard group is changed to the lowest num-
IM_UseEffective bered group that is not specified in greupsmask, or
to Groupl if the groupsmask contains all keyboard
groups.

The effect on the keyboard modifiers of changing an explicit indicator which drives
the keyboard is determined by the values that are sewhioh_modsandmods as
follows:

Set in which_mods New State Effect on Keyboard Modifiers

IM_UseBase On or Off No Effect

IM_UseLatched On Any maodifiers specified in theaskfield of modsare
added to the latched modifiers.

IM_UseLatched off Any modifiers specified in themaskfield of modsare
removed from the latched modifiers.

IM_UseLocked |, On Any modifiers specified in theaskfield of modsare

IM_UseCompat , or added to the locked modifiers.

IM_UseEffective

IM_UselLocked Off Any modifiers specified in theaskfield of modsare
removed from the locked modifiers.

IM_UseCompat, or Off Any modifiers specified in themaskfield of modsare

IM_UseEffective removed from both the locked and latched modifiers.

Lighting an explicit indicator which drives the keyboard also enables all of the bool-
ean controls specified in tle@ntrolsfield of its indicator map. Explicitly extinguish-
ing such an indicator disables all of the boolean controls specifemhtrols

The effects of changing an indicator which drives the keyboard are cumulative; it is
possible for a single change to affect keyboard group, modifiers and controls simulta-
neously.

If an indicator for which both thi_LEDDriveskB andIM_NoAutomatic flags

are specified is changed, the keyboard changes specified above are applied and the
indicator is changed to reflect the state that was explicitly requested. The indicator will
remain in the new state until it is explicitly changed again.

If the IM_NoAutomatic flag is not set for an indicator which drives the keyboard,

the changes specified above are applied and the state of the indicator is set to the val-
ues specified by the indicator map. Note that it is possible in this case for the indicator
to end up in a different state than the one that was explicitly requested. For example,
an indicator withwhich_mod®f IM_UseBase andmodsof Shift is not extin-

guished if one of th&hift keys is physically depressed when the request to extinguish
the indicator is processed.

11/6/97

Protocol Version 1.0/Document Revision 1.0 32

The X Keyboard Extension Protocol Specification

10.0

10.1

10.2

10.3

10.4

Keyboard Bells

The core protocol provides requests to control the pitch, volume and duration of the
keyboard bell and a request to explicitly sound the bell.

The X Keyboard Extension allows clients to disable the audible bell, attach a symbolic
name to a bell request or receive an event when the keyboard bell is rung.

Client Notification of Bells

Clients can ask to receivékbBellNotify event when a bell is requested by a cli-
ent or generated by the server. Bells can be sounded due to core @etbcol
requests, X Input ExtensiddeviceBell requests, X Keyboard Extensi&kb-

Bell requests or for reasons internal to the server such as the\B¢@3sXFeed-
back control.

Bell events caused by thékbBell request or by thAccessXFeedback control

include an optional window and symbolic name for the bell. If present, the window
makes it possible to provide some kind of visual indication of which window caused
the sound. The symbolic name can report some information about the reason the bell
was generated and makes it possible to generate a distinct sound for each type of bell.

Disabling Server Generated Bells

The globalAudibleBell boolean control for a keyboard indicates whether bells

sent to that device should normally cause the server to generate a sound. Applications
which provide “sound effects” for the various named bells will typically disable the
server generation of bells to avoid burying the user in sounds.

When theAudibleBell control is active, all bells caused by core protd=|

and X Input ExtensioDeviceBell requests cause the server to generate a sound, as
do all bells generated by the XKi&cessXFeedback control. Bells requested via

the XkbBell request normally cause a server-generated sound, but clients can ask
the server not to sound the default keyboard bell.

When theAudibleBell control is disabled, the server generates a sound only for
bells that are generated using KidBell request and which specify forced delivery
of the bell.

Generating Named Bells

TheXkbBell request allows clients to specify a symbolic name which is reported in
the bell events they cause. Bells generated bjx¢hessXFeedback control of this
extension also include a symbolic name, but all kinds of feedback cause a single event
even if they sound multiple tones.

The X server is permitted to use symbolic bell names (when present) to generate
sounds other than simple tones, but it is not required to do so.

Aside from those used by the XKi:cessXFeedback control (see section 4.9),
this extension does not specify bell names or their interpretation.

Generating Optional Named Bells

Under some circumstances, some kind of quiet audio feedback is useful, but a normal
keyboard bell is not. For example, a quiet “launch effect” can be helpful to let the user
know that an application has been started, but a loud bell would simply be annoying.

11/6/97

Protocol Version 1.0/Document Revision 1.0 33

The X Keyboard Extension Protocol Specification

10.5

11.0

To simplify generation of these kinds of effects, ¥kbBell request allows clients
to specify “event only” bells. The X server never generates a normal keyboard bell for
“event only” bells, regardless of the setting of the glghalibleBell control.

If the X server generates different sounds depending bell name, it is permitted to gen-
erate a sound even for “event only” bells. This field is intended simply to weed out
“normal” keyboard bells.

Forcing a Server Generated Bell

Occasionally, it is useful to force the server to generate a sound. For example, a client
could “filter” server bells, generating sound effects for some but sounding the normal
server bell for others. Such a client needs a way to tell the server that the requested bell
should be generated regardless of the setting dtuldéleBell control.

To simplify this process, clients which call tkkbBell request can specify that a

bell is forced. A forced bell always causes a server generated sound and never causes a
XkbBellNotify event. Because forced bells do not cause bell notify events, they
have no associated symbolic name or event window.

Keyboard Geometry

The XKB description of a keyboard includes an optional keyboard geometry which
describes the physical appearance of the keyboard. Keyboard geometry describes the
shape, location and color of all keyboard keys or other visible keyboard components
such as indicators. The information contained in a keyboard geometry is sufficient to
allow a client program to draw an accurate two-dimensional image of the keyboard.

The components of the keyboard geometry include the following:

» A symbolic nam¢o help users identify the keyboard.

» Thewidth andheightof the keyboard, ir52—m . For non-rectangular keyboards, the
width and height describe the smallest Bounding-box that encloses the outline of the
keyboard.

» Alist of up toMaxColors (32) color namesA color name is a string whose interpre-
tation is not specified by XKB. Other geometry components refer to colors using their
indices in this list.

» Thebase coloiof the keyboard is the predominant color on the keyboard and is used as
the default color for any components whose color is not explicitly specified.

» Thelabel coloris the color used to draw the labels on most of the keyboard keys.

» Thelabel fontis a string which describes the font used to draw labels on most keys;
XKB does not specify a format or name space for font names.

» A list of geometry propertiesA geometry property associates an arbitrary string with
an equally arbitrary name. Geometry properties can be used to provide hints to pro-
grams that display images of keyboards, but they are not interpreted by XKB. No other
geometry structures refer to geometry properties.

» Alist of key aliasesas described in section 8.0.

» Alist of shapesother keyboard components refer to shapes by their index in this list. A
shape consists of a name and one or more closed-polygonsozalisds Shapes and
outlines are described in detail in section 11.1.

Unless otherwise specified, geometry measurements in units. The origin (0,0)
is in the top left corner of the keyboard image. Some geometry components can be
drawn rotated; all such objects rotate about their origig-in increments.

11/6/97

Protocol Version 1.0/Document Revision 1.0 34

The X Keyboard Extension Protocol Specification

111

11.2

All geometry components includepaority, which indicates the order in which over-
lapping objects should be drawn. Objects are drawn in order from highest pfrity (
to lowest 255).

The description of the actual appearance of the keyboard is subdivided into named
sectionf related keys andoodads A adoodaddescribes some visible aspect of the
keyboard that is not a key. A section is a collection of keys and doodads that are phys-
ically close together and logically related.

Shapes and Outlines

An outline is a list of one or more points which describes a single closed-polygon, as
follows:

» Alist with a single point describes a rectangle with one corner at the origin of the shape
(0,0) and the opposite corner at the specified point.

» A list of two points describes a rectangle with one corner at the position specified by
the first point and the opposite corner at the position specified by the second point.

» A list of three or more points describes an arbitrary polygon. If necessary, the polygon
is automatically closed by connecting the last point in the list with the first.

* A non-zero value for theornerRadiudield specifies that the corners of the polygon
should be drawn as circles with the specified radius.

All points in an outline are specified relative to the origin of the enclosing shape.
Points in an outline may have negative values for the X and Y coordinate.

One outline (usually the first) is the primary outline; a keyboard display application
can generate a simpler but still accurate keyboard image by displaying only the pri-
mary outlines for each shape. Non-rectangular keys must include a rectangular
approximationas one of the outlines associated with the shape; the approximation is
not normally displayed but can be used by very simple keyboard display applications
to generate a recognizable but degraded image of the keyboard.

Sections

Each section has its own coordinate system — if a section is rotated, the coordinates of
any components within the section are interpreted relative to the edges that were on
the top and left before rotation. The components that make up a section include:

» Alist of rows A row is a list of horizontally or vertically adjacent keys. Horizontal
rows parallel the (pre-rotation) top of the section and vertical rows parallel the (pre-
rotation) left of the section. All keys in a horizontal row share a common top coordi-
nate; all keys in a vertical row share a left coordinate.

A key description consists of a kegme ashape a keycolor, and agap. The key
nameshould correspond to one of the keys named in the keyboard names description,
theshapespecifies the appearance of the key, and thedley specifies the color of

the key (not the label on the key). Keys are normally drawn immediately adjacent to
one another from left-to-right (or top-to-bottom) within a row. §aefield specifies

the distance between a key and its predecessor.

» An optional list of doodads; any type of doodad can be enclosed within a section. Posi-
tion and angle of rotation are relative to the origin and angle of rotation of the sections
that contain them. Priority is relative to the other components of the section, not to the
keyboard as a whole.

11/6/97

Protocol Version 1.0/Document Revision 1.0 35

The X Keyboard Extension Protocol Specification

11.3

» An optional list ofoverlay keysEach overlay key definition indicates a key that can
yield multiple scan codes and consists of a field nameéer which specifies the pri-
mary name of the key and a field nanosdr, which specifies the name for the key
when the overlay keycode is selected. The key specifigadarmust be a member of
the section that contains the overlay key definition, while the key specified in over must
not.

Doodads

Doodads can be global to the keyboard or part of a section. Doodads have symbolic
names of arbitrary length. The only doodad name whose interpretation is specified by
XKB is “Edges”, which describes the outline of the entire keyboard, if present.

All doodads report their origin in fields namiedt andtop. XKB supports five kinds
of doodads:

» Anindicator doodaddescribes one of the physical keyboard indicators. Indicator doo-
dads specify the shape of the indicator, the indicator color when itas lic¢lo)) and
the indicator color when it is darkft_color).

» An outline doodadiescribes some aspect of the keyboard to be drawn as one or more
hollow, closed polygons. Outline doodads specify the shape, color, and angle of rota-
tion about the doodad origin at which they should be drawn.

» A solid doodaddescribes some aspect of the keyboard to be drawn as one or more
filled polygons. Solid doodads specify the shape, color and angle of rotation about the
doodad origin at which they should be drawn.

* A text doodadiescribes a text label somewhere on the keyboard. Text doodads specify
the label string, the font and color to use when drawing the label, and the angle of rota-
tion of the doodad about its origin.

* Alogo doodads a catch-all, which describes some other visible element of the key-
board. A logo doodad is essentially an outline doodad with an additional symbolic
name that describes the element to be drawn.

If a keyboard display program recognizes the symbolic name, it can draw something
appropriate within the bounding region of the shape specified in the doodad. If the
symbolic name does not describe a recognizable image, it should draw an outline using
the specified shape, outline, and angle of rotation.

The XKB extension does not specify the interpretation of logo names.

11/6/97

Protocol Version 1.0/Document Revision 1.0 36

The X Keyboard Extension Protocol Specification

114

Keyboard Geometry Example
Consider the following example keyboard:

m’ T ﬁ’ ‘M. S
.) . .
Kl <KPEN>
<AE11>
,

> || | <BKSL>

<AE12> <AE01s| || [

TAB> | I | aorts| | |

<CAPS> D <AC11>

<acots||| [

<LFSH> ! || | <RTSH>

E8e] 8]
ninn

]88

<ABO1>|

[<TLDE>|

This keyboard has six sections: The left and right function sections (at the very top)
each have one horizontal row with eight keys. The left and right alphanumeric sections
(the large sections in the middle) each have six vertical rows, with four or five keys in
each row. The left and right editing sections each have three vertical rows with one to
three keys per row; the left editing section is rotated 20° clockwise about its origin
while the right editing section is rotated 20° counterclockwise.

This keyboard has four global doodads: Three small, round indicators and a rectangu-
lar logo. The program which generated this image did not recognize the logo, so it dis-
plays an outline with an appropriate shape in its place.

This keyboard has seven shapes: All of the keys in the two function sections use the
“FKEY” shape. Most of the keys in the alphanumeric sections, as well as four of the
keys in each of the editing sections use the “NORM” shape. The keys in the first col-
umn of the left alphanumeric section and the last column of the right alphanumeric
section all use the “WIDE” shape. Two keys in each of the editing sections use the
“TALL” shape. The “LED” shape describes the three small, round indicators between
the function and alphabetic sections. The “LOGQO” shape describes the keyboard logo,
and the “EDGE” shape describes the outline of the keyboard as a whole.

The keyboard itself is white, as are all of the keys except for the eight keys that make
up the home row, which use the “grey20” color. It isn’t really visible in this picture,

but the three indicators have an “on” color of “green” and are “green30” when they are
turned off. The keys in the alphanumeric and editing sections all have a (vertical) gap
of 0.5mm); the keys in the two function sections have a (horizontal) gap of 3mm.

Many of the keys in the right alphanumeric section, and the rightmost key in the right
editing section are drawn with two names in this image. Those are overlay keys; the
bottom key name is the normal name while the overlay name is printed at the top. For
example, the right editing section has a single overlay key entry, which specifies an
undername okSPCE>and arovername okKPO0>, which indicates that the key in
guestion is usually the shift key, but can behave lik@® tkey on the numeric keypad
when an overlay is active.

11/6/97

Protocol Version 1.0/Document Revision 1.0 37

The X Keyboard Extension Protocol Specification

12.0 Interactions Between XKB and the Core Protocol

In addition to providing a number of new requests, XKB replaces or extends existing
core protocol requests and events. Some aspects of the this extension, such as the abil-
ity to lock any key or modifier, are visible even to clients that are unaware of the XKB
extension. Other capabilities, such as control of keysym selection on a per-key basis,
are available only to XKB-aware clients.

Though they do not have access to some advanced extension capabilities, the XKB
extension includes compatibility mechanisms to ensure that non-XKB clients behave
as expected and operate at least as well with an XKB-capable server as they do today.

There are a few significant areas in which XKB state and mapping differences might
be visible to XKB-unaware clients:

» The core protocol uses a modifier to choose between two keyboard groups, while this
extension provides explicit support for multiple groups.

» The order of the symbols associated with any given key by XKB might not match the
ordering demanded by the core protocol.

To minimize problems that might result from these differences, XKB includes ways to
specify the correspondence between core protocol and XKB modifiers and symbols.

This section describes the differences between the core X protocol’s notion of a key-
board mapping and XKB and explains the ways they can interact.

12.1 Group Compatibility Map
As described in section 2.0, the current keyboard group is reported to XKB-aware cli-
ents in bits 13-14 of the state field of many core protocol events. XKB-unaware clients
cannot interpret those bits, but they might use a keyboard modifier to implement sup-
port for a single keyboard group. To ensure that pre-XKB clients continue to work
when XKB is present, XKB makes it possible to map an XKB state field, which
includes both keyboard group and modifier state into a pre-XKB state field which con-
tains only modifiers.

A keyboard description includes ogeup compatibility maper keyboard group

(four in all). Each such map is a modifier definition (i.e. specifies both real and virtual
modifiers) which specifies the modifiers to be set in the compatibility states when the
corresponding keyboard group is active. Here are a few examples to illustrate the
application of the group compatibility map:

Group Effective State for XKB Compatibility State for non-

Group Compat Map Modifiers Clients Modifiers XKB Clients
1 Group1=None Shift X00xxxxx00000001 Shift Xxxxxxxx00000001
2 Group2=Mod3 None x01xxxxx00000000 Mod3 xxxxxxxx00100000
3 Group3=Mod2 Shift x10xxxxx00000001 Shift+Mod2 xxxxxxxx00010001
4 Group4=None Control x11xxxxx00000100 Control Xxxxxxxx00000100

Note that non-XKB clients (i.e. clients that are linked with a version of the X library
that does not support XKB) cannot detect the fact@maup4 is active in this exam-
ple because the group compatibility map@oup4 does not specify any modifiers.

11/6/97 Protocol Version 1.0/Document Revision 1.0 38

The X Keyboard Extension Protocol Specification

12.1.1

12.2

12.2.1

Setting a Passive Grab for an XKB State

The fact that thetatefield of an event might look different when XKB is present can
cause problems with passive grabs. Existing clients specify the modifiers they wish to
grab using the rules defined by the core protocol, which use a normal modifier to indi-
cate keyboard group. If we used an XKB state field, the high bits of the state field
would be non-zero whenever the keyboard was in any group othegtbapl , and

none of the passive grabs set by clients could ever be triggered.

To avoid this behavior, the X server normally uses the compatibility grab state to
decide whether or not to activate a passive grab, even for XKB-aware clients. The
group compatibility map attempts to encode the keyboard group in one or more modi-
fiers of the compatibility state, so existing clients continue to work exactly the way
they do today. By default, there is no way to directly specify a keyboard group in a
Grabbed or GrabButton request, but groups can be specified indirectly by cor-
rectly adjusting the group compatibility map.

Clients that wish to specify an XKB keyboard state, including a separate keyboard
group, can set therabsUseXKBState per-client flag which indicates that all sub-
sequent key and button grabs from the requesting clients are specified using an XKB
state.

Whether the XKB or core state should